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7 Örebro University, Örebro, Sweden
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Abstract. RoboCup-99, the third Robot World Cup Soccer Games and
Conferences, was held in conjunction with IJCAI-99 in Stockholm. Robo-
Cup has now clearly demonstrated that it provides a remarkable frame-
work for advanced research in Robotics and Artificial Intelligence. The
yearly RoboCup event has included a technical workshop and competi-
tions in different leagues. This chapter presents a comprehensive overview
of RoboCup-99 and the scientific and engineering challenges presented to
the participating researchers. There were four RoboCup-99 competitions:
the simulation league, the small-size robot league, the middle-size robot
league, and, for the first time officially, the Sony legged robot league.
The champion teams were CMUnited-99 (Carnegie Mellon University,
USA) for the simulation league, Sharif CE (Sharif University of Technol-
ogy, Iran) for the middle-size league, Big Red (Cornell University, USA)
for the small-size league, and “Les 3 Mousquetaires” (Laboratoire de
Robotique de Paris, France) for the Sony legged robot league. The Sci-
entific Challenge Award was given to three papers on innovative research
for the automated statistical analysis of the games, from the University
of Southern California (ISI/USC), USA, the Electrotechnical Laborato-
ry (ETL), Japan, and Chubu University, Japan. There will be the first
RoboCup European Championship in Amsterdam in May 2000, and the
International RoboCup-2000 will take place in Melbourne, Australia, in
August 2000.

1 Introduction

The RoboCup Initiative, the Robot World Cup Soccer Games and Conferences,
provides a large spectrum of research and development issues in Artificial Intel-
ligence (AI) and Robotics. In particular, it remarkably provides a common task,
namely robotic soccer, for the investigation and evaluation of different approach-
es, theories, algorithms, and architectures for multiagent software and robotic
systems.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 1−34, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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RoboCup-99, held in Stockholm, followed the successful RoboCup-97 in Na-
goya [6] and RoboCup-98 in Paris [3]. The RoboCup-99 event included a techni-
cal workshop, robotic soccer competitions in four different leagues, and a variety
of demonstrations.

This chapter introduces the different leagues in detail, summarizes the chal-
lenging research problems underlying each league, and overviews RoboCup-99.
It further includes several appendices with the results of all the games in the four
competition leagues. It shows the results of the preliminary round-robin phases
and the results from the elimination rounds. The book contains the technical
contributions on how each of the multiple teams concretely addressed these re-
search challenges at the RoboCup-99 competitions. The chapter includes a brief
discussions of the lessons learned and future directions. A new RoboCup search
and rescue task is under development and will be part of the next RoboCup
events.

The RoboCup events are held every year. RoboCup has been held in con-
junction with international technical conferences. It has been attended by the
research community and by the general public. RoboCup-97 and RoboCup-99
were held at the biannual International Joint Conference on Artificial Intelligence
(IJCAI). RoboCup-98 was held with the International Conference on Multiagent
Systems (ICMAS) in Paris. RoboCup-98, in particular, attracted a large audi-
ence, as it took place mostly at the same time as the human World Cup.

RoboCup-99, the Third Robot World Cup Soccer Games and Conferences,
was held on July 27th through August 4th, 1999 in Stockholm. It was organized
by Linköping University with the cooperation of Stockholm University, and it
was sponsored by Sony Corporation, Sun Microsystems, Futurniture, First Hotel,
The Foundation for Knowledge and Competence Development, The Swedish
Council for Planning and Coordination of Research, The Swedish Foundation
for Strategic Research, NUTEK, and WITAS.

The purpose of RoboCup is to provide a common task for evaluation of dif-
ferent algorithms and their performance, theories, and robot architectures [8]. In
addition, as soccer, as a game, is quite accessible to both experts and non-experts,
RoboCup has also shown to provide an interesting popular demonstration of re-
search in AI and Robotics.

RoboCup-99 had four different leagues, each one with its specific architec-
tural constraints and challenges, but sharing the goal of developing teams of
autonomous agents with action, perception, and cognition. RoboCup-99 also in-
cluded the RoboCup Jr. event targeted at allowing children to experiment with
automated robotic systems.

The Scientific Challenge Award is given each year to people or groups that
have made significant scientific contributions to RoboCup. At RoboCup-99, the
Scientific Challenge Award was given to three papers on innovative research for
the automated statistical analysis of the games, from the University of Southern
California (ISI/USC), USA, the Electrotechnical Laboratory (ETL), Japan, and
Chubu University, Japan.

2 M. Veloso et al.
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2 Simulation League

The simulation league continues to be the most popular part of the RoboCup
leagues, with 37 teams participating in RoboCup-99, which is a slight increase
over the number of participants at RoboCup-98. In this section, we briefly de-
scribe the RoboCup simulator; we present the major research challenges and
some of the ways in which they have been addressed in the passed; and we
summarize the 1999 competition.

2.1 The RoboCup Simulator

The RoboCup-99 simulation competition was held using the RoboCup soccer
server [11], which has been used as the basis for previous successful internation-
al competitions and research challenges [8]. The soccer server is a complex and
realistic domain, embracing as many real-world complexities as possible. It mod-
els a hypothetical robotic system, merging characteristics from different existing
and planned systems as well as from human soccer players. The server’s sen-
sor and actuator noise models are motivated by typical robotic systems, while
many other characteristics, such as limited stamina and vision, are motivated
by human parameters.

The simulator includes a visualization tool, pictured in Figure 1. Each player
is represented as a two-halved circle. The light side is the side towards which the
player is facing. In Figure 1, all of the 22 players are facing the ball, which is in
the middle of the field. The black bars on the left and right sides of the field are
the goals.

Fig. 1. The soccer server display.

The simulator also includes a referee, which enforces the rules of the game. It
indicates changes in play mode, such as when the ball goes out of bounds, when

3Overview of RoboCup-99
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a goal is scored, or when the game ends. It also enforces the offsides rule. Like in
real soccer, a player is offsides if it is in the opponent’s half of the field and closer
to the opponent’s goal line (the line along which the goal is located) than all or
all but one of the opponent players when the ball is passed to it. The crucial
moment for an offsides call is when the ball is kicked, not when it is received:
a player can be behind all of the opponent defenders when it receives a pass,
but not when a teammate kicks the ball towards it.1 The offsides rule, which
typically plays an important role in shaping soccer strategies, is not enforced in
any of the other RoboCup leagues.

The simulator, acting as a server, provides a domain and supports users who
wish to build their own agents (also referred to as clients or players). Client pro-
grams connect to the server via UDP sockets, each controlling a single player.
The soccer server simulates the movements of all of the objects in the world,
while each client acts as the brain of one player, sending movement commands
to the server. The server causes the player being controlled by the client to exe-
cute the movement commands and sends sensory information from that player’s
perspective back to the client.

When a game is to be played, two teams of 11 independently controlled clients
connect to the server. Thus, it is a fully distributed, multiagent domain with both
teammates and adversaries. The simulation league is the only RoboCup league
that uses teams of 11 players as in real soccer.

The sensory information sent from the server to each client provides only
a partial world view at any given moment. Each player can only “see” objects
within a limited angle of the direction it is facing, and both the accuracy and
description-detail of seen objects degrades with distance. In particular, sensory
information is partial and noisy. Both agent action and object movement are
noisy as well.

Another of the real-world complexities embraced by the soccer server is asyn-
chronous sensing and acting. Whereas most AI simulators use synchronous sens-
ing and acting: an agent senses the world, acts, senses the result, acts again,
and so on. In this paradigm, sensations trigger actions. On the other hand, both
people and complex robotic systems have independent sensing and acting rates.
Sensory information arrives via different sensors at different rates, often unpre-
dictably (e.g. sound). Meanwhile, multiple actions may be possible in between
sensations or multiple sensations may arrive between action opportunities.

The soccer server communication paradigm models a crowded, low-bandwidth
environment. All 22 agents use a single, unreliable communication channel. When
an agent “speaks,” nearby agents on both teams can hear the message. Agents
have a limited communication range and a limited communication capacity, both
in terms of message length and frequency.

Another limited resource of the agents is stamina. The more the agents run,
the more tired they get, so that future running is less effective. Stamina has
both a renewable component, that replenishes if the agents stands still, and an
unrenewable component that can degrade over the course of the game.

1 The soccer server operationalizes the offsides rule making it an objective call.
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Finally, soccer server agents, like their robotic counterparts, must act in real
time. The simulator uses a discrete action model, collecting player actions over
the course of a 100 msec cycle, but only executes them and updates the world
at the end of the cycle. If a client sends more than one movement command
in a simulator cycle, the server chooses one randomly for execution. Thus, it is
in each client’s interest to try to send at most one movement command each
simulator cycle. On the other hand, if a client sends no movement commands
during a simulator cycle, it loses the opportunity to act during that cycle, which
can be a significant disadvantage in a real-time adversarial domain: while the
agent remains idle, opponents may gain an advantage.

In summary, the RoboCup soccer server is a fully distributed, multiagent do-
main with both teammates and adversaries. There is hidden state, meaning that
each agent has only a partial world view at any given moment. The agents also
have noisy sensors and actuators, meaning that they do not perceive the world
exactly as it is, nor can they affect the world exactly as intended. In addition,
the perception and action cycles are asynchronous, prohibiting the traditional
AI paradigm of using perceptual input to trigger actions. Communication oppor-
tunities are limited; the agents have limited stamina and the agents must make
their decisions in real-time. These italicized domain characteristics combine to
make the RoboCup soccer server a realistic and challenging domain.

2.2 Research Challenges

Research directions in the RoboCup simulation league are quite varied, as is
evident from the articles in this book that are based on simulation research.
This section presents a small sample of these directions.

The RoboCup synthetic agent challenge [8] identifies three major simulation-
based challenges as being:

1. machine learning in a multiagent, collaborative and adversarial environment,
2. multiagent architectures, enabling real-time multiagent planning and decision-

making, in service of teamwork, and
3. opponent modeling

Much past research has been devoted to these topics as reflected in this and the
past RoboCup books [6, 3].

Several other challenges are suggested by the characteristics of the soccer
server presented above. For example, asynchronous sensing and acting, especially
when the sensing can happen at unpredictable intervals, is a very challenging
paradigm for agents to handle. Agents must balance the need to act regularly and
as quickly as possible with the need to gather information about the environment.
For example, the runner-up of the 1999 competition, magmaFreiburg, used an
action-selection method based on extended behavior networks that generated
decisions very quickly. This method was used primarily for times when an agent
was in possession of the ball.

Some other research areas related to agent-development in the simulation
league include:

5Overview of RoboCup-99



www.manaraa.com

– communication in single-channel, low-bandwidth communication environ-
ments,

– social conventions, or coordination without communication,
– distributed sensing, and
– resource management.

It is interesting to note that different techniques are generally used for agent
control when the agents are not in possession of the ball. Many teams use the
concept of flexible formations in which agents adjust their positions based on the
ball’s location (e.g., [13]). Some research is focussed on using machine learning or
linear programming techniques to allow agents to adapt their positioning based
on the locations of the opponent players during the course of a game (e.g., [1]).

In addition to soccer-playing agent development, the soccer server has been
used as a substrate for 3-dimensional visualization, real-time natural language
commentary, and education research.

Figure 1 shows the 2-dimensional visualization tool that is included in the
soccer server software. SPACE [12] converts the 2-dimensional image into a 3-
dimensional image, changing camera angle and rendering images in real time.

Another research challenge being addressed within the soccer server is pro-
ducing natural language commentary of games as they proceed. Researchers
aim to provide both low-level descriptions of the action, for example announcing
which team is in possession of the ball, and high-level analysis of the play, for
example commenting on the team strategies being used by the different teams.
Commentator systems for the soccer server include ROCCO [2], MIKE [10], and
Byrne [4].

Robotic soccer has also been used as the basis for education research. A
survey of RoboCup-97 participants indicates that the majority of participants
were students motivated principally by the research opportunities provided by
the domain [14]. There has also been an undergraduate AI programming course
based on teaching students to create robotic soccer-playing agents in the soccer
server [5].

2.3 The RoboCup-99 Tournament

As with RoboCup-97 and RoboCup-98, teams were divided into leagues. In the
preliminary round, teams played within leagues in a round-robin fashion, and
that was followed by a double-elimination round (where a team has to lose twice
to be eliminated) to determine the first three teams. Many of the games were
extremely exciting, leading up to the final—watched by several hundred people—
in which CMUnited-99 defeated Magma Freiburg by a score of 4–0.

With respect to the competition entrants themselves, there is concrete evi-
dence that the overall level improved significantly over the previous year. The
defending champion team, the CMUnited-98 simulator team was entered in
the competition. Its code was left unaltered from that used at RoboCup-98 ex-
cept for minor changes necessary to update from version 4 to version 5 of the
soccer simulator. In 1998, this team won all of its matches and suffered no goals

6 M. Veloso et al.



www.manaraa.com

against. However, this year, after advancing to the elimination round, it won
only one game before being eliminated.

An interesting improvement to the soccer simulator in 1999 was the addition
of an on-line coach. Each team was permitted to use a single agent with an
overhead view of the field that could communicate with all teammates whenever
play was stopped (i.e. the ball was out of bounds). At least one team took
advantage of this feature to have the coach give advice to the team regarding
the overall formation of the team, which could range from offensive to defensive,
and “narrow” (concentrated near the middle of the field) to wide.

Building on the success of the 1999 tournament, the RoboCup-2000 simulator
tournament has even more entrants and promises to be another exciting event
spawning new research approaches and successes.

3 F-180: Small-Size Robot League

The F-180, or “small-size” RoboCup league, features up to five robots on each
team in matches on a field the size of a ping-pong table. Each robot can extend
up to 18cm along any diagonal and occupy up to 180cm2 of the pitch. Color
markers on the field, the robots and the ball help computerized vision systems
locate important objects in the game. The robots are often controlled remotely
by a separate computer that processes an an image of the field provided by an
overhead camera. A couple of teams, and probably more in the future, included
on-board vision.

In this section we will review the characteristics of the F-180 league, the
research challenges facing teams competing in the league, and recent research
contributions by some of the competing teams.

3.1 Characteristics of the F-180 League

The playing surface consists of a green ping-pong table enclosed by white walls.
One goal area is painted yellow, while the other is painted blue – these colors
help robots with onboard vision find the goals. In 2000, the league is moving to
a carpeted surface of the same dimensions.

To help competitors locate their opponents, each robot carries a single colored
ping-pong ball provided by the RoboCup organization. The marker is located at
the geometric center of the robot as viewed from above. One team is fitted with
yellow markers, while the other is equipped with blue ones. At RoboCup-99, the
team carrying yellow markers attacks the blue goal and blue team attacks the
yellow goal. In addition, the robots may be colored with additional markers to
help computer controllers locate and orient them.

3.2 Research and Engineering Challenges

The core issues faced by RoboCup F-180 researchers include the construction of
the robots, development of individual robot skills, reliability in dynamic, uncer-
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tain and adversarial environments, and importantly, cooperative team coordina-
tion. In the F-180 league these capabilities depend significantly on underlying
engineering like reliable real-time vision and high-performance feedback control
of small robots.

Competitors in the F-180 league must address most of the challenges faced
by teams engaged in the simulator competition (e.g., cooperation, localization, s-
trategy and tactics). Additionally, however, vision systems for tracking the robot-
s must be developed and hardware to execute the control commands (the robots
themselves) must be built. In terms of the autonomy required of robots, the
F-180 league lies somewhere between the F-2000 league and simulation. The
difficulties of locating the ball, other robots, and opponents is reduced in com-
parison with the F-2000 league because an overhead camera is allowed. However,
the technical challenges of real-time visual tracking, feedback control and team
play remain.

The visual tracking problem for the small-size league can actually be seen as
more difficult in some ways than for robots in the middle-size league. The com-
puter responsible for processing images from an overhead camera must be able
to simultaneously estimate the locations and velocities of 10 robots and the ball.
In some cases these robots move as fast as 2m/s, while the ball has been record-
ed at speeds of 6m/s. This vision task is being addressed using a wide range
of technologies including: specialized Digital Signal Processing (DSP) hardware,
commercial color tracking systems, and fast PCs equipped with commodity col-
or capture hardware but programmed with highly-optimized image processing
software. Pioneered by the CMUnited-97 and CMUnited-98 vision processing
algorithms, several teams currently predict the future trajectory of the ball, and
use this prediction to intersect the ball. At RoboCup-99, most of the top teams,
in particular the three small robots of the RobotIS team, impressively intersected
and controlled rather fast moving balls.

In addition to addressing vision and position control issues, robots must be
able to manipulate the ball. Skills such as dribbling, passing and shooting are
critical to successful play. It is also important for robots to be able to remove
the ball from along the walls. Many robots are also equipped with devices for
kicking the ball. Determining when to activate the kicker can be a tricky tactical
decision.

RoboCup-99 saw a substantial increase in the mechanical capabilities of
robots. In past years, a majority of the teams mainly focused with vision pro-
cessing, obstacle avoidance, and cooperative behaviors. This year several teams
seemed to have focused on player skills.

One of the most interesting developments concerned ball kicking technologies.
At RoboCup-98, only a few teams had their own kicking devices, in particular the
winning CMUnited-98 team. However the devices used in 1998 did not seem to
be significantly effective. At RoboCup-99 nearly half of the participating teams
utilized some sort of kicking device. One team (the FU-Fighters from Berlin)
was remarkably able to propel the ball so fast that observers could barely track
it (see Figure 2).
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Fig. 2. The FuFighters robots with their kicking device.

Another interesting development was a new spinning technique for removing
stuck balls from along the wall or in corners. The RoboCup-99 winning Big Red
team demonstrated this early in the tournament and several others were able to
also adopt the spinning behavior.

3.3 The RoboCup-99 Tournament

Participation in the Small-Size league RoboCup soccer continues to grow at
a remarkable pace. Competitions in 1997 and 1998 included five and eleven
competitors respectively. In anticipation of even more participants in 1999, the
league instituted qualification rules to limit the field to a manageable number
and to ensure groups did not travel to Stockholm with no reasonable hope of
competing. In order to qualify, each team had to submit a video tape by April
demonstrating at least one robot able to move the ball across the field and score
(this may sound easy, but it is in fact a very challenging problem). Eighteen
teams from around the world qualified for the third annual competition. The
group included teams from Australia, Belgium, France, Germany, Japan, Korea,
New Zealand, Portugal, Singapore, Spain, and the USA.

For the round-robin phase, the 18 teams were split into four groups of four or
five teams each. In an effort to ensure equally competitive divisions each group
included one of the top four finishers from RoboCup-98 and one or two new
competitors. Also, no two teams from the same country were placed in the same
group. During the round-robin phase, each team in each group played each of the
other teams in its group. Group standings were determined by awarding three
points to a team for each game it won and one point for each tie. The top two
teams from each division progressed to the single elimination tournament.
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Because of the large number of teams, four separate fields were required
for the round-robin. Scheduling the round-robin tournament was challenging
because teams sometimes ran into technical problems and asked for delays. The
task was complicated by the fact that many teams used the same frequencies for
controlling their robots, and therefore could not play at the same time. Games
were played twelve to thirteen hours a day for two days; there were almost always
two games running concurrently.

At the end of the round-robin, the top two teams from each group (eight
teams in all) took a day to move to the central conference location for the finals.
This move was a bit more difficult than had been anticipated. Fortunately, all of
the teams were able to adapt to the new lighting conditions and slightly cramped
environment. The new location boosted attendance and crowd participation sig-
nificantly. The quarter finals, semi-finals and final match conducted over the
next two days in standing-room-only conditions. The final game resulted in the
runner-up FuFighters and the winning BigRed team (see Figure 3).

Fig. 3. The FuFighters runner-up team and the BigRed champion team.

3.4 Evolution of the Rules

Rules for F-180 league robotic soccer continue to evolve. Of course the long
term vision for RoboCup is participation in the real human World Cup, so
our robots must eventually be capable of play according to FIFA (the World
Cup rules-making body) regulations. For now, however, we adjust FIFA’s rules
to accommodate our robots. Examples of RoboCup adjustments to the rules
include special markings to help with vision issues and walls around the pitch
to keep the ball from departing the playing surface.
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One detail of the rules is particularly interesting from a philosophical point of
view. In real soccer, yellow cards are assigned to individual players who commit
serious fouls; this approach is also used at RoboCup. In both FIFA and RoboCup
soccer, when an individual receives two yellow cards, he/she/it is ejected from
the game and cannot be replaced (reducing the number of players on the field).
When a star human player receives a yellow card, the team’s coach is faced with
an important decision: should the star player be kept in the game and bear the
risk that of receiving another yellow card, or should the star be replaced with
a substitute? The situation is completely different for robot teams. Competi-
tors often have a number of identical “spare” robots that can be immediately
substituted for a penalized player — several teams followed this strategy.

This kind of substitution was perfectly legal, but seems to violate the spirit
of the rule which is intended to punish the “offender.” But which is the offender,
the robot hardware or the software? Should the physical hardware be tagged
with the yellow card, or should it apply to the software controlling it? This issue
has been addressed in 2000 by changing the manner in which yellow cards are
tracked: now they are tracked against the team as a whole. Every time two yellow
cards are assigned, one player must be removed from the field.

3.5 Lessons Learned and Current State of the League

Probably the most frequent difficulty faced by teams in the F-180 league concerns
fast vision processing. Even though many teams’ vision systems work perfectly
in the lab, after being re-located half-way around the world it is often a great
challenge to re-calibrate them in a new environment. Problems are caused by
the specific height of the camera, the variable intensity of field lighting, and the
spectrum of illumination provided by the lights. Still another source of vision
problems concerned the colored markers worn by opponent teams. These diffi-
culties highlight the importance of robust vision for robots – this is a substantial
challenge in nearly all domains of robotics research.

Another important lesson from successful teams is that as much effort must
be applied to software development as is devoted to hardware design. It is com-
mon to see beautiful hardware designs with poor or very slow control algorithm-
s. The winners and other top-ranked teams in previous RoboCups and also at
RoboCup-99 clearly balanced their development effort between hardware and
software.

The league is in great shape. It continues to draw more researchers each year.
We expect about 20 teams to compete in RoboCup-2000 at Melbourne. The rules
continue to be dynamic, and to reflect the research interests and directions of
the participants. Two significant changes for the future include a shift to a more
realistic carpet surface, and a switch to angled walls that allow the ball to leave
the field more easily. In the future we hope to remove walls altogether. RoboCup
in the 2000s promises to be even more exciting than in the last millennium!
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4 F-2000: Middle-Size Robot League

The RoboCup F-2000 League, commonly known as middle-size robot league,
poses a unique combination of research problems, which has drawn the attention
of well over 30 research groups world-wide. In this section, we briefly describe
the fundamental characteristics of the league and discuss its major differences to
other leagues. Then we present some typical research problems and the solutions
developed by F-2000 teams. This overview is selective, while this book provides a
rather complete survey of the research performed in F-2000 league. In particular,
the references to the technical contributions from the different teams can be
found as chapters in this book. We conclude with a summary of the RoboCup-
99 middle-size league tournament in Stockholm and a few observations on team
performance and the current state of the league.

4.1 Characteristics of F-2000 League

Two major factors influence the design of teams and robotic soccer players for
middle-size robot league: (a) the playing environment, in particular, the field,
and (b) constraints imposed on robot design.

The playing environment is carefully designed such that the perceptual and
motory problems to be solved are reasonably simple, but still challenging enough
to ignite interesting and serious research efforts. The field size is variable within
certain bounds; in Stockholm, the field size was 9m × 5m. The goals do not
have nets, but colored walls in the back and on the sides (yellow/blue). The
field is surrounded by white walls (50cm height) that carry a few extra markings
(squared black markers of 10cm size plus black-and-white logos of sponsors in
large letters). A special corner design is used and marked with two green lines.
The goal lines, goal area, center line and center circle are all marked with white
lines. The ball is dark orange. Illumination of the field is constrained to be within
500 and 1500 lux. Matches are played with teams of four robots, including the
goalie.

The robots must have a black body and carry color tags for team identi-
fication (light blue/magenta). Quite elaborate constraints exist for robot size,
weight, and shape; roughly, a robot body may have about 50cm diameter and
be up to 80cm high, must weigh less than 80kg, and feature no concavities large
enough to take up more than one-third of the ball diameter. The robots must
carry all sensors and actuators on-board; no global sensing system is allowed.
Wireless communication is permitted both between robots and between robots
and outside computers.

4.2 Research and Engineering Challenges

A general survey of RoboCup research issues can be found in [6, 3]. An interesting
perspective on middle-size league research issues results when compared with the
simulation league. Ultimately, all major research issues in simulation league, like
coordinated team play, opponent modeling, game strategy and tactics, in-game
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adaptation to opponent tactics, etc., have to be solved in middle-size league
as well. However, while agent design in simulation league can build upon a set
of reasonably reliable perception and action commands (e.g., it is possible to
precisely and deterministically determine a player’s position and orientation on
the field with little computational effort), it is a non-trivial task to achieve this
level of player capability with real robots. Thus, building a F-2000 robot team
starts with a combined engineering and research challenge: choosing or designing
appropriate robots.

A basic decision with far-reaching consequences is the solution selected to
achieve mobility. A wide spectrum of alternative solutions developed in clas-
sical robotics is available; for example, omnidirectional drive systems allow to
design very agile robots, but can be quite complex to control. Differential drive
systems are much easier to control, but often require more complex movement
maneuvers during play. Another mechanical engineering problem is the design
of mechanisms for handling the ball. Because ready-to-use solutions were hard-
ly available, this problem has led to a wide range of different approaches and
interesting new designs.

Although a number of small, commercial robot platforms have become avail-
able over the past few years (e.g., the Pioneer series by Activmedia and the
Scout robots by Nomadics, both of which use differential drive systems), almost
none of them can be considered a complete robotic soccer player. Typical items
teams found necessary to add include mechanical kicking devices, additional sen-
sors like bumpers, compasses, laser scanners, unidirectional and omnidirection-
al cameras, and additional computing power (notebook computers, embedded
computers, DSP boards). Because off-the-shelf soccer robots are not available,
a substantial number of teams decided to build their own robots. In either case,
the time and effort needed to design and construct (or acquire) all necessary
components and to integrate them into a reliably working soccer robot is of-
ten grossly under-estimated and under-valued. At the very least, this kind of
system’s integration work is a great educational experience for students.

Once a functional physical robot is available, a number of basic perceptual
and behavioral problems must be solved. Perception and action commands are
needed for the following functions:

– Detection and tracking of the ball.
– Detection and tracking of the goals, corners, lines, and other landmark fea-

tures of the field.
– Detection and recognition of teammates and opponents.
– Kicking and passing the ball.
– Dribbling the ball.
– Goalie.

All this basic functionality, which has proven to be very hard to obtain in a
robust and reliable manner, is already available for designers of soccer players
in the simulation league. Also, this functionality is achieved in the small-size
robot league through an outside camera mounted above the field. The images to
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be processed in the small-size league are characterized by comparatively stable
lighting conditions (lighting comes from the same direction as the camera) and
little optical flow. The goals and the walls surrounding the field remain stable,
and only the position of the ball and the players change. Vision processing in
the F-180 league is however still very challenging due to the typically very high
speed of both robots and the ball. The small-size researchers have developed fast
vision processing routines (up to 60 Hz frame rate) to detect and track in real
time up to the eleven fast moving objects on the field.

The situation is completely different in the F-2000 league, where the camera is
near the floor (lighting direction is almost perpendicular to camera direction) and
the lighting situation is far less stable. As a consequence, for example cameras
see the ball as an ensemble of three differently colored regions: a red portion
in the middle, a white portion at the top (reflection of lighting for the field),
and a black portion at the bottom (the shadowed lower part of the ball and
its own shadow). Also, the camera is actively moved through the environment,
resulting in images where everything constantly changes, especially the distances
to objects and landmark features to be recognized. Usually, only a small portion
of the environment is visible at any given time; 30 to 120 degree visual angle
for unidirectional cameras and a visual field of about 2m around the robot for
omnidirectional cameras are typical. Detecting and tracking the relevant objects
and landmark features requires robust and reliable techniques for color-based
and texture-based image segmentation, line detection, and the combination of
color, shape, and texture feature for object recognition and tracking. In summary,
the middle-size research platform offers a very challenging setting regarding the
perceptual situation of robotic soccer players.

On the behavioral side, hand-crafting robust and reliable action commands
for kicking or passing the ball into a certain direction (and possibly, with varying
strength) as well as moving with ball such that the robot maintains control over
the ball (necessary for dribbles) often require substantial programming and tun-
ing effort. An interesting research challenge is to develop tools for programming
and debugging such behaviors modules and to apply learning techniques to this
problem.

Due to these constraints, constructing the basic functionalities listed above
proves to be a very hard problem. The quality of the solutions achieved for these
problems usually directly influences the performance level for the next level of
functionality, which includes

– world modeling,
– self-localization,
– obstacle detection and avoidance of or recovery from collisions, and
– behavior engineering, especially behaviors for finding the ball, dribbling the

ball, passing to teammates, shooting a goal, performing a penalty kick, etc.

World modeling and self-localization in RoboCup are interesting because
the environment is highly dynamic, currently containing nine almost constantly
moving objects. Several other state-of-the-art mobile robot applications, where
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robots are also in highly dynamic environments like museums, treat all dynam-
ic objects as obstacles which have no direct relevance to the task at hand. On
the contrary, soccer robots cannot take this simplified view. The development
of probabilistic representations for highly dynamic environments, like robotic
soccer, is a challenging and still open research problem. Accordingly, adapt-
ing existing techniques for self-localization to work with such representations is
required. For teams following an approach with some kind of central team coor-
dinator (often by an outside computer) the integration of partial (and possibly
inconsistent) world models provided by individual players is another research
topic, which is now also investigated outside of the RoboCup community.

Obstacle detection and avoidance or recovery from collisions is a difficult
problem in RoboCup, because of the intricate rulings on charging and foul play.
Although soccer is a sport where physical contact is not always avoidable, there
is mutual understanding in the community that pure robot strengths should not
be a “winning factor”; charging fouls have drastic consequences, up to exclusion
from the tournament. On the other hand, robots being overly cautious to avoid
physical contact may give way to their opponents too easily. Thus, we encounter
a very difficult situation assessment and classification problem.

The effort of hand-crafting more complex behaviors, like dribbling the ball
or performing a penalty kick, is even higher than those mentioned before. Thus,
there is a large need for behavior engineering tools, and for techniques applying
learning and on-line adaptation to the behavior engineering and action selection
problems.

Above the level described so far, the research challenges are quite similar to
those in the simulation league. Some research groups are actually active in more
than one league (e.g, CMU, Ulm, Italy, Portugal) and hope to apply results
regarding strategic and tactical play from their simulation team to the robot
team in the near future. An interesting design issue is that while each robot
of most teams showed the same technical characteristics of its playmates, or
at maximum differentiated with respect to the goalkeeper, the ART team was
forced to put playing together all kinds of robots. The necessity of forming a team
with robots, having different mechanics, different hardware, different software
architectures, and different sensors, led to the development of a specific ability
of organizing a heterogeneous multi-robot system where it would be possible to
replace, at any time during the game, a specific robot with a different one. This
ability was achieved by the dynamic assignment of different roles through the
evaluation of some utility functions (team Italy).

For the sake of completeness, it should be noted that, in the F-2000 league,
modeling player stamina is usually not investigated, while it is a considerable
problem for many simulation teams. Also, F-2000 players may use considerable
bandwidth in communication both between themselves and with outside com-
puters, which allows teams to apply more centralized team architectures (team
Osaka). Constraints on communication are stricter in simulation, and all soccer
agents must have a high degree of autonomy, while in F-2000 only few teams
follow this idea.
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4.3 Examples of Engineering and Research Results

Substantial effort has been spent in most teams on actually designing robot-
ic soccer players. The Australian team RMIT Raiders won the RoboCup-97
technical innovation award for their omnidirectional drive system design that
is modeled after a computer mouse. The Japanese team Uttori United, a joint
effort by three research labs, developed another omnidirectional drive design in
97 and 98 that uses four so-called Swedish wheels (wheels with free rollers at
the rim) arranged in a rectangular setup. Such drive designs are usually quite
complex to control, but the Uttori design applies three actuators and an elabo-
rate transmission mechanism to decouple the various degrees of freedom (DoFs):
each actuator contributes only to its corresponding DoF. In RoboCup-99, the
team from Sharif University of Technology (Iran) presented robots with 4 DoFs
mobile base consisting of two independently steered and actuated wheels plus
additional castor wheels. This design provided excellent mobility and speed that
contributed much to the overall success of the team in RoboCup-99.

A wide range of different kicking devices have been developed. Several teams
use electrically activated pneumatic cylinders as actuators for kicking in order
to get sufficient kicking power (e.g., teams Italy, Matto, and Ulm). In particu-
lar, Bart and Homer (the two robots designed at the University of Padua that
played with the ART team), were equipped with a flexible directional kicker
that had a left and right side able to slide one to each other, in order to acquire
high flexibility and accuracy. Some teams built complete robots from scratch
using standard industrial equipment as components where possible (e.g., teams
GMD, Italy, Matto, and Ulm). An interesting method for easy integration of
microcontroller-driven sensing and actuating devices is based on the CAN bus
that allows to connect up to 64 devices on a single 1 Mbit bus (team Ulm).

Aside of the mechanical design and engineering questions, the research efforts
of teams in the middle-size robot league clearly indicate several focal points:
vision, localization, and behavior engineering.

In the vision area, methods for fast color image segmentation have been de-
veloped and continue under research. Several teams use omnidirectional cameras
and develop methods for processing the images, in particular for self-localization
and object recognition (e.g., teams Italy, Tübingen, Osaka, Matto, and Portu-
gal). The Italian team developed special mirror designs in order to extend the
field of view in general and to combine a view of the local surrounding with a
more global view of localization-relevant parts of the environment (walls and
goals).

A scan-matching approach to self-localization has been the key to the success
of the CS Freiburg team in RoboCup-98. Although the use of laser scanners on
every robot means significantly more weight and power consumption, having a
specialized sensing system for localization tends to make camera control and
vision processing simpler. In fact, visually tracking the ball and opponents and
trying to find localization-relevant visual features of the environment (corners,
walls, goals) at the same time (or interleaved) often causes conflicts in view
direction.
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Another interesting direction in localization investigates approaches to vision-
based self-localization. Iocchi et al. use a Hough transform for localization pur-
poses in the team from Italy. Ritter et al. extended Monte-Carlo-Localization, a
model-based method developed mainly for use with laser range finders, to work
with features extracted from camera images. Other effective extensions of MCL
were achieved within by Carnegie Mellon within the Sony legged robot league.
Compared to standard MCL, vision-based features in RoboCup are very few
and can be detected far less frequently and reliable than laser scan points, but
recent results prove that the extended MCL framework is functional even under
these restrictive constraints. The Agilo RoboCuppers from Munich and the team
Attempto from Tübingen both use model-matching methods for localization.

Perceiving the relevant objects and knowing where the robot is are important
prerequisites for generating successful soccer playing behaviors. The team from
GMD uses a behavior-based approach, called dual dynamics, and presented tools
for designing behaviors for a single player without giving particular attention to
cooperative play. The Italian team also developed tools for designing behaviors
effectively.

A couple of teams already started to seriously investigate methods for gen-
erating cooperative playing skills. In particular, Bart and Homer, from the Uni-
versity of Padua, achieved the cooperative ability of “exchanging the ball” be-
tween two players (a kind of action less complex than “passing a ball”) through
the implementation of efficient collision avoidance algorithms activated in the
framework of the dynamic role assignment used by ART. The team from Osaka
University has already significant experience in methods for generating coop-
erative playing skills and in applying reinforcement learning techniques to this
problem.

4.4 The RoboCup-99 Tournament

The middle-size (F-2000) RoboCup-99 tournament went very smoothly. Twenty
teams participated and played a total of 62 games, giving all teams ample op-
portunity to gain practical playing experience. The new rule structure for the
middle-size robot league, which is based upon the official FIFA rules, proved to
be quite successful and helped to focus on real research issues instead of rule
discussions.

Just as in real soccer, the games were very exciting and unpredictable (see
Figure 4). Several teams, which performed well in the past and have already won
a cup, suffered unexpected losses, often against strong newcomers like Sharif-

CE (Sharif University of Technology, Iran), Alpha++ (Ngee Ann Polytechnic,
Singapore), and Wisely (Singapore Polytechnic, Singapore), and did not survive
the preliminary rounds. The 20 participants were distributed into three groups,
which came up with eight finalist teams.

The most struggled game was one of the semi-finals, when the Italian Team
(ART) won over the then-undefeated champion of RoboCup-98, CS Freiburg,
in a match that required one penalty kick round, and two technical challenge
rounds to come up with a decision. This game showed the real achievement of
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Fig. 4. A view of a middle-size game.

the third RoboCup Physical Agent Challenge (the explicit passing of the ball
between two players), when a German robot, which was controlling the ball near
the opposite goal, waited for its playmate to reach a good position and then
passed the ball to it. However, high-level reasoning capabilities of CS Freiburg

robots in general were not sufficient by themselves to defeat ART robots. Based
on a set of reactive behaviors, especially when Bart and Homer played together,
the ART team was able to generate emergent cooperative abilities.

In a very exciting final game, a crowd of several hundred spectators watched
how the team from Sharif University, Sharif CE, defeated the ART team by
3:1. Also this game showed the achievement of a difficult challenge, when an
Iranian robot was able to perform a perfect dribbling and scored a goal in a few
seconds from the start of the game.

4.5 Lessons Learned and Current State of the League

One thing one can learn from the tournament is that hardware alone does not
buy success. Several teams, in spite of a sophisticated robot design with ad-
vanced tools like both directional and omni-directional cameras, cognachrome
vision systems, laser scanning, expensive on-board laptops, did not always per-
form better than less high-tech teams. This fact proves that complex hardware
requires substantial time to develop adequate software that can actually exploit
the hardware features. On the other hand, hardware innovations can also be the
foundation for success. The 1999 champion, Sharif CE, benefited substantially
from the agility of their robots, which arose from a combination of clever drive
design and speed. Overall, systems that manage to exhibit relatively few behav-
iors, in a very robust and reliable manner, seemed to be more successful than
more complex, but less reliable, systems.
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Overall, the league is in good shape. Worldwide, well over 30 teams are
working on building and improving a middle-size robot team. Provided that the
rules and the playing field remain reasonably stable for the near future, we expect
significantly enhanced vision capabilities, much improved ball control, smoother
individual behaviors, and increasingly more cooperative playing behaviors. It will
be a lot of fun to watch the RoboCup-2000 and RoboCup-2001 tournaments!

5 Sony Legged Robot League

Sony Legged Robot League is a new official RoboCup league since RoboCup-99.
Four-legged autonomous robots compete in three-on-three soccer matches. The
robot platform used is almost the same as the Sony AIBO entertainment robot
that was introduced into a general consumer’s market last July. 5000 sets were
immediately sold, namely 3000 in Japan in 20 minutes, and 2000 in the US in
four days.

The robot platform used in this league is modified from the commercial
product version so that the RoboCup participating teams can develop their own
programs to control the robots. Since hardware modifications to the robots are
not allowed, the games are decided by who has developed the best software. The
robots are equipped with a CCD vision camera.

The playing field is carpeted and slightly wider and larger than the small-
size field. In order for a robot to be able to localize itself, the important game
items, namely the ball and the goals, are painted in different colors. The ball
is orange and the goals are yellow and blue. The field also includes six colored
distinguishable landmark poles at the corners and the middle of the field. Robots
can use the colored landmarks to localize themselves in the field.

Each team has three players, and a game consists of two 10min halves with
a 10min break. If the game is a draw at the end of the 20 minutes, penalty kicks
are carried out. There is a penalty area where only one robot can defend the
goal. A referee can pick up and replace robots to other locations, if multiple
robots are entangled usually while competing for the ball.

5.1 Research Issues

Vision: Since the robots easily lose sight of the ball due to occlusion by other
robots and due to the limited visual angle of their camera, they need to effec-
tively search for the ball. Research teams need to develop image processing
algorithms combined with object recognition and search.

Navigation: Most teams used the four-legged walking programs provided by
Sony due to the limited time available for development of new walking al-
gorithms and/or because they preferred to focus on the tactics of the game.
A few teams developed their own walking programs, for instance LRP de-
veloped a stable and robust walking program, and Osaka developed a trot
walking to increase the speed of walking. The former could show the good
performance during matches while the latter did not seem consistently robust
although the speed itself was better than the former.
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Playing Skills: Since the motor torque at each joint of the leg is not very
powerful, kicking is not actually very effective, and pushing showed to be
sufficient. Most teams used simple pushing as their shooting behavior. One
exception was performed by the team ARAIBO (U. of Tokyo), as they used
a heading shoot having the robots fall forward and performing interestingly.

Localization: Self-localization is one of the most important issues as the robots
need to know where they are on the field. The teams attempted to use
the colored landmarks for localization based on triangulation. CM-Trio-99
(Carnegie Mellon Univ.) introduced a new algorithm based on probabilistic
sampling that allowed the robots to effectively process poorly modeled robot
movement and unexpected errors, such as the change of robot location by the
referees. The team from Osaka used the landmarks for task accomplishment.
Based on an information criterium, the robot decides if more observation
is necessary to determine the optimal action. CM-Trio-99 also introduced
multi-fidelity behaviors that degrade and upgrade gracefully with different
localization knowledge. The winning team from LRP, France mainly used
the goals for localization moving fast and successfully towards the offensive
goal.

Teamwork: Each player is marked with the team color, namely red and dark
blue. So far, it has shown to be rather difficult to reliably detect the other
robots based on their team colored patches. Most teams achieved basic team-
work through the assignment of roles, as one goalie robot and two attackers.
The Osaka played with no specific goalie. The runner-up team from UNSW
and CM-Trio-99 (3rd place) demonstrated interesting goalie behaviors. The
attackers from LRP were quite effective at moving towards the goal. Team-
s have not yet achieved more sophisticated cooperative behaviors, such as
passing.

5.2 The RoboCup-99 Tournament

An initial competition, as a demonstration, was held at RoboCup-98 in Paris.
The prototype “AIBO” robots were used by three teams, Osaka University
BabyTigers (Japan), Carnegie Mellon University CM-Trio-98 (USA), and
Laboratoire de Robotique de Paris (LRP) Les Titis Parisiens (France). CM-
Trio-98 was the winner of this RoboCup-98 competition.

At RoboCup-99, in addition to the three seeded teams from RoboCup-98,
namely BabyTigers-99, CM-Trio-99, and “Les 3 Mousquetaires” from LRP, there
were six new teams: from Sweden (Örebro, Stockholm, Ronneby and others),
Humboldt University (Germany), University of Tokyo (Japan), University of
New South Wales (Australia), University of Pennsylvania (USA), and McGill
University (Canada).

The teams were divided into three groups, each of which included one seed-
ed team. After the round-robin phase, all three seeded teams advanced to the
elimination phases. Although the seeded teams had to develop new algorithms
and implementations for the new AIBO robots, they were probably still in ad-
vantage, as the six new entering teams had only two months to develop their
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teams. The wild card for the fourth participant in the semi-finals was decided
by the RoboCup Challenge. Each team had one try to have a single robot on
the field score a goal in three different unknown situations. Although none of
the teams successfully performed and scored, the UNSW secured the wild card
spot with their steady performance (the shortest distance between the ball and
the opponent goal).

In the first semi-final, Osaka gained one goal in the first half but LRP quickly
recovered and scored two goals. Osaka attacked LRP’s goal many times in the
second half, but their attacks were blocked by the LRP’s robust defense. Since
Osaka had no goalie, LRP gained two more goals in the second half. LRP’s
walking and image processing seem to be very robust.

The second semi-final between UNSW and CM-Trio-99 was an interesting
game. The two teams had already played in the round-robin phase and CM-
Trio-99 had won. However, in this game, the CM-Trio-99 team encountered some
unexpected problems and lost 2-1 to the UNSW team. UNSW scored two goals
in the first half, the first goal by squeezing the ball into the goal behind CM-
Trio-99’s goalie. In the second half CM-Trio-99, partially recovered, could not
score more than one goal, as the UNSW goalie was notably strong.

The final between UNSW and LRP started at 1:30pm on August 4, 1999,
being observed by a large crowd. The first half ended with UNSW scoring a
goal into its own goal. In the second half, many attacks by LRP showed their
superiority and gained three goals in spite of the nice defense by the UNSW
goalie. UNSW still gained one goal through a quick attack just after the kickoff.
LRP won the championship. We will have twelve teams in RoboCup-2000 in
Melbourne.

Fig. 5. Two Sony dog robots in a game.
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6 RoboCup Jr. Exhibition

RoboCup Jr. is an initiative where children can get hands-on experience with
advanced robotic topics. It is an educational project aiming at providing an envi-
ronment for children to learn general science and technology through robotics [7,
9]. Due to the long range goal of RoboCup aiming at having a robotic team play
a real human team in 2050, it is essential that younger generations get involved
in science and technology in general, and in RoboCup activities in particular.

RoboCup Jr. is designed to enhance education using the excitement of the
soccer game and the sense of the technical complexity of the real world by
actually programming physical entities, instead of virtual creatures.

Unlike in other RoboCup soccer leagues that are designed for top-level re-
search institutions, RoboCup Jr. has flexible and easy to start setup with using
several robot platforms, such as LEGO Mindstorms, and easy-to-program envi-
ronments. Children are expected to have a hands-on experience actually building
and program robots, playing games, and learning general technical lessons from
their experiences.

While RoboCup Jr. is in its infancy, we are planning to enlarge this activity
to have a wide variety of educational programs in a very systematic manner with
solid support from education and developmental psychology research.

6.1 Characteristics of RoboCup Jr.

For children to easily get involved in RoboCup Jr., several commercial robot
platforms and robot kits are used with specific size and configurations.

Leagues consist of competition division, such as RoboCup Jr. Soccer League,
and collaborative division, such as RoboCup Jr. Performers that involves parade
and dancing. Even within the RoboCup Jr. Soccer League, several levels are
planned to be provided depending upon the educational needs.

The easiest level focused on assembly of robot kits to learn how to construct
robots. Similarly, the focus can be placed on how to program the robots whereas
the robot themselves are already provided. The second level consists of building
and program a simple robot and play a game or do parade. Both aspects of
craftsmanship and programming are required. Higher levels may be arranged for
more advanced children and for undergraduates that are yet to get involved in
the research-oriented RoboCup leagues. The numbers of robots used may vary.
A simple game can be just a one on one robot game.

The standard set up for the entry-level league is to have a field of size 120cm
by 90cm with 5cm walls around. The field has gray scale from one end to the
other so that a simple sensor can detect the approximate location of robots in the
field along one axis. Pre-assembled LEGO Mindstorms or equivalent are provided
and children program the robots. A programming environment is available so
that children can program and play a game in a short time, approximately
within one hour.
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6.2 Research Challenges

Many research challenges arise within RoboCup Jr. The first issue is to de-
fine a comprehensive system for robotics education, and science and technology
education through robotics. While there are major on-going efforts in Infor-
mation Technology education, there are only a few efforts made on education
with robotics as the central theme. We believe that the use of robotics greatly
enhances technical education due to the sense of reality involved in using real
physical objects that can be programmed.

Secondly, the development of appropriate infrastructures, such as robot kits,
programming environments, and educational materials, is a major challenge.
Since RoboCup Jr. aims at wide-spread activities of world-wide scope, a rigid
and well-designed environment is essential. This is also an important challenge
from the aspect of human-computer interaction.

While RoboCup Jr. mainly targets education for children, it can be applied
for science and technology literacy for the general public with non-scientific or
technological background.

6.3 RoboCup Jr. at RoboCup-99

In RoboCup-99, Stockholm, a small experimental exhibition was carried out
using one field to play with two PCs for programming. Children showed up on
the day and programmed robots to play one-vs-one soccer using pre-assembled
LEGO Mindstorms. Over 60 children participated over 2 days of exhibitions and
a large number of games were played, as well as informal tournaments. Children
were very involved and participated actively (see Figure 6).

Fig. 6. Children participating at RoboCup Jr.
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RoboCup-99 included three main demonstrations of RoboCup Jr. An Israeli
team showed the use of robot soccer in high school education with a penalty
shooting robot developed by high school students (age approximately 16-17).
Bandai showed a remotely-controlled soccer game with two robots, each with
a holding and a shooting device, on each team. The LEGO Lab, as described
above, developed by the University of Aarhus, arranged open sessions for children
(ages 7-14) to develop their own robot soccer players and to participate in a
tournament.

A few additional interesting observations can be made. First, it was confirmed
that 7-9 years old children can program robots, such as the Lego Mindstorms,
within 30 minutes when the appropriate environment is provided and a task is
well defined. It is less feasible to expect children to be able to write code in
some higher-level language. Instead there was clear evidence that an easy visual
programming environment showed to be of great help.

Second, it was noticed that different children approach the robot program-
ming task in different ways. Some immediately program the robots and others
cautiously delay their programming until they have observed the essence of the
games. After RoboCup-99, Henrik Lund and one of his colleagues carried out
RoboCup Jr. with two robots per team at the Mindfest at the MIT Media lab.,
and observed other emotional reactions of children.

RoboCup Jr. events are planned for the RoboCup European Championship
in Amsterdam, in May 2000 and for RoboCup-2000, in Melbourne, in August.

7 Conclusion

RoboCup is growing and expanding in many respects. The number of partici-
pants is increasing, and so is the complexity of the organization. A new league
with the Sony legged robots was officially introduced this year. The performance
of all the teams in the different leagues is clearly increasing. The research con-
tributions are getting increasingly well identified and reported. RoboCup-99 at-
tracted the interest of many researchers, of the general public, and of the media.
RoboCup-99 continues to pursue its core goal as a research environment, stimu-
lating and generating novel approaches in artificial intelligence and robotics. The
RoboCup environment provides a remarkable concrete platform for researchers
interested in handling the complexities of real-world problems.

In 2000, there will be the first RoboCup European Championship in Ams-
terdam, in May, with a workshop, RoboCup Jr,. and competitions in the simu-
lation, small-size, and middle-size leagues. The annual international RoboCup-
2000 will be held in Melbourne, Australia, in August, in connection with the
Sixth Pacific Rim International Conference on Artificial Intelligence (PRICAI-
2000). RoboCup-2000 will include a technical workshop, competitions in all of
the four leagues (simulation, small-size and middle-size robots, and Sony legged
robots), RoboCup Jr., and two new demonstrations towards a RoboCup Hu-
manoid league and a RoboCup Search and Rescue league.
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Appendix A: Round-Robin Simulation League

This appendix includes all the results from the preliminary games in the simula-
tion leagues. The tables show the numbers of goals, the number of wins, losses,
and draws (W/L/D), and the rank of each team within each group. A win was
counted against a team that forfeited a game.

Group A

– A1: CMUnited-99
– A2: The Ulm Sparrows
– A3: Headless Chickens III
– A4: Zeng99
– A5: Dash (forfeited the games)

A1 A2 A3 A4 W/L/D Rank

A1 - 29-0 17-0 11-0 4/0/0 1

A2 0-29 - 0-12 1-0 2/2/0 3

A3 0-17 12-0 - 3-0 3/1/0 2

A4 0-11 0-1 0-3 - 1/3/0 4

Group B

– B1: 11 Monkeys
– B2: Sibiu Team
– B3: FCFoo
– B4: Pardis
– B5: Gongeroos

B1 B2 B3 B4 B5 W/L/D Rank

B1 - 17-0 18-0 2-0 4-0 4/0/0 1

B2 0-17 - 0-5 6-1 0-3 1/3/0 4

B3 0-18 5-0 - 2-0 2-4 2/2/0 3

B4 0-2 1-6 0-2 - 0-9 0/4/0 5

B5 0-4 3-0 4-2 9-0 - 3/1/0 2

Group C

– C1: Mainz Rolling Brains
– C2: IALP
– C3: RoboCup Koblenz
– C4: Erika
– C5: Polytech100

C1 C2 C3 C4 C5 W/L/D Rank

C1 - 17-0 25-0 22-0 16-0 4/0/0 1

C2 0-17 - 1-1 0-8 0-2 0/3/1 5

C3 0-25 1-1 - 0-0 0-0 0/1/3 4

C4 0-22 8-0 0-0 - 0-0 1/1/2 2

C5 0-16 2-0 0-0 0-0 - 1/1/2 3
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Group D

– D1: Gemini
– D2: Footux-99
– D3: UBU
– D4: KU-Sakura-2

D1 D2 D3 D4 W/L/D Rank

D1 - 12-0 14-0 0-0 2/0/1 1

D2 0-12 - 5-0 0-11 1/2/0 3

D3 0-14 0-5 - 0-9 0/3/0 4

D4 0-0 11-0 9-0 - 2/0/1 2

Group E

– E1: ATHumboldt-99
– E2: Paso-Team
– E3: AIACS
– E4: NITStones
– E5: magmaFreiburg

E1 E2 E3 E4 E5 W/L/D Rank

E1 - 16-0 18-0 9-0 0-9 3/1/0 2

E2 0-16 - 0-9 0-12 0-11 0/4/0 5

E3 0-18 9-0 - 1-6 0-19 1/3/0 4

E4 0-9 12-0 6-1 - 0-20 2/2/0 3

E5 9-0 11-0 19-0 20-0 - 4/0/0 1

Group F

– F1: CMUnited-98
– F2: Essex Wizards
– F3: Karlsruhe Brainstorms
– F4: Kasuga-bito III
– F5: Cyberoos

F1 F2 F3 F4 F5 W/L/D Rank

F1 - 0-0 1-0 19-0 1-0 3/0/1 2

F2 0-0 - 1-0 20-0 3-0 3/0/1 1

F3 0-1 0-1 - 32-0 6-2 2/2/0 3

F4 0-19 0-20 0-32 - 2-0 1/3/0 4

F5 0-1 0-3 2-6 0-2 - 0/4/0 5

Group G

– G1: UvA-Team
– G2: KULRoT
– G3: Smackers-99
– G4: YowAI

G1 G2 G3 G4 W/L/D Rank

G1 - 13-0 3-2 0-2 2/1/0 2

G2 0-13 - 0-11 0-20 0/3/0 4

G3 2-3 11-0 - 0-21 1/2/0 3

G4 2-0 20-0 21-0 - 3/0/0 1
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Group H

– H1: Oulu-99
– H2: PSI Team
– H3: Rogi2 Soft Team
– H4: SP-United
– H5: Kappa-II

H1 H2 H3 H4 H5 W/L/D Rank

H1 - 1-0 5-1 1-0 0-11 3/1/0 2

H2 0-1 - 0-5 0-1 0-2 0/4/0 5

H3 1-5 5-0 - 0-0 0-13 1/2/1 4

H4 0-1 1-0 0-0 - 0-5 1/2/1 3

H5 11-0 2-0 13-0 5-0 - 4/0/0 1

Appendix B: Round-Robin Small-Size League

This appendix includes all the results from the preliminary games in the small-
size league. The tables show the numbers of goals, the number of wins, losses,
and draws (W/L/D), and the rank of each team within each group. A win was
counted against a team that forfeited a game.

Group A

– A1: AllBotz
– A2: Big Red
– A3: RobotIS
– A4: 5dpo

A1 A2 A3 A4 W/L/D Rank

A1 - 0-33 0-35 3-1 1/2/0 3

A2 33-0 - 2-1 8-0 3/0/0 1

A3 35-0 1-2 - 4-0 2/1/0 2

A4 1-3 0-8 0-4 - 0/3/0 4

Group B

– B1: Rogi2
– B2: CMUnited-99
– B3: Linked99
– B4: VUB (forfeited the games)
– B5: TPOTS

B1 B2 B3 B5 W/L/D Rank

B1 - 2-12 5-0 6-4 3/1/0 2

B2 12-2 - 10-0 4-0 4/0/0 1

B3 0-5 0-10 - 0-9 1/3/0 4

B5 4-6 0-4 9-0 - 2/2/0 3
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Group C

– C1: Dynamo (forfeited the games after 4 goals suffered)
– C2: RoboRoos-99
– C3: SingPoly
– C4: Crimson
– C5: Owaribitos

C1 C2 C3 C4 C5 W/L/D Rank

C1 - 0-4 0-4 0-4 0-4 0/4/0 5

C2 4-0 - 17-1 10-0 29-0 4/0/0 1

C3 4-0 1-17 - 5-2 10-1 3/1/0 2

C4 4-0 0-10 2-5 - 8-3 2/2/0 3

C5 4-0 0-29 1-10 3-8 - 1/3/0 4

Group D

– D1: J-Star-99
– D2: FU-Fighters
– D3: LuckyStar
– D4: Microb3 (forfeited the games after 4 goals suffered)

D1 D2 D3 D4 W/L/D Rank

D1 - 1-10 0-27 4-0 1/2/0 3

D2 10-1 - 2-1 4-0 3/0/0 1

D3 27-0 1-2 - 4-0 2/1/0 2

D4 0-4 0-4 0-4 - 0/3/0 4

Appendix C: Round-Robin Middle-Size League

This appendix includes all the results from the preliminary games in the middle-
size league. The tables show the numbers of goals, the number of wins, losses,
and draws (W/L/D), and the rank of each team within each group.

Group A

– A1: CS Freiburg
– A2: ISocRob
– A3: Raiders
– A4: GMD Robots
– A5: KIRC
– A6: Wisely

A1 A2 A3 A4 A5 A6 W/L/D Rank

A1 - 5-0 6-0 6-0 6-0 4-0 5/0/0 1

A2 0-5 - 2-1 1-0 1-2 1-1 2/2/1 3

A3 0-6 1-2 - 1-0 0-1 0-3 1/4/0 5

A4 0-6 0-1 0-1 - 5-0 0-4 1/4/0 5

A5 0-6 2-1 1-0 0-5 - 1-1 2/2/1 3

A6 0-4 1-1 3-0 4-0 1-1 - 2/1/2 2
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Group B

– B1: Attempto!

– B2: NAIST

– B3: The Ulm Sparrows

– B4: RealMagiCol

– B5: 5dpo-2000

– B6: Matto

– B7: Alpha++

B1 B2 B3 B4 B5 B6 B7 W/L/D Rank

B1 - 0-1 0-0 2-0 2-0 3-1 0-1 3/2/1 4

B2 1-0 - 0-3 2-0 3-0 1-0 0-5 4/2/0 3

B3 0-0 3-0 - 2-0 3-0 2-1 0-1 4/1/1 2

B4 0-2 0-2 0-2 - 0-2 0-2 0-2 0/6/0 7

B5 0-2 0-3 0-3 2-0 - 0-1 0-2 1/5/0 6

B6 1-3 0-1 1-2 2-0 1-0 - 0-5 2/4/0 5

B7 1-0 5-0 1-0 2-0 2-0 5-0 - 6/0/0 1

Group C

– C1: Trackies-99

– C2: Agilo

– C3: ART-99

– C4: USC Dream Team-99

– C5: Patriarcas

– C6: Sharif CE

– C7: CoPS Stuttgart

C1 C2 C3 C4 C5 C6 C7 W/L/D Rank

C1 - 1-0 1-2 2-1 2-0 1-2 1-3 2/4/0 5

C2 0-1 - 0-0 1-0 3-0 2-1 4-1 4/1/1 1

C3 2-1 0-0 - 1-0 2-0 1-0 0-1 4/1/1 2

C4 1-2 0-1 0-1 - 2-0 0-10 0-3 1/5/0 6

C5 0-2 0-3 0-2 0-2 - 0-4 0-5 0/6/0 7

C6 2-1 1-2 0-1 10-0 4-0 - 2-1 4/2/0 3

C7 3-1 1-4 1-0 3-0 5-0 1-2 - 4/2/0 4

Wild Card Match

ISocRob NAIST SharifCE W/L/D Rank

ISocRob - 1-2 0-3 0/2/0 3

NAIST 2-1 - 0-1 1/1/0 2

SharifCE 3-0 1-0 - 2/0/0 1
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Appendix D: Round-Robin Sony Legged Robot League

This appendix includes all the results from the preliminary games in the middle-
size league. The tables show the numbers of goals, the number of wins, losses,
and draws (W/L/D), and the rank of each team within each group.

Group A

– A1: CM-Trio99 (Carnegie Mellon Univ., U.S.A.)
– A2: Humboldt Hereos (Humboldt Univ., Germany)
– A3: UNSW United (Univ. of New South Wales, Australia)

A1 A2 A3 W/L/D Rank

A1 - 2-1 3-0 2/0/0 1

A2 1-2 - 1-2 0/2/0 3

A3 0-3 2-1 - 1/1/0 2

Group B

– B1: BabyTigers-99 (Osaka Univ., Japan)
– B2: UPennalizers (Univ. of Pennsylvania, U.S.A.)
– B3: Team Sweden (Örebro Univ. and Stockholm Univ., Sweden)

B1 B2 B3 W/L/D Rank

B1 - 2-0 1-0 2/0/0 1

B2 0-2 - 2-0 1/1/0 2

B3 0-1 0-2 - 0/2/0 3

Group C

– C1: Les 3 Mousquetaires (LRP, France)
– C2: McGill RedDogs (McGill Univ., Canada)
– C3: Araibo (Univ. of Tokyo, Japan)

C1 C2 C3 W/L/D Rank

C1 - 3-1 2-0 2/0/0 1

C2 1-3 - 0-1 0/2/0 3

C3 0-2 1-0 - 1/1/0 2

Appendix F: Finals

This appendix includes the final results from the eliminatory games in the four
leagues. The simulation league had a double-elimination tournament, while the
other leagues had a single-elimination tournament.
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Abstract. The CMUnited-99 simulator team became the 1999 RoboCup
simulator league champion by winning all 8 of its games, outscoring op-
ponents by a combined score of 110{0. CMUnited-99 builds upon the
successful CMUnited-98 implementation, but also improves upon it in
many ways. This paper gives a detailed presentation of CMUnited-99's
improvements over CMUnited-98.

1 Introduction

The CMUnited robotic soccer project is an ongoing e�ort concerned with the
creation of collaborative and adversarial intelligent agents operating in real-time,
dynamic environments. CMUnited teams have been active and successful partic-
ipants in the international RoboCup (robot soccer world cup) competitions [1,
2, 15]. In particular, the CMUnited-97 simulator team made it to the semi-�nals
of the �rst RoboCup competition in Nagoya, Japan [9], the CMUnited-98 sim-
ulator team won the second RoboCup competition in Paris, France [13], and
the latest CMUnited-99 simulator team won the third RoboCup competition in
Stockholm, Sweden 1.

The CMUnited-99 simulator team is modeled closely after its two predeces-
sors. Like CMUnited-97 and CMUnited-98, it uses layered learning [12] and a
exible team structure [11]. In addition, many of the CMUnited-99 agent skills,
such as goaltending, dribbling, kicking, and defending, are closely based upon the
CMUnited-98 agent skills. However, CMUnited-99 improves upon CMUnited-98
in many ways. This paper focuses on the research innovations that contribute to
CMUnited-99's improvements.

Coupled with the publicly-available CMUnited-99 source code [8], this article
is designed to help researchers involved in the RoboCup software challenge [3]
build upon our success. Throughout the article, we assume that the reader is
familiar with the RoboCup simulator, or \soccer server" [5]. A detailed overview
of the soccer server, including agent perception and actuator capabilities, is given
in [7].

Section 2 describes the improvements in CMUnited-99's low-level skills, in-
cluding the introduction of teammate and opponent modeling capabilities. Sec-

1 The CMUnited small-robot team is also a two-time RoboCup champion [14, 16].

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 35−48, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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tion 3 presents the improvements in CMUnited-99's ball handling decision. Sec-
tion 4 focuses on the process by which the low-level skills were improved. Sec-
tion 5 introduces the concept of layered extrospection, a key advance in our
development methodology. Section 6 summarizes CMUnited-99's successful per-
formance at RoboCup-99 and concludes.

2 Agent Skills

CMUnited-99's basic skills are built mostly on CMUnited-98's skills. This section
focusses on CMUnited-99's improvements in low-level skills.

2.1 Ball Velocity Estimation

One of the most important part of good ball handling skills is an accurate es-
timation of the ball's velocity. When a player is facing the ball, an estimate of
the ball's velocity is "visible" via the player's sensory perceptions. However, in
both CMUnited-98 and CMUnited-99, when an agent is handling the ball, it
uses position based velocity estimation. That is, if the agent observes the ball
on two successive cycles, it knows the actual path which the ball traveled, and
therefore its current velocity.

While this is intuitively a fairly simple idea, there are several complications.
First, each agent needs to keep track of the kicks it performed in order to accu-
rately estimate the ball velocity. This is for cases where the agent is not receiving
sensations every cycle. The server gives information about kicks that it received,
and it is important to note when requested kicks are not executed by the server.

The second complication is somewhat of an artifact of our world model. Our
agents store the current position of all objects in global coordinates by converting
the objects' sensed relative positions to global coordinates based on the agent's
estimated current position. When an agent gets new visual information, it re-
estimates its current position. Both of the estimates are quite noisy since they
are based on usually distant ags. This means that the ball's old position and
new position are in essentially di�erent coordinate frames. In Figure 1, objects
in the old coordinate frame are represented in dark grey and objects in the new
coordinate frame are lighter. As shown, our agents can calculate the disparity
between the coordinate frames by taking the di�erence of the player's predicted
position at time t (judged in the coordinate frame from time t � 1) and the
player's observed position at time t. The ball's position at time t � 1 can then
be moved to the new coordinate frame. The ball velocity is then simply the
di�erence between it's position at time t and position at time t� 1. This gives a
good estimate of the ball's velocity because the only error left is the error in the
reported ball positions. When the ball is close to the player, this error is quite
small.
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Fig. 1: Correcting for position error in

ball velocity estimation.

Fig. 2: Deciding whether to turn in ball

interception.

2.2 Ball Interception

The basic structure of our ball interception strategy is the same as in CMUnited-98.
We successively simulate the ball's positions on future cycles and then determine
if the agent can reach a spot that the ball will occupy before the ball does.

An important change to this scheme is an emphasis on dashing instead of
turning. In order to execute less turns while in pursuit of the ball, the agents
now �rst calculate how long it would take to intercept the ball with no turning
at all. This is just a simple ray-ray intersection as shown in Figure 2, path B.
time-di�erence is the distance between the calculated optimal (point X) and the
path with no turning (point Y ), judged by how long it would take the ball to
get from X to Y . If time-di�erence is below a threshold of a few cycles, then
the agent will proceed along path B instead of path A. Proceeding along path
B will always result in a dash instead of a turn.

2.3 Using Models of Opponents and Teammates

Deciding when to shoot at the goal has a huge impact on the performance
of a team. CMUnited-98 made this decision based on several very inaccurate
heuristics. CMUnited-99 makes this decision in a more principled way by using
a model of an \optimal" goalie. That is, we use a model of a goalie that reacts
instantaneously to a kick, moves to exactly the right position to stop the ball,
and catches with perfect accuracy.

When deciding whether to shoot, the agent �rst identi�es its best shot target.
It generally considers two spots, just inside of the two sides of the goal. The agent
then considers the lines from the ball to each of these possible shot targets. shot-
target is the position whose line is further from the goalie's current position.

The agent then predicts, given a shot at shot-target, the ball's position and
goalie's reaction using the optimal goalie model. We use the following predicates:

blocking-point The point on the ball's path for which an optimal goalie heads.
ball-to-goalie-cycles The number of cycles for the ball to get to the blocking-

point

goalie-to-ball-cycles The number of cycles for the goalie to get to the blocking-
point
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shot-margin =ball-to-goalie-cycles�goalie-to-ball-cycles

better-shot(k) Whether teammate k has a better shot than the agent with the
ball, as judged by shot-margin

The value shot-margin is a measure of the quality of the shot. The smaller the
value of shot-margin, the more di�cult it will be for the goalie to stop the shot.
For example, for a long shot, the ball may reach the blocking-point in 20 cycles
(ball-to-goalie-cycles= 20), while the goalie can get there in 5 cycles (goalie-to-
ball-cycles= 5) This gives a shot-margin of 15. This is a much worse shot than
if it takes the ball only 12 cycles (ball-to-goalie-cycles= 12) and the goalie 10
cycles to reach the blocking-point (goalie-to-ball-cycles= 10). The latter shot has
a shot-margin of only 2. Further, if shot-margin< 0, then the \optimal" goalie
could not reach the ball in time, and the shot should succeed.

Using a model of opponent behavior gives us a more reliable and adaptive
way of making the shooting decision. We can also use it to make better passing
decisions. When near the goal, the agent may often be faced with the decision
about whether to pass or shoot the ball. The agent with the ball simulates the
situation where its teammate is controlling the ball, using the goalie model to
determine how good of a shot the teammate has. If the teammate has a much
better shot, then the predicate better-shot(k) will be true. This will tend to make
the agent pass the ball, as described in Section 3.

Note that this analysis of shooting ignores the presence of defenders. Just
because the goalie can not stop the shot (as judged by the optimal goalie model)
does not mean that a nearby defender can not run in to kick the ball away.

2.4 Breakaway

An important idea in many team ball sports like soccer is the idea of a \break-
away." Intuitively, this is when some number of o�ensive players get the ball
and themselves past the defenders, leaving only perhaps a goalie preventing
them from scoring. After looking at log�les from previous competitions, we saw
many opportunities for breakaways which were not taken advantage of.

The �rst question which has to be answered is \What exactly is a break-
away?" This is built upon several predicates (note that we can naturally reect
these to the other side of the �eld):

controlling-teammate Which teammate (if any) is currently controlling the
ball. \Control" is judged by whether the ball is within the kickable area of
a player.

controlling-opponent Which opponent (if any) is currently controlling the
ball

opponents-in-breakaway-cone The breakaway cone is shown in Figure 3. The
cone has its vertex at the player with the ball and extends to the opponents
goal posts.

our-breakaway = (controlling-teammate 6=None) ^ (controlling-opponent=None)
^ (opponents-in-breakaway-cone�1)
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behavior

The �rst new skill we use in breakaways is a generalization of dribbling called
\kick and run." When executing the normal dribbling skill, the agent aims to do
one kick and then one dash and have the ball end up in its kickable area again.
However, this causes a player dribbling the ball to move only half as quickly as
a player without the ball since half of its action opportunities are spent kicking
rather than moving. Therefore, defenders are able to easily catch up to dribbling
players. For kick and run, the agents aim for one kick and n dashes before being
in control of the ball again. In e�ect, they kick the ball harder to allow them to
spend more of their time running.

We use the optimal model described in Section 2.3 to help make the decision
about when to shoot. During a breakaway, the agent shoots when either one of
the following is true:

{ shot-margin (de�ned in Section 2.3) gets below a certain threshold (1 cycle
in CMUnited-99)

{ The time that it would take for the goalie to proceed directly to the ball and
steal it gets below a certain threshold (6 cycles in CMUnited-99).

This skill was extremely e�ective in the competition, with the vast majority
of our goals being scored using the specialized breakaway code.

3 Ball Handling Decision

One crucial improvement in CMUnited-99 is the agents' decision-making process
when in control of the ball. The decisions made at these times are the most crucial
in the robotic soccer domain. Which an agent chooses a�ects the future options
of teammates and opponents.

The agent uses a complex heuristic decision mechanism, incorporating a ma-
chine learning module, to choose its action. The most signi�cant changes from
CMUnited-98 are that the agents use special-purpose code for breakaways (see
Section 2.4); that the pass-evaluation decision tree [10] has been retrained dur-
ing practice games to capture the agents' improved ball-interception ability (see
Section 2.2; that the agents can cross the ball (see below); and that the agents
consider whether there is a teammate in a better position than they are to shoot
the ball (see Section 2.3).
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In presenting the agent decision-making process, we make use of the predi-
cates de�ned in Section 2 as well as the following:

distance-to-their-goal The distance to the opponent's goal
distance-to-our-goal The distance to own goal
opponents-in-front-of-goal The number of opponents (including the goalie)

in the breakaway cone shown in Figure 3
closest-opponent The distance to the closest opponent
closer-to-goal(k) Whether teammate k is closer to the opponent's goal than

the agent with the ball
can-shoot Whether distance-to-their-goal < 25 and (opponents-in-front-of-goal

� 1 and shot-margin � 6.
can-shoot(k) Same as above but from teammate k's position
congestion =

P
opponents

1
(distance�to�opponent)2

)

congestion(k) Same as above but from teammate k's position
can-dribble-to(x) No defender is nearby or in a cone extending towards the

point x

Following is a rough sketch of the decision-making process without all of
the parametric details. In all cases, passes are only made to teammates that the
decision tree predicts will be able to successfully receive the pass (called potential

receivers or PR below). If there is more than one potential receiver satisfying
the given criteria, then the one predicted with the highest con�dence to receive
the pass is chosen.

{ If 9r 2 PR s.t. better-shot(r): pass to r.
{ If our-breakaway : execute special-purpose breakaway code (see Section 2.4).
{ If (distance-to-their-goal < 17 and opponents-in-front-of-goal � 1) or shot-

margin � 3: shoot on goal.
{ At the other extreme, if distance-to-our-goal < 25 or closest-opponent < 10:

clear the ball (kick it towards a sidelines at mid�eld and not towards an
opponent [13]).

{ If 9r 2 PR s.t. closer-to-goal(r) and can-shoot(r) and congestion(r) � con-

gestion: pass to r.
{ If can-dribble-to(opponent's goal): dribble towards the goal.
{ If 9r 2 PR s.t. closer-to-goal(r) and congestion(r) � congestion (even if

unable to shoot): pass to r.
{ If close to a corner of the �eld (within a grey or black area in Figure 4) then

cross the ball as follows.

� if very near the base line or the corner (in the black area): kick the ball
across the �eld (to \cross target"), even if no teammate is present (\cross
it").

� If able to dribble towards the baseline: dribble towards the baseline (for
a later cross).

� If able to dribble towards the corner: dribble towards the corner.
� Otherwise, cross it.
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Even though the cross doesn't depend on a teammate being present to re-
ceive the ball, we observed many goals scored shortly after crosses due to
teammates being able to catch up to the ball and shoot on goal.

{ If can-shoot : shoot.
{ can-dribble-to(one of the corner ags): dribble towards the corner ag.
{ If approaching the line of the last opponent defender (the o�sides line): send

the ball (clear) past the defender.
{ If 9r 2 PR s.t. closer-to-goal(r) or congestion(r) � congestion: pass to r.
{ no opponent is nearby: hold the ball (i.e. essentially do nothing and wait for

one of the above conditions to �re).
{ If 9r 2 PR s.t. no opponent is within 10 or r: pass to r.
{ Otherwise: Kick the ball away (clear).

Notice that such a ball-handling strategy can potentially lead to players pass-
ing the ball backwards, or away from the opponent's goal. Indeed, we observed
such passes several times during the course of games. However, the forward
passes and shots are further up in the ball-handling decision, and therefore will
generally get executed more often.

4 O�-line Training

For the various agent skills described in Section 2 and in [13], there are many
parameters a�ecting the details of the skill execution. For example, in the ball
skill of dribbling, there are parameters which a�ect how quickly the agent dashes,
how far ahead it aims the ball, and how opponents a�ect the location of the ball
during dribbling.

The settings for these parameters usually involve a tradeo�, such as speed
versus safety, or power versus accuracy. It is important to gain an understanding
of what exactly those tradeo�s are before \correct" parameter settings can be
made.

We created a trainer client that connects to the server as an omniscient
o�-line coach client (this is separate from the on-line coach). The trainer is
responsible for three things:

1. Repeatedly setting up a particular training scenario. In the dribbling
skill, for example, the trainer would repeatedly put a single agent and the
ball at a particular spot. The agent would then try to dribble the ball to a
�xed target point.

2. Recording the performance of the agent on the task. Here we use a
hand-coded performance metrics, generally with very simple intuitive ideas.
In the kicking skill, for example, we record how quickly the ball is moving,
how accurate the kicking direction is, and how long it took to kick the ball.

3. Iterating through di�erent parameter settings. Using the server's
communication mechanism, the trainer can instruct the client on which pa-
rameter settings to use. The trainer records the performance of the agent for
each set of parameter values.
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Fig. 5: An example of training data

Once the scenario is set up, the system runs autonomously. Since most skills
only involve one or two clients, we could a�ord to have the trainer iterate over
many possible parameter values, taking several hours or days.

Once the trainer has gathered the data, we would depict the results graphi-
cally and decide which parameters to use. An example for the hard kicking skill
is shown in Figure 5. The two parameters varied for the test shown are the an-
gle the agent is facing relative to the kicking angle (the x-axis), and the bu�er
around the player out of which the agent tries to keep the ball (the di�erent
lines).

Sometimes, the \optimal" parameter selection was fairly clear. For example,
in Figure 5, we are trying to maximize the kick velocity. Therefore, we would
select a player angle of approximately 60 degrees and a bu�er of 0.10. Other
times, the data looked much noisier. In those cases we could narrow our search
down somewhat and get more data over the relevant parts of the parameter
space.

We were sometimes limited by processing power in the breadth or resolu-
tion of the parameter space that we could examine. A more adaptive searching
strategy, such as might be given by various learning techniques like genetic pro-
gramming [4], would be a useful addition.

5 Layered Disclosure

A perennial challenge in creating and using complex autonomous agents is follow-
ing their choice of actions as the world changes dynamically, and understanding
why they act as they do. In complex scenarios, even the human computer-agent
developer is often unable to identify what exactly caused an agent to act as it did
in a given situation. Adding support for human developers and observes to bet-
ter follow and understand the actions of autonomous agents can be a signi�cant
enhancement to processes of development and use of agents.

To this end, we introduce the concept of layered disclosure by which au-
tonomous agents include in their architecture the foundations necessary to allow
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a person to probe into the speci�c reasons for an agent's action. This probing
may be done at any level of detail, and either retroactively or while the agent is
acting.

A key component of layered disclosure is that the relevant agent information
is organized in layers. In general, there is far too much information available to
display all of it at all times. The imposed hierarchy allows the user to select at
which level of detail he or she would like to probe into the agent in question.

When an agent does something unexpected or undesirable, it is particularly
useful to be able to isolate precisely why it took such an action. Using layered
disclosure, a developer can probe inside the agent at any level of detail to de-
termine precisely what needs to be altered in order to attain the desired agent
behavior.

Layered disclosure was a signi�cant part of the development of CMUnited-99,
and led to many of the improvements in the team over CMUnited-98. Our devel-
opment of layered disclosure was inspired in part by our own inability to trace
the reasons behind the actions of CMUnited-98. For example, whenever a player
kicks the ball towards its own goal, we would wonder whether the agent was
mistaken about its own location in the world, whether it was mistaken about
the ball's or other agents' locations, or if it \meant" to kick the ball where it did,
and why. Due to the dynamic, uncertain nature of the environment, it is usually
impossible to recreate the situation exactly in order to retroactively �gure out
what happened.

Our layered disclosure implementation is publicly available[8]. It can easily
be adapted for use with other RoboCup simulator teams.

During the course of a game, our agents store detailed records of selected
information in their perceived world states, their determination of their short-
term goals, and their selections of which actions will achieve these goals, along
with any relevant intermediate decisions that lead to their action selections.

After the game is over, the log�le can be replayed using the standard \log-
player" program which comes with the soccer server. Our disclosure module,
implemented as an extension to this logplayer, makes it possible to inspect the
details of an individual player's decision-making process at any point.

In the remainder of this section we provide two examples illustrating the
usefulness of layered disclosure.

5.1 Discovering Agent Beliefs

When observing an agent team performing, it is tempting, especially for a person
familiar with the agents' architectures, to infer high level beliefs and intentions
from the observed actions. Sometimes, this can be helpful to describe the events
in the world, but misinterpretation is a signi�cant danger.

Consider the example in Figure 7. Here, two defenders seem to pass the
ball back and forth while quite close to their own goal. In general, this sort of
passing back and forth in a short time span is undesirable, and it is exceptionally
dangerous near the agents' own goal. Using the layered disclosure tool, we get
the information displayed in Figure 6.
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Action log for CMUnited99 2, level 30, at time 831
-Mode: AM_With_Ball
--Handling the ball
----OurBreakaway() == 0

---handle_ball: need to clear
---clear_ball: target ang == -93.0
-----starting kick to angle -93.0,

translated to point (-6.4, -34.0)

Action log for CMUnited99 2, level 20, at time 845
-Mode: AM_With_Ball
--Handling the ball

---handle_ball: need to clear
---clear_ball: target ang == 24.0
----starting kick to angle 24.0,

translated to point (-16.5, -34.0)
----kick_ball: starting kick to angle 24.0

Action log for CMUnited99 5, level 50, at time 838

------- Invalidating ball vel :0.36 > 0.36

thought vel was (1.73, -0.70)
-------Position based velocity estimating:

gpos (-32.1 -23.4), prev_seen_pos (-33.5 -23.1)
---------Sight 838.0:

B_ team:___________opp:________9__
-Mode: AM_With_Ball
--Handling the ball
----OurBreakaway() == 0
-----CanDribbleTo (-22.05, -20.52):

TRUE No players in cone

---handle_ball: dribbling to goal (2)

Action log for CMUnited99 5, level 20, at time 850
-Mode: AM_With_Ball
--Handling the ball

---handle_ball: dribbling to goal (2)

Fig. 6: Layered disclosure for the passing example (the boxes have been added for
emphasis).

First, we see that in both cases that player number 2 was in control of the
ball (time 831 and 845), it was trying to clear it (just kick it away from the goal),
not pass to player number 5. Given the proximity of the goal and opponents,
clearing is a reasonable behavior here. If a teammate happens to intercept a
clear, then our team is still in control of the ball. Therefore, we conclude that
this agent's behavior matches what we want and expect.

Next, we can see that player number 5 was trying to dribble towards the
opponent's goal in both cases that he controlled the ball (time 838 and 850).
There are no opponents immediately around him, and the path on the way to
the goal is clear. This agent's intention is certainly reasonable.

However, at time 838, player number 5 does not perform as it intended.
Rather than dribbling forward with the ball, it kicked the ball backwards. This
points to some problem with the dribbling behavior. As we go down in the
layers, we see that the agent invalidated the ball's velocity. This means that
it thought the ball's observed position was so far o� of its predicted position
that the agent's estimate for the ball's velocity could not possibly be right. The
agent then computed a new estimate for the ball's velocity based on its past and
current positions (see Section 2.1).

Given this estimation of the ball's velocity (which is crucial for accurate ball
handling), we are led to look further into how this velocity is estimated. Also,
we can compare the estimate of the velocity to the recorded world state. In the
end, we �nd that the ball collided with the player. Therefore, it was invalid to
estimate the ball's velocity based on position. In fact, this led us to more careful
application of this velocity estimation technique.

In this case, inferring the intentions of the players was extremely challenging
given their behaviors. Without layered disclosure, the natural place to look to
correct this undesirable behavior would have been in the passing decisions of the
players. It would have been di�cult or impossible to determine that the problem
was with the estimation of the ball's velocity.
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Time 832 Time 838

Time 845 Time 854 Time 3665

Time 3624 Time 3659

Fig. 7: Undesired passing behavior Fig. 8: Poorly performing defenders

5.2 The Use of Layers

The fact that the agents' recordings are layered is quite important. One impor-
tant e�ect is that the layers allow the observer to look at just higher levels, then
explore each case more deeply as required.

Consider the example depicted in Figure 8. Here, two defenders are unable to
catch up and stop one o�ensive player with the ball, even though the defenders
were in a good position to begin with.

Since this is a scenario that unfolds over many time steps, we need to be able
to understand what happens over that time sequence. The �rst pass at this is
to just look at the highest level decision. The �rst decision our agents make is
in which \action mode" they are [13]. This decision is based on which team is
controlling the ball, current location, role in the team structure, etc. Usually the
fastest player to the ball is in one mode and the second fastest in another.

By using the layered disclosure tool to look at just the highest level of output,
two facts can be learned: the defenders switch modes (between fastest and second
fastest) frequently, and are often unsure about which team is controlling the
ball. The di�erent modes tell the agent to go to di�erent spots on the �eld.
By switching back and forth, the agents will waste a great deal of time turning
to face the direction they want to go instead of actually going. Therefore, the
agents do not catch up.

Further, The decision about what mode to go into is sometimes a�ected by
which team the agent believes is controlling the ball. Realizing that this value is
often unknown should lead to changes in the way that value is determined, or
changes in the manner in which it is used.

In this case, making use of layered disclosure to examine just the high-level
reasoning decisions of a pair of agents allows us to focus on a problem that would
have otherwise been easily overlooked.
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Opponent A�liation Score
(CMU{Opp.)

Kasuga-Bitos III Chubu University, Japan 19 { 0
Karlsruhe Brainstormers University of Karlsruhe, Germany 1 { 0
Cyberoos CSIRO, Australia 1 { 0
Essex Wizards University of Essex, UK 0 { 0
Mainz Rolling Brains University of Mainz, Germany 0 { 2
Gemini Tokyo Institute of Technology, Japan 8 { 0
11 Monkeys Keio University, Japan 0 { 1
TOTAL 29 { 3

Table 1: The scores of CMUnited-98's games in the simulator league of RoboCup-99.
CMUnited-98 won 3, lost 2, and tied 1 game.

Note 1. The last game was lost by one goal in overtime.

We envision that layered disclosure will continue to be useful in the RoboCup
simulator and in other agent development projects, particularly those with com-
plex agents acting in complex, dynamic environments.

6 Results and Conclusion

The third international RoboCup championship, RoboCup-99, was held on July
28{August 4, 1999 in Stockholm, Sweden in conjunction with the IJCAI-99 con-
ference [15]. As the defending champion team, the CMUnited-98 simulator team
was entered in the competition. Its code was left unaltered from that used at
RoboCup-98 except for minor changes necessary to update to version 5 of the
soccer server. Server parameter changes that reduced player size, speed, and kick-
able area required adjustments in the CMUnited-98 code. However CMUnited-98
did not take advantage of additions to the players' capabilities such as the ability
to look in a direction other than straight ahead (simulation of a neck).

The CMUnited-98 team became publicly available soon after RoboCup-98
so that other people could build upon our research. Thus, we expected there
to be several teams at RoboCup-99 that could beat CMUnited-98, and indeed
there were. Nonetheless, CMUnited-98 performed respectably, winning 3 games,
losing 2, and tying 1 and outscoring its opponents by a combined score of 29{3.
Table 1 presents the details of CMUnited-98's matches.

Meanwhile, the CMUnited-99 teamwas even more successful at the RoboCup-99
competition than was its predecessor at RoboCup-98. It won all 8 of its games
by a combined score of 110{0, �nishing 1st in a �eld of 37 teams. Table 2 shows
CMUnited-99's game results.

Qualitatively, there were other signi�cant di�erences between CMUnited-98's
and CMUnited-99's performances. In RoboCup-98, several of CMUnited-98's
matches were quite close, with many o�ensive and defensive sequences for both
teams. CMUnited-98's goalie performed quite well, stopping many shots. In
RoboCup-99, CMUnited-99's goalie only had to touch the ball three times over
all 8 games. Only two teams (Zeng99 and Mainz Rolling Brains) were able to

46 P. Stone, P. Riley, and M. Veloso



www.manaraa.com

Opponent A�liation Score
(CMU{Opp.)

Ulm Sparrows University of Ulm, Germany 29 { 0
Zeng99 Fukui University, Japan 11 { 0
Headless Chickens III Link�oping University, Sweden 17 { 0
Oulu99 University of Oulu, Finland 25 { 0
11 Monkeys Keio University, Japan 8 { 0
Mainz Rolling Brains University of Mainz, Germany 9 { 0
Magma Freiburg Freiburg University, Germany 7 { 0
Magma Freiburg Freiburg University, Germany 4 { 0
TOTAL 110 { 0

Table 2: The scores of CMUnited-99's games in the simulator league of RoboCup-99.
CMUnited-99 won all 8 games, �nishing in 1st place out of 37 teams.

create enough of an o�ense in order to get shots on our goal. Improvements in
ball velocity estimation (Section 2.1), ball interception (Section 2.2), and a myr-
iad of small improvements made possible by layered extrospection (Section 5)
greatly improved CMUnited-99's mid�eld play over CMUnited-98.

Another qualitative accomplishment of CMUnited-99 was how closely its ac-
tions matched our ideas of what should be done. When watching games progress,
we would often just be starting to say \Pass the ball!" or \Shoot it" when the
agents would do exactly that. While this is certainly not a solid criterion on
which to judge a team in general, it is a testament to our development tech-
niques that we were able to re�ne behaviors in such a complex domain to match
our high level expectations.

There are certainly many improvements to be made. For example, in CMUnited-99's
game against Zeng99, our breakaway behavior (Section 2.4) was much less ef-
fective in general. This was because the Zeng99 team put an extra defender
behind the goalie. CMUnited-99's agents assumed the defender closest to the
goal was the goalie. Therefore, the agents applied the goalie model to that de-
fender instead of to the real goalie. This allowed the real goalie to stop many
shots which our agents did not anticipate could be stopped. Creating models of
other opponents and using them more intelligently could improve this behavior.

Further, adapting models to opponents during play, as well as changing team
strategy is a promising future direction. We have done some experimentation
with approaches to quick adaptation in complex domains like robotic soccer[6].
Other researchers associated with RoboCup are also looking in this direction,
especially with the newly introduced coach agent.

Various software from the team is available [8]. The binaries for the player
and coach agents are available. Full source code for the coach agent, the trainer
agent, and the layered extrospection tool are also available. Further, skeleton
source code for the player agents, including the low level skills, is also available.
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Abstract. In this paper we describe Big Red, the Cornell University
Robot Soccer team. The success of our team at the 1999 competition
can be mainly attributed to three points: 1) An integrated design ap-
proach; students from mechanical engineering, electrical engineering, op-
erations research, and computer science were involved in the project,
and a rigorous and systematic design process was utilized. 2) A thor-
ough understanding of the system dynamics, and ensuing control. 3) A
high fidelity simulation environment that allowed us to quickly explore
artificial intelligence and control strategies well in advance of working
prototypes.

1 Introduction

In this paper we describe Big Red, the Cornell University Robot Soccer team.
The success of our team at the 1999 competition can be mainly attributed to
three points:

1. An integrated design approach; students from mechanical engineering, elec-
trical engineering, operations research, and computer science were involved
in the project, and a rigorous and systematic design process[6] was utilized.

2. A thorough understanding of the system dynamics, and ensuing control.
3. A high fidelity simulation environment that allowed us to quickly explore AI

and control strategies well in advance of working prototypes.

The paper is organized as follows. In Section 3, we describe the electrical and
mechanical aspects of the project, followed by a description of the global vision
system in Section 4. The team skills are described in Section 5, followed by the
artificial intelligence and strategy in Section 6. We include some of the other
features of our team in Section 7.

2 Team Development

Team Leader: Raffaello D’Andrea[Assistant Professor]

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 49−60, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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Team Members:
Dr. Jin-Woo Lee[Visiting Lecturer]
Andrew Hoffman[Master of Engineering student]
Aris Samad-Yahaya[Master of Engineering student]
Lars B. Cremean[Undergraduate student]
Thomas Karpati[Master of Engineering student]

Affiliation: Cornell University, U.S.A
Web page http://www.mae.cornell.edu/RoboCup

3 Electro-mechanical System

3.1 Mechanical Design

The Cornell University team consists of two mechanical designs, one for the field
players and the second for goalkeeper. All of the robots have a unidirectional
kicking mechanism powered by one solenoid (two for the goalkeeper).

The robots have a design mass of 1.5 kg, a maximum linear acceleration
of 5.1 m/s2, and a maximum linear velocity of 2.5m/s. The goalkeeper has a
different design from the field players. It is equipped with a holding and kicking
mechanism that can catch a front shot on goal, hold it for an indefinite amount
of time, and make a pass. All of the designs were performed using ProE[10].

Listed below are the main characteristics of our robots:

Characteristic Goal Keeper Field Player

Weight 1.78 kg 1.65 kg
Max. Acceleration 5.90 m/s2 5.10 m/s2

Max. Velocity 1.68 m/s 2.53 m/s
Max. Kicking Speed 4.18m/s 2.6 m/s
Operating time 30 min per battery pack
Special function Ball Holding mechanism

3.2 On-Board Electronics

The main function of the on-board electronics is to receive left and right wheel
velocity signals via wireless communication and to implement local feedback
control to ensure that the wheel velocity were regulated about the desired val-
ues. Considering the speed, memory space, I/O capability, and the extension
flexibility, 16bit 50MHz microcontrollers are used.

In order to get a precise kick, a ball detecting system separate from the global
vision system is implemented. An infrared system is used to detect the ball. It
informs the microcontroller when the ball has come into contact with the front of
the robot. When the global vision system makes the observation that the robot
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is in a position to kick, a command is sent to inform the robot to kick the ball if
and only if the infrared system detects the ball. All the capture and layout for
the on-board electronics were performed in-house using OrCad[11].

3.3 Communication

After careful considerations and trade-off analysis, the wireless communication
was limited to one-way transmission from the global AI workstation to each
robot. The main justification for the decision is the lack of on-board local sens-
ing information. The one-way transmission saves the communication time, as
compared to the two-way communication, and simplifies the AI strategy and the
on-board firmware. The wireless communication system takes 12.5ms to transmit
the information from the AI workstation to the robots.

With the experimentally verified assumption that the robots do not drift
far from the desired position between frames, the need for local sensing and
correction is minimal. Based on the current design, the robots can drift 5cm
at maximum speed. For debugging purposes, each robot has the capability to
transmit data back to the AI workstation.

4 Visual Tracking Algorithm

A dedicated global vision system identifies the ball and robot locations as well
as the orientation of our robots. In order to determine the identity of each robot
and their orientation, blob analysis[5] is used as a basic algorithm. The vision
system perceives the current state of the game and communicates this state to
the AI workstation allowing decisions to be made in real-time in response to the
current game play. The end result of the vision system is the reliable real-time
perception of the position and velocity of the ball and the players, and also the
orientation and the identity of the Cornell players. The vision system captures
frames at a resolution of 320x240 and a rate of 35 Hz.

4.1 Interest Determination

Color segmentation of a frame often results in spurious blobs that do not corre-
spond to the ball, or the robots. These points can be resultant from areas outside
of the field, highlights from the lighting, deep shadows, the goals, and aliasing.
Computation time of features of these blobs can result in a significant slowdown
in system performance. To eliminate this slowdown and to produce a clean image
of only the objects of interest, a single frame is captured and saved previous to
the beginning of game play. This frame consists of the empty field only, without
robots or the ball. This frame is later subtracted from the currently captured
frame producing a difference image. Regions of this image where the disparity
is high are postulated as areas where objects of interest lie.
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4.2 Color Segmentation and Feature Extraction

Once areas of interest are determined, color segmentation is performed on the
image. The segmentation is done by independently thresholding each of the Red,
Green, and Blue color channels and performing a logical AND on the results of
color thresholding. This logical operation extracts a sub-cube from the RGB
color space. All objects are then classified based on the sub-cube that the cor-
responding blob falls into. This approach is well suited for the colors that are
determined by the RoboCup Federation. The ideal pure colors that are defined:
Orange (which is mainly Red), Green, Blue, Yellow, White, and Black, can be
found on the corners of the RGB color cube. Two remaining colors exist and
are used for our purposes, Cyan for initial orientation information and Magenta
for robot identification. Since these eight colors are so separated in RGB color
space, no color space conversion is performed on the input image, which is com-
putationally costly.

Once the color segmentation is completed, blob features are computed in-
cluding position, size, and perimeter length. These features are then used to
filter any salt and pepper noise that may have been the result of incorrect color
thresholding.

4.3 Tracking

Further rejection of false object classification is performed in the tracking stage.
During tracking each orientation and identification blob is attempted to be reg-
istered to the blobs that correspond to the appropriate Cornell team color. All
blobs that are not located within an appropriate physically realizable distance
from the team color blob are thrown away. This step will reject any colors that
are of interest, but are found on the opponent robots, for example. The team
marker blobs which have an orientation marker and one or more identification
markers registered with them are considered initially for identification and local-
ization. The other team markers are afterward considered if there are any robots
that are not found in the first set.

From these markers, and initial orientation is computed and the positions of
the identification marker with respect to this orientation marker. The identifi-
cation markers can be located in three of the four corners of the robot cover.
The cover is divided into four quadrants, and each marker is classified by the
angle that is produced relative to the orientation marker. The pattern of the
identification markers can then be determined and the robot identified invariant
to the robot orientation on the field. Once the robot pattern is identified, the
final orientation is computed using all of markers on the cover.

Robot identification is also simplified by the physical constraints imposed by
the maximum velocity and acceleration attainable. Each candidate position for a
specific robot is compared to a predicted location and velocity determined by the
two previous locations. If the position is outside the physically realizable radius
of this predicted position, the candidate is rejected. Among several candidate
positions that are located within this attainable radius, the necessary velocity
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to reach that position is computed and the position that most closely matches
the predicted position and velocity is chosen as the true position of the robot.

4.4 Filtering

Although, the resolution of the camera is quite high and the blob analysis can
compute the center of gravity of a blob to sub-pixel accuracy, these centers of
gravity contain noise that may be modeled as white Gaussian noise in the system.
While position calculations are fairly accurate, the orientation calculation suffers
from this noise. The spatial proximity of the orientation marker and the team
marker on the cover of the robot results in orientation errors of up to 10 degrees.
To compensate for these errors all of the markers on top of the robot are used for
the orientation. The true positions of the markers are known, thus the optimal
rotation of the robot can be computed by using a least squares fit of the perceived
marker locations and the actual locations on the cover. This fit becomes more
precise as the number of markers on the cover of the robot increases.

5 Skills

The sophistication of the trajectory control algorithms described below together
with very tight PID velocity control[4] enable our robots to get to a desired final
state (of position, orientation and wheel velocities) in a fast manner.

This, combined with a prediction algorithm[3] for the ball, makes for effective
real-time interception for both a stopped ball and a moving ball. The limitation
on robot speed of maneuverability comes primarily from a system latency, de-
scribed later in this paper.

Ball control is achieved with a front surface that is slightly recessed from the
front corner bumpers, nominally allowing a player to change the direction of the
ball’s motion. An energy absorbing contact surface affords greater control. Drib-
bling is not a dominant skill. Passing is accomplished in an emergent manner,
as a result of clever positioning of players that are not assigned to the ball.

Kicking is accomplished by a unidirectional solenoid with a front plate at-
tached to its shaft. Robots will only kick in potential goal-scoring situations,
and the timing of the kick is done with the use of an infrared sensor circuit that
detects when the ball is directly in front of the robot. Typical kicks impart an
additional 1 m/s to the ball.

The goalkeeper design is independent of the field player design, and thus the
goalkeeper exhibits significantly different skills. The goalkeeper is equipped with
a holding and kicking mechanism that can catch a front shot on goal, hold it for
an indefinite amount of time required to find a clear pass to a teammate, and
make this pass.
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Fig. 1. Schematic diagram for Robot Control

6 Artificial Intelligence

6.1 Role Based Strategy

The artificial intelligence subsystem is divided into two parts. The high-level
AI takes the current game state (robot and ball positions, velocities, and game
history) as input, and determines the role of each robots, such as shooter, de-
fender, mid-fielder, goalie, etcetera. Please see [2], and the references therein,
for a thorough description of the application of role based systems in robotic
soccer. Once the role is determined, desired final state such as time-to-target,
robot orientation and robot velocity at the final position are computed from the
current state. More than 20 roles are preprogrammed. The low-level AI subsys-
tem resides on the each roles, and generates the trajectory to the target point
and computes the wheel velocities to transmit to a robot.

6.2 Trajectory Control

The task of low-level AI is to generate trajectories and to control the robot to
follow the trajectories. It takes as inputs the current state of the robot and the
desired ending state. The current state of a robot consists of the robot x and
y coordinates, orientation, and left and right wheel velocities. A desired target
state consists of the final x and y coordinates, final orientation, final velocity as
well as the desired amount of time for the robot to reach the destination.

Compared to reactive control strategies, such as those in [1] for example,
we perform a global trajectory optimization for each robot and take advantage
of the mechanical characteristics of the robots. Two position feedback loops are
employed for the robot’s trajectory control. The first is a local feedback loop and
the other a global feedback loop. The local feedback loop resides on the micro-
controller of each robot and is in charge of controlling the motor position[4]. The
global feedback control also has a position feedback loop via the global vision
system and makes the robot follow the desired trajectory. These two position
feedback controls improve the robot’s staying performance. The performance en-
hancement shows up especially when the goalie is facing an opponent robot. The
desired velocity of each of the robot wheels are generated and then transmitted
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Fig. 2. Trajectory Generation

to the robots through the RF communication link at every sixtieth of a second.
Fig. 1 shows the schematic diagram for the entire trajectory control loop.

The low-level AI needs to be efficient and robust to imperfections in robot
movement. Currently, our algorithm can run more than 60 times per one com-
putation cycle, which is sufficient considering it only needs to be run at about
four times per cycle (for four robots excluding the goalkeeper).

This complex problem is solved by breaking the problem of trajectory gener-
ation into two parts. The first part generates a geometric path. The second part
calculates wheel velocities such that the robot stays on the path and completes
it in the allocated time.

Generating a Geometric Path Our geometric path is represented by two
polynomials in the x and y coordinates of the robots. The x coordinate poly-
nomial is a fourth-degree polynomial and the y coordinate polynomial is third
degree.

x(p) =
4∑

k=0

αkp
k (1)

y(p) =
3∑

k=0

βkp
k (2)

The task is to solve for the nine polynomial coefficients for a particular path
requirement[7]. The 9 constraints on the polynomial path are: initial x coordi-
nate, initial y coordinate, initial orientation, initial curvature (determined by
the initial left and right wheel velocities), initial speed, final x coordinate, final
y coordinate, final orientation, and final speed.

Generating Wheel Velocities Every point on the geometric curve has a
curvature value, which defines a relationship between the left wheel velocity vl

55Big Red: The Cornell Small League Robot Soccer Team



www.manaraa.com

and the right wheel velocity vr at that point in the curve. This relationship is:

v = (vl + vr)/2 (3)

vl(1 + κ · r) = vr(1− κ · r) (4)

where κ is the curvature of the path, and r is the half distance between the two
wheels and v is the forward moving velocity of the robot(See Figure 2). Thus,
we simply need to choose a forward moving velocity of the robot to solve for vl
and vr at every point on the curve, which can then be sampled at the cycle rate
of our AI system. Obviously, the forward moving velocity is constrained by the
time-to-target as well as mechanical limits of the robot.

Even though each run of this algorithm generates a preplanned path from
beginning to end, it can be used to generate a new path after every few cycles
to compensate for robot drift. The continuity of the paths generated is verified
through testing. However, this algorithm breaks down when the robot is very
near the target because the polynomial path generated might have severe cur-
vature changes. In this case, the polynomials are artificially created (and not
subject to the above constraints) on a case-by-case basis, and these are guaran-
teed to be smooth.

7 Other Team Features

7.1 Vision Calibration

The vision calibration consists of 4 main parts. They are:

– barrel distortion correction
– scaling
– rotation
– parallax correction

The barrel distortion correction is performed using a look-up table to map a
point in image-coordinates into a new coordinate equidistant coordinate system.
Due to the necessity for a wide angle lens barrel distortion becomes a significant
problem in the image processing. Barrel distortion is a function of the lens of
the camera and is radially symmetric from the center of the image. To invert
the distortion, points are measured from the center of the image to the corner of
the image. Since the points are measured equidistantly, a scaling can be done to
convert corresponding points in image coordinates, which tend not to be equidis-
tant. A look-up table is generated which contains the scaling factor and indexed
by the distance from the center point in the image. Points between the indices
are linearly interpolated from the two surrounding points. This transformation
ensures that straight lines in reality are mapped back into straight lines.

The scaling is then computed such that the sides of the field are computed
as accurately as possible. These values are computed so that the transformation
from image coordinates to field coordinates is accurate for the center of each of
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Fig. 3. Testing platform for the Simulation
.

the sides of the field, i.e. the x-coordinate of the center of the goals, and the
y-coordinate for the centers of the lengthwise walls. This anchors the transfor-
mation to the sides of the field, ensuring that the walls of the field correspond
to exactly where the artificial intelligence system expects them to be.

Since the camera cannot be mounted perfectly, the rotations about the center
axis of the camera also need to be taken out. The points are rotated so that the
sides of the field have constant x-coordinates along the widthwise walls and
constant y-coordinates along the lengthwise walls.

Finally the parallax error that results from differences in object height is
removed by scaling the x- and y-coordinates proportionally to the distance that
the object is from the center of the camera projected onto the field plane.

7.2 High Fidelity Simulation

To provide a realistic testing platform for our artificial intelligence system, we
have constructed a simulation of the playing field that models the dynamics of
our environment.

The dynamic modeling of our system is performed by a Working Model 2D[8]
rendering of the complete playing field. The model includes two teams of five
individual players, the game ball, and the playing field. Real world forces and
constraints are modeled, including the modeling of the motion of the tires and
the inertia of the robots and ball. Additionally, the physical interactions between
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the players and each other, the ball, and the playing environment are all modeled
in Working Model’s two dimensional environment.

The simulator accepts external input and output 60 times per simulated
second, the rate at which the artificial intelligence operates, and the rate at
which new robot commands are issued. To simulate the time lag and noise we
encounter in our real world simulation, the Working Model parameters are passed
into Matlab[9], where random noise, error, and delay are introduced to model the
limitations of our vision and communication systems. In addition, the kicking
mechanisms and simple referee functions are managed, such as the detection of
a team goal, and the reset of the playing field. This information is then passed to
the artificial intelligence module. Information normally transmitted across the
communications link is then passed back to Matlab from the artificial intelligence
module, and is interpreted in Matlab before it is applied to the model of our
system, to simulate the delay associated with our real world communications
link.

The transition of our intelligence code between the simulated environment to
the real playing environment is fairly smooth. However, there are some under-
lying differences that need to be considered when making the transition. In the
simulator, the intelligence must run synchronously with the rest of the system,
unlike in our final playing environment. In addition, simpler feedback control
mechanisms are implemented into the physical model to increase the speed of
the simulator, which are slightly different than the control methods that we use
on our actual robots. Despite these limitations, we have found the differences
between the environments to be small enough that we can make the transition
between them without the need to significantly alter the functionality of the
system intelligence and control code.

In the time before we had a fully operational real world system, the simula-
tor provided us with a means of testing the artificial intelligence play-by-play,
allowing code and strategy development to begin a full four months before the
first robots were built. In addition, it allowed us to run competing strategies
and full games without the need for a full complement of ten robots and two
workstations running different intelligence algorithms simultaneously.

The simulator is a simple and manageable platform that allows us to recreate
the real-world problems that exist in our system. At the same time, it removes
several annoying physical constraints of the real-world system, such as limited
battery life and operating time, providing a more convenient environment for
new algorithms to be tested. Because the simulator performs more reliably than
the real-world system, problems can be traced more quickly and more reliably to
problems within the intelligence code. The simulator is a convenient and fairly
accurate rendering of our real-world system, and an invaluable tool in the design
and implementation of our artificial intelligence system.

7.3 System Delay Test

In any feedback control system, a change in the system delay can cause unwanted
oscillations and loss of system control. To prevent unwanted oscillations, we have

58 R. D’Andrea et al.



www.manaraa.com

created a simple testing procedure to accurately measure our system delay. We
measure the delay by sending a command to a robot to change the state of the
playing field, and then we measure the time needed to detect the arrival of the
change back at the place in the system where we issued the command.

There are two major reasons that we chose to implement the delay measure-
ment in this manner. First, this method of measurement provided us with an
accurate representation of the system delay that could be used when modifying
the trajectory controller, which is responsible for modeling the system and prop-
erly handling the system feedback. Second, a quick measurement of the system
delay allows us to easily check if the system is functioning normally.

The results of our delay measurements have reflected a total system delay
of approximately 83 to 117 milliseconds. The total delay time can be attributed
to specific components within the system. Our intelligence contributes a single
frame delay of about 16 milliseconds (ms) to the total system delay. The commu-
nications link approximately adds an average of 13.3 ms of delay due to the time
needed to buffer our 13 byte packets into the device, send the packets across the
data channel, and to decode the packets at the robot.

The time that is needed for the vision system to capture the field state and
relay it to the intelligence system is approximately 45 ms. This can be attributed
to a delay of 16 ms to capture a new frame from the camera and the time needed
to interpret a single frame, which is approximately 29 ms.

The vision information is incorporated into the next artificial intelligence
cycle, which begins a new cycle every 17 milliseconds. The entire system delay
breakdown gives us a minimum system delay rate of 75 ms, with the possibility
of additional delay due to the asynchronous nature of the links between the
camera, vision, and artificial intelligence subsystems.

8 Conclusion

Even though our team performed well at the competition last year, there are
many subsystems and components that need to be improved. The main ones are
outlined below:

– A more robust vision system. The current vision system performs well when
operational, but does fail on occasion. In addition, it takes a very long time
to calibrate the system. One of our objectives for next year is to construct
a reliable vision system that can be set up in less than 30 minutes.

– Role coordination. This will allow us to implement set plays.
– More refined trajectory generation, obstacle avoidance, and trajectory con-

trol.
– Reduce the system latency.
– Innovative electro-mechanical designs.
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Abstract. Arvand is the name of robots specially designed and con-
structed by sharif CE team for playing soccer according to RoboCup
rules and regulations for the middle size robots. Two di�erent types of
robots are made, players and the goal keeper. A player robot consists
of three main parts: mechanics (motion mechanism and kicker), hard-
ware (image acquisition, processing unit and control unit) and software
(image processing, wireless communication, motion control and decision
making). The motion mechanism is based on two drive unit, two steer
units and a castor wheel. We designed a special control board which
uses two microcontrollers to carry out the software system decisions and
transfers them to the robot mechanical parts. The software system writ-
ten in C++ performs real time image processing and object recognition.
Playing algorithms are based on deterministic methods. The goal keeper
has a di�erent moving mechanism, a kicker like that of player robots
and a fast moving arm. Its other parts are basically the same as player
robots. We have constructed 3 player robots and one goal keeper. These
robots showed a high performance in Robocup-99: became champion.

1 Introduction

In order to prepare a suitable level for research in many di�erent aspects involved
in autonomous robots, we designed and constructed all parts of the robots by our
group members in di�erent laboratories of our university. These robots which are
the 2nd generation which we made in the last two years, have a controllable speed
of maximum 0.53 m/sec. In addition to the basic movements of a robot, special
mechanical design of the player robot, enables it to rotate around any point in
the �eld. In practice, the distance between ball center and robot geometrical
center is calculated and the robot can be commanded to rotate around the ball

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 61−73, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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center until seeing the opponent team goal. This unique mechanics, to a good
extent, simpli�ed and accelerated our playing algorithms.

The machine vision system of player robots uses a widely available home use
video camera and a frame grabber. But for goal keeper we used one CCD camera
in front and two small video conferencing digital cameras in sides rear. Our fast
image processing algorithm can process up to 16 frames per second and recognize
objects in this speed. For any recognized object, its color, size, distance and angle
from robot is determined. The wireless communications between robots made it
possible to test the cooperative behavior in a multi-agent system in a real-time
changing environment. TCP/IP protocol was used for communication.

The software is based on deterministic algorithms, designed in object-oriented
method and implemented in C++ using DJGPP compiler in MS/DOS. The
reason for using MS/DOS was mainly due to the fact that we had to use a
oppy disk drive for booting the system because of its reliability in a moving
robot in RoboCup environment and also its low price compared to hard disk.

In the following we describe the mechanics, hardware and software systems
used for goal keeper and player robots.

2 Mechanical Architecture

According to the motion complexity of a soccer player robot, proper design
of its mechanics can play a unique role in simplifying its motion and as a re-
sult the playing algorithms. In this regard, di�erent speci�c mechanisms were
designed and implemented for player and goal keeper, that together with the mo-
tors current feedback measurement, to a good extent, guided us to the current
mechanism which showed a better performance in Robocup-99.

2.1 Player Robot Motion Mechanism

Arvand consists of two motion units in front of the robot and one castor wheel
in the rear. Each motion unit has a drive unit and a steer unit. A drive unit is
responsible for rotating its wheel in forward and backward directions and also, a
steer unit is responsible for rotating its respective drive unit around the vertical
axis of the drive unit wheel. The combination of drive unit movement and proper
settings of steer units angles with respect to robot front, provides the robot with
a continuous rotational move around any point (this point can be selected to
be inside or outside robot body) in the �eld in clockwise or counter-clockwise
direction.

Drive unit consists of a wheel which is moved by a DC motor and a gearbox
of 1:15 ratio [1]. The steer unit uses a DC motor and a gearbox of 1:80 ratio.
For controlling a steer unit, an optical encoder is mounted on the respective
motor shaft and its resolution is such that one pulse represents 0.14 degrees of
drive units rotation. Figure 1 is from the robot top view and shows the position
of drive units for rotating around point A in the �eld. The coordinates are as
shown in the �gure 2.

62 M. Jamzad et al.



www.manaraa.com

Fig. 1. The position of drive units to make the robot move around point A in the �eld.

The velocity vectors and angles made by steer units are calculated according
to following formulas [2]:

v1 = w �
p
y12 + (k + x1)2 (1)

v2 = w �
p
y12 + (k � x1)2 (2)

�1 = Arctg(
y1

k + x1
) (3)

�2 = Arctg(
y1

k � x1
) (4)

In the above equations, x1 and y1 are the coordinates of point A (i.e. the
rotation center); k is the distance between y axis and the drive unit rotation
center; w is the angular speed of robot around point A; �1 and �2 are the
rotation angles of left and right drive units with respect to x axis; v1 and v2
are the speeds of left and right drive motors, respectively. In special case, if the
rotation center A is located on the y axis, equations 1 to 4 summarize to the
following equation:

v1 = v2 = w �
p
y12 + k2 (5)

�1 = �2 = Arctg(
y1

k
) (6)

This means that, to rotate the robot around a point (0,y1), both drive units
should be set by the same angle �1 and then , they should move by the same
velocity v1. As a result the robot will rotate with angular speed of w around the
point (0,y1).

In summary, this mechanism has the following capabilities:
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1. Rotating around any point in the �eld. Appropriate rotation of steer units
can bring the drive units in desired angular positions �1 and �2. After these
angles setting, if the ratio between the angular speed of two drive units is
set according to equation 7 (extracted from equations 1 and 2), as a result
the robot will rotate around point A.

w1

w2

=

p
y12 + (k + x1)2p
y12 + (k � x1)2

(7)

In the above formula,w1 and w2 are the angular speed of left and right drive
units. By setting one of w1 or w2, the other is calculated according to above
equation.

2. In our software system we can set the drive units to be parallel to each other
while having a speci�c angle related to robot front. This mechanism is useful
for taking out the ball when stuck in a wall corner and also dribbling other
robots.

3. A kicker arm is installed in front of robot. A solenoid is used to supply it
with kicking power. A simple crowbar connects the solenoid to the kicking
arm. The power of kicking is controlled by duration of 24 DC voltage applied
to the soleniod.

2.2 Goal Keeper Motion Mechanism

We think the goal keeper should have a complete di�erent mechanism from
player robot. Because it keeps the goal, it seems that more horizontal speed in
front of goal area and deviation-less movement is a great advantage for the goal
keeper. Thus, in order to guarantee a nearly perfect horizontal movement for
the goal keeper, 4 drive units are installed in the robot (the castor wheel has
been eliminated because it causes deviation in the robot movements). However,
in practice the robot will be displaced after some movements, therefore it should
have the ability to adjust itself when displaced. Horizontal movements and self
adjustment can be done by a combination of the following three basic movements:

1. Move forward and backward (Fig. 2-a).
2. Rotate around its geometrical center (Fig. 2-b).
3. Move straight towards left and right (Fig. 2-c).

In order for the robot to perform these movements, 4 drive units and two
steer units are installed in the robot. One steer unit rotates two front drive units
round their vertical axes simultaneously in opposite directions and the other
steer unit does the same on two rear drive units. The drive units wheel has a
diameter of 8 Cm and a gearbox of 1/15 ratio. Measurement of the rotation
angle for drive units is done by encoders installed on steer unit motor shafts.

To minimize the adjustment movements and also increase goal keeper perfor-
mance, we installed a fast moving sliding arm on it, such that this arm can slide
in left or right direction before the robot body itself moves in these directions.
This arm can slide to its leftmost or rightmost position within less than 0.1 of
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Fig. 2. Goal keeper drive units

Fig. 3. Sliding arm movement
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a second. Considering the front body size of goal keeper which is 23 Cm, and
the arm size which is 45 Cm, the robot can cover 68 Cm which is approximately
1/3 of the goal area, within less than 0.1 of a second. Compared to goal keeper
maximum speed which is 75 Cm/sec, this arm gives better protection of goal
area from very fast moving balls.

Sliding arm movement is carried out by a rack and pinion mechanism, as
seen in Fig. 3. To control the amount of arm sliding, an encoder is mounted on
the shaft of pinion motor. It is necessary to �x the arm when goal keeper is in
a stuck situation with other robots. This is done by using a solenoid which can
lock the arm in its present position.

3 Hardware Architecture

The goal of our hardware architecture is to provide a control unit independent
of software system as much as possible and also reduce the robots mechanical
errors.

Arvand hardware system consists of three main parts: Image acquisition
unit, processing unit and control unit.

The image acquisition system of goal keeper consists of a Topica PAL color
CCD camera with 4.5 mm lens in front and two digital Connectix Color Quick-
Cam2 for the sides rear view. For other robots we used a widely available home
use video camera in front which could record the scene viewed by robot too. All
robots including the goal keeper used a PixelView CL-GD544XP+ capture card
which has an image resolution of 704x510 with the frame rate of 25 frames per
second.

The processing unit consists of an Intel Pentium 233 MMX together with a
main board and 32MB RAM. Two onboard serial ports are used as communi-
cation means with the control unit. A oppy disk drive is installed on the robot
from which the system boots and runs the programs.

The control unit senses the robot and informs the processing unit of its
status. It also ful�lls the processing unit commands. Communication between
the control unit and the processing unit is done via two serial ports with RS-
232 standard[3]. Two microcontrollers 89C52 and 89C51 [4] are used in control
unit. They control the drive units, steer units and kicker. Two limit switches
are mounted on each steer unit. Microcontroller counts the number of pulses
generated by the encoders mounted on the motor shafts to control the drive
unit rotation. Each pulse represents 0.14 degrees of the drive unit rotation. The
motor speeds are controlled by PWM pulses with frequency of about 70kHz. Fig.
4 shows the block diagram of the control unit. It allows distributed processing
among the main board processor and two processors on this board.

This board performs the following main tasks:

{ PWM generation on two drive units, two steer units and also the kicker.
PWM control of drive units is done by MOSFET. A relay is used for changing
motor rotation direction. In order to control the steer units not to rotate
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Fig. 4. Player robot hardware components interconnection diagram

beyond their angular limits, two limit switches are installed. If a steer unit
touches a limit switch, no more movement in that direction will be possible.

{ Measurement the current feed back of drive units. Motor current is measured
by an A/D and processed by software in the main processor.

{ Measurement of the batteries voltages in order to �nd their charging level.
{ Control of goal keeper sliding arm and its relating lock.
{ A pause key on control unit board allows us to stop all movements of robot

and also send a signal to the main processor to bring it to suspend mode,
which will save batteries.

The control unit board is designed to be robust, easy to test, fast failure �nd-
ing, easy maintenance and modi�cation, and reliable performance. In addition,
it has the capability to handle extra signals which could come from new sensors
on the robot, in the future.

4 Software Architecture

Software architecture of Arvand consists of four main parts: Real time object
recognition, Motion control, Communication and Decision making module. Soft-
ware which is written in C++ has an object oriented design with 5 classes as
follows: Camera class (all related functions for working with frame grabber), Im-
age class (machine vision functions), Motion class (motion functions which is the
interface between software and hardware), Communication class (all TCP/IP re-
lated networking) and Decision class (all robot playing methods and algorithms).

4.1 Real Time Object Recognition

Objects are detected according to their color. We used HSI[5] color model for
recognizing colors, because of its advantage in representing approximately each
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color in a cube in the HSI space. The color output of our frame grabber board
is in RGB. To reach a near real-time speed in color processing, HSI color space
is constructed from RGB in o�-line. For each color to be recognized, its HSI
range is determined in o�-line as well (i.e. this range can be set for all colors
according to the lighting condition). A one dimensional array of size 65536 that
shows all possible RGB input values in our system is �lled with a color name
according to its HSI range, in o�-line. Therefore, in real time, the color of a pixel
is determined by two single array access (once for �nding the RGB value of a
pixel from frame grabber memory and the second time for �nding the color name
from the above mentioned array). Due to RoboCup regulation, each main object
such as ball, ground, wall and a goal is assumed to have a single prede�ned color.
This routine generates a segmented image matrix such that all pixels belonging
to an object are assigned the same color name.

To �nd all objects in a scene, the image matrix is processed from top to
bottom only once. To speed up this routine, instead of examining each single
pixel in the image matrix, only one pixel from each subwindow of size wi� hi is
selected and tested (i.e. wi and hi are the minimumwidth and minimum height
of an object which can exist in a scene). If this pixel has the desired color, then
we move upward in one pixel step until hitting a border point. At this point a
contour tracing algorithm is performed and the contour points of the object are
marked.

To �nd the next object, the search is continued from a subwindow located
to the right of the subwindow in which the start point of the previous object
was found. In searching for the next object, the marked points are not checked
again. At the end of this routine, all objects are determined.

To overcome the possible color error of image acquisition system, during
moving on the object contour, if it reaches a pixel with a color di�erent from
that of the object, but 3 of its 4 neighbors have the object color, then that pixel
color is changed to the color of the object and it is considered to be a contour
point. In addition, during contour tracing algorithm, the minimum and maxi-
mum x; y coordinates of contour points are calculated. The extracted object �ts
in a rectangle which upper left and lower right corner have the (minx;miny) and
(maxx;maxy) coordinates. The size of this rectangle is estimated to be propor-
tional to the real object size. If the object size is smaller than a prede�ned size, it
is taken as a noise and eliminated. However, if because of lighting condition, one
or more objects are found inside a larger object with the same color, the smaller
objects are considered as noise and deleted. For any object found, its size, color,
angle and distance from robot camera are passed to the decision making routine.

4.2 Object Distance Calculation

The object distance from camera can be determined in two methods. In the �rst
method, since in RoboCup, the real size of objects are known (except that of
opponent robot which can be estimated before the game), the object distance is
calculated as a ratio of its real size and the size calculated in object detection
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routine. However, this method works only if the robot sees an object completely
(there are many situations where only part of an object is visible).

In the second method, the distance is calculated from the object position in
the image matrix. This method is independent from detected object size and
therefore has less error. We calculated the object distance D according to the
following formulas. In these formulas, X0 is the number of pixels between the
image matrix bottom position to the point that has lowest y value in the object
selected from imagematrix. Y SIZE is the image height in number of pixels. The
constant parameters H, A and B are calculated o�-line. Where, H is distance
from camera focal lens center to ground. A is the distance such that if the object
is located there, then the object bottom is seen in the lowest part of the image. B
is the distance such that if the object is located at that position, then its bottom
is seen in the image center. Fig. 5 shows the relation between these parameters.
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Fig. 5. Geometrical relations for �nding object distance
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4.3 Motion Control

This module is responsible for receiving the motion commands from the "De-
cision Making Module" and make the robot move. As it is mentioned in the
hardware architecture section, the communication between the processing unit
and the control unit is via two on-board PC serial ports using RS-232. So, just
some basic computations are done in this module and commands are sent via
serial ports to microcontrollers where they are executed.

For example, some commands for player robot movement are go(forward),
go(backward), rotate(left), rotate(right), rotate round(left, 10) (i.e. this stands
for rotation around a point 10 centimeters straight from the robot geometrical
center), kick (i.e. kicks the ball) and etc.

4.4 Communication

Communication between robots is done by wireless LAN under TCP/IP proto-
col. We used WATTCP whose main kernel can be downloaded from [6]. Each
robot has a wireless network adapter, and there is a computer, we named it mes-
sage server, outside the �eld which processes messages of robots and coordinates
them. The server provides a useful user interface to command robots manually.
Server's main responsibility is to receive the robots messages and inform them
of each robot status. For example, in our multi-agent system, if one robot takes
control of the ball, it will inform all others via server, and then other robots will
not go for the ball.

4.5 Decision making

Principally, the decision making module is that part of Arvand software that
processes the results of real time object recognition, decides accordingly and
�nally commands the motion control software. We have taken deterministic ap-
proach in these routines. This module is a �nite state machine (FSM) whose
inputs for changing state are machine vision results, motion control hardware
feedbacks and server messages. Each robot playing algorithm kernel �nds the
ball, catches it, �nds the opponent goal and �nally carries the ball towards the
goal and kicks. But there are a large number of parameters that a�ect this main
kernel and cause interrupts in its sequence. For example, the main method for
�nding the ball is rotating. When our robot is moving in the �eld it tries not to
collide with other robots. Collision avoidance is done by calculating the distance
and angle of other robots and changing the speed of its motors. This capability
showed its good performance in dribbling other robots.

In addition, robot ability to measure the motors current, enables it to deter-
mine stuck situations and thus making appropriate move to come out of that
state.
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5 Discussion

Considering the dynamic situation in a soccer game, the elementary generation
of robots which are able to show the clarity of a future when we or our children
will see humanoid robots playing soccer with human soccer players in a real �eld,
should have a special mechanics, control and vision system which can simplify
robots move in such environment. In this regard, it is obvious that soccer robots
should be divided into two categories, players and goal keeper, each designed
with di�erent concept. The responsibility of a goal keeper and the type of its
movements is basically di�erent from other players.

Considering these facts, at the present time,we can not purchase robots which
could ful�ll these works in the way that we think is appropriate. Therefore, we
decided to go through all di�culties of designing and constructing all parts of
our robots, including mechanics, control hardware and software by our group.

In RoboCup-99 this idea showed its superiority compared to robots purchased
from certain manufactures which had a general purpose design. The possibility
to make changes in their mechanics and movement capability were limited, that
is why the users were bounded to a certain extent to the parameters put through
by the manufacturer.

We believe that one of the keys to the success in this �eld is designing the me-
chanics and control hardware which can best �t our idea of soccer player robot.
Also we should concentrate on a fast and reliable vision system. It is unbelievable
for a human soccer player to mistake a ball in real soccer �eld. Therefore our
robots should be able to be improved to that ability. High resolution of CCD
camera and fast and reliable frame grabbers are among the essential tools needed
for the vision system.

The sliding arm of our goal keeper moves much faster than robot body to
the left and right. Like a human goal keeper, when he tries to catch a ball from
sides, his hands move faster and before his body. This design not only enables
the robot to catch fast moving balls going from sides, but also reduces the risk
of horizontal displacement of robot in fast left and right moves. Because we use
two PC main boards with a frame grabber installed on one of them and other
hardware boards, the height of our goal keeper is too much (i.e. 60 cm). There
is not a proper balance between its width, height and weight, that is why in
high accelerations the robot itself become unstable. To overcome this problem,
we suggest the replacement of large size mother boards and frame grabber to
some small size, so we could �t all hardware equipment in a smaller space. If
this problem is solved, it is suggested to use two CCD cameras for sides view
instead of digital video conferencing cameras.

At present our player robots can communicate with each other using wireless
network by TCP/IP protocol. In practice we sometimes encountered communi-
cation stall. We think this is due to TCP/IP protocol when waiting for acknowl-
edgment anytime a packet is sent, and this wait lasts because of electromagnetic
noise in the environment. We think it will be more appropriate to use UDP
protocol, because it is not a connection oriented protocol and does not wait for
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acknowledgments. A reliable real-time communication in a multi-agent system
is the base for a successful team play.

6 Conclusion

Arvand is the 2nd generation of robots constructed by our team. One advantage
of Arvand is its unique mechanics design which enables it to rotate around
any point in the plane. Therefore, the robot can rotate around the ball center
while simultaneously �nding the goal position. Object distance measurement
and motors speed control, enabled the robots to implement special individual
playing techniques in dribbling, releasing themselves when stuck and taking out
the ball from a wall corner.

Another advantage of our robots is the use of MS/DOS operating system,
because it can be executed on a oppy disk which is a more reliable device com-
pared to hard disk, on mobile robot. Our robots showed a good performance
in real games and we are going to improve our software algorithms based on
individual techniques and also team play. The wireless LAN system used in our
robots provided the communication between robots resulting a cooperative be-
havior, specially when a robot has the control of ball. A well de�ned cooperative
behavior in a multi-agent system, is the key to success of team play algorithms
and also individual techniques. Sliding arm of goal keeper enables it to take fast
moving balls from sides. The four drive units moving mechanism reduces the
horizontal displacement of goal keeper during movements.
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Abstract. This work deals with designing simple behaviors for legged robots to
play soccer in a predefined environment : the soccer field. Robots are fully
autonomous, they cannot exchange messages between each other. Behaviors are
based on information coming from the vision sensor, the CCD camera here
which allows robots to detect objects in the scene. In addition to classical vision
problems such as lighting conditions and color confusion, legged robots must
cope with “bouncing images” due to successive legs hitting ground. This paper
presents the work achieved for our second participation. We point out the
improvements of algorithms between the two participations, and those we plan
to make for the next one.

1 Introduction

It is not so easy to make robots play soccer in team. It is more difficult to design
locomotion for legged robots than for wheeled machines But in both cases, « Vision »
is essential to analyze the scene correctly, and therefore the current game action, in
order to adopt the right strategy : go to the ball, go to the opposite goal with the ball,
push the ball away of its goal, etc. Real soccer players would appreciate ! For the
moment, the strategies seem to be selfish, but the level and the quality of the games
increase.
Robots are now able to adopt some reactive behaviors and to analyze the current
situation so that it can adapt itself when it is changing. Reactivity is absolutely
necessary when the robot is facing unpredictable events, for example if it loses the
object it is tracking or if it falls down. Reactive behaviors are like reflexes, that make
the machine react always in the same way when confronted to the same situation.
Adaptability is different from reactivity since it results from a kind of reasoning
capability. It is also necessary for robots to be able to analyze a real situation so that
they can make up their minds as for what to do next. Here the quality of the analysis
determines the suitability of the behavior selected. For instance, adaptability comes in
the case where reflexes lead to deadlocks, the machine should switch autonomously to
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a rescue behavior. Examples of adaptive behaviors can be slowdowns to avoid
obstacles or turning round a ball to bring it back to the desired location, …
This work, describes the whole strategy used to design behaviors of legged robots
which are operating in a predefined structured world. The example of a soccer field is
considered here. Section 2 outlines the improvements between the exhibition held in
98 in Paris and the first competition held in 99 in Stockholm. The improvement of the
visual recognition system is detailed in section 3. Section 4 is devoted to the strategy
used to play soccer games on a colored field. Finally, the last section presents future
improvements in the design of behaviors for soccer robot players.

2 From Paris 98 to Stockholm 99

Previous work, achieved for the First Legged Robot RoboCup Exhibition, held in
Paris in July 1998, stresses upon basic tasks of locomotion and vision [HBB98(a)].
The 98 prototype shown in figure 1 was used in soccer games. For locomotion
purpose, we developed our own walking patterns, and transitions between the
different patterns: forward motion, left and right turns and turn-in-place
modes[HBB98(b)]. For vision purpose, we developed an-easy-to use interface to tune
vision parameters of the color detection hardware available on the robot, and the
embedded vision algorithms [BHS99]. By lack of time, a very simple strategy which
consisted in pushing the ball was implemented. This strategy was not effective: our
robots were pushing the ball in our goal during the play !
Considering the new design of the 99 prototype (figure 1) of AIBO, the first work was
to adapt locomotion algorithms to new leg configurations. The most important
problem came from the nails at the leg tips. They are necessary for a « like a dog »
design, but they limit the possible positions of the feet during the walk. Embedded
vision algorithms do not need adaptation. They take advantages of the new CCD
camera, and the new processor : the processing rate increases from 15 to 30 images
per second.

   
Fig. 1. 98 and 99 Prototypes of AIBO

The improvements of the algorithms from the Paris 98 version to the Stockholm 99
one concern the vision module : embedded algorithms as well as the interface to tune
parameters (see § 3). Moreover, two real game strategies have been implemented :
behaviors for the goalkeeper and for the attacker / defender (see § 4).
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3 Vision Improvement

3.1  No Coherent Behavior Possible without Reliable Information

It is impossible to make the appropriate decisions of action, that is to say to make the
robot switch to the correct behavior, without reliable information coming from the
vision module. Reliable information means identifying the scene element correctly:
ball, beacons (landmarks), goals, players. Positions of scene elements are always
correct.
All the behaviors we describe here to illustrate the consequences of the color
confusions result from observations during the games in Stockholm. We do not think
that they were implemented by teams voluntarily ! The confusion between the orange
ball and red players made robots follow red players instead of going to the ball : our
robots had this behavior during the training play, we corrected this problem for the
competition, but we saw other robots with this behavior. The confusion between the
orange ball and the shadows on both sides of the yellow goal made robots stay part of
a game inside the yellow goal. During part of a game, two attackers of the opposite
team were staying in our goal on each side of our goal keeper, meanwhile our
attackers went with the ball.... A robot stayed many minutes in front of a beacon,
blocked by the inclined wall of the soccer field.
From a practical point of view, it is possible to avoid color confusion, by choosing
correctly the threshold values of the Color Detection Hardware. But it is not enough,
results of the Color Detection hardware must be carefully processed in order to reject
false pixel classifications.

3.2 More Autonomous Interface

Since our first participation, we developed a practical interface, aimed at tuning the
threshold values of the Color Detection Hardware in the best way possible. This
interface is designed for the following tasks:
1. It can display a large number of images (between 10 and 20 in practical cases),

taken from different points of view of the soccer field, and their segmentation (*)
results (cf. figure 2)

2.  It allows to select or to remove areas of the images representing different scene
objects (like the ball, the goals, the beacons, the players) viewed from several
locations, under various lighting conditions. These areas can be chosen
« automatically » by pointing regions on the segmentation results (improvement of
this last participation), or « by hand » (as in the first version) by determining a box.

3. It computes the threshold values for each color template in the YUV color space
from a set of image areas representing the same color. We add, in this new version,
the possibility to process the threshold values, to make the results of the color
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detection more independent of the positions of the scene object and of the robot on
the soccer field.

4. It checks the coherence between color templates : a color pixel may belong to one
color template at most, so in other terms, there is no intersection between color
templates. If this condition is not satisfied, it is possible to apply again processing
from step 2. An « error message » informs the user about confusion between
colors.

5. It processes the YUV color images and displays the results of processing : the
identified connected components (representing ball, goal, beacon, player). If results
are not satisfying, it is possible to apply again procedures of step 2.

Finally, it writes the file containing the threshold values, which will be loaded into the
robot.
This interface includes other tasks : it is in fact a more general tool for color image
analysis.

(*) To be able to determine automatically a region in the image on which color
parameters will be computed after, we develop a segmentation method, adapted
version of the multispectral cooperative segmentation, specially developed for
military applications (NATO project) of sensor fusion (Radar, Visual and Thermal
Infra Red radiations) [BHP95] et [BHP96]. YUV homogeneous regions are extracted
from YUV edges. In fact, the parameters of homogeneity were too strictly tuned: the
ball and the goal are divided into several (really homogeneous) regions, and it is
possible to select individually each of them, to avoid color confusions. Using this
automatism, the tuning of the threshold values is easier to perform by the operator,
and more precise because the regions on which thresholds are computed are selected
by a segmentation of good quality, which gives better results than the human operator.

Fig. 2. Image and its Segmentation Results

After lots of experiments, we find a strategy for the choice of the regions on the
segmented images, which allows for a correct tuning of threshold values.
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3.3 Low Level Filtering

The previous described method was tested systematically using all coherent values of
camera parameters : the mode, (4 modes : indoor, outdoor, fluorescent and user,
according to the temperature of light, are available), the minimal and maximal gains.
Then we choose the best combination by looking at object color appearances in
several images for each set of parameters values, and by trying to find some regions
in the image to tune parameters without detecting incoherence.
Some « control » images, results of the Color Detection hardware, with the best
combination of camera parameters and with the tuning previously described (see §
3.2) are taken. In fact, the color confusion was noticed in only a few points which are
generally isolated. So, a low level filtering,  « similar to an Opening Procedure »
using an isotropic 3 by 3 centered neighborhood was implemented to remove with
success this wrong information (cf. figure 3).

 

 
Fig. 3. The Results of the Color Detection Hardware, and the « Low Level »
Filtered Image

But this filtering has a drawback : the maximal distance of detection of scene
elements like the ball and the beacons decreases, which is a problem for the absolute
localization of robots on the soccer field. The choice we made results from a trade-
off : good identification (necessary including this filtering) / large distance detection
of scene element, and seems to be good. It is better to be sure of the extracted
information, in order to design a good strategy.
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4 Behavior strategy to play soccer

4.1 Influence of locomotion on behavior

Locomotion is not omnidirectional. To change direction, the robot must compute the
best suited turning circle and switch to a turning pattern as soon as possible. If the
turning circle is below the threshold, the machine should stop and switch to the turn-
in-place mode in the desired direction. Therefore, if the supervision module needs to
plan the trajectory of the body within a world reference frame, it must take these
characteristics into account. Moreover, it must incorporate the possible delays for a
new walking pattern to trigger. A supervision module was tested on simulation and
gave satisfactory results.
The problem appears when trajectory planning is carried out on the real machine. In
spite of the careful design of walking patterns, some leg slippage, drifts and falls
occur sometimes. Slippage is due to the nature of the interaction between the ground
and the leg tip, which is changing. Since the robot does not master these interactions,
drifts cannot be avoided over a long distance (4 or 5 times the length of the body).
And it may happen that the robot falls down when it bumps into walls or other objects
in the scene, one of the reason is that the locomotion is open-loop controlled and that
the machine does not know how to deal with these situations. By adding some closed
loops using exteroceptive data from force sensors, gyrometers and accelerometers, the
machine should be able to detect collision, loss of balance, etc., and then react in real
time to avoid falling down. In the worse case where falls cannot be avoided, the
machine should be aware of it and capable of recovering by itself. Basic recovery
behaviors have been implemented for real, thanks to its three-axis accelerometer, the
robot can detect on which side it has fallen and chose the right standing up procedure.
When confronted to real situations, absolute trajectory planning does not provide
good results. This is because it relies on localizing procedures, therefore on the vision
recognition system. Absolute localization is not possible while moving. The strategy
adopted by our team is to use relative positioning, which can be used in real time. As
precise positioning is not required, it does not matter if local motion is not accurate,
the most important thing is to reach the goal. Therefore, in function of the landmarks
captured while moving, the trajectory of the body is being corrected in real time by
varying the turning circle.

4.2 Influence of vision on behavior

The vision recognition system has to deal with changing lighting conditions and
“bouncing images”. The first difficulty can be overcome using color adaptive
algorithms. Color thresholds could be changed online after analyzing the results on
the field. However, the vision system cannot cope with the second difficulty. It often
occurs that an object is detected in the first image acquisition and lost the time after.
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Since it is not always possible to track an object in the successive images captured,
it is essential to memorize the object during a certain amount of time. If the object is
not refreshed until the time-out expires, the robot should switch to some different
behavior. The first behavior consists in searching for the object lost. If it fails, and if
the robot is completely lost, the next step consists in beginning an absolute
localization procedure. Since it takes a lot of time, this behavior should only be called
in critical situations. In other cases, relative positioning is preferable. For instance, on
the soccer field, each time the robot can spot the ball, one goal or the other, or one of
the landmarks surrounding the field, it can deduce some information and adopting a
more thoughtful behavior.

4.3 Two kinds of behavior

This section illustrates the strategies used to make quadruped robots play soccer
successfully. Behaviors are separated into two groups. The first group includes basic
behaviors that do not need analysis of the situation. The second group contains more
high level behaviors that are based on interactions with the environment.

4.3.1 Basic primitives
Two kinds of basic primitives are described here.

• The first kind regroups behaviors that can be seen as reflexes. Reflexes are always
triggered when the robot is confronted to the same situation. The duration of such a
behavior is limited. It is a kind of quick reaction to a similar event. Examples of
reflexes are all the recovery procedures in case of fall. Another reflex is the one
thanks to which the robot turns its head towards the last position of the object lost.
It can help save searching time.

• The second type of basic behaviors are not limited in time. In fact, these behaviors
need time to reach the objective set by the supervision module. For instance, ball

Fig. 4. Online trajectory correction using landmarks captured

searching and ball tracking illustrate this kind of behaviors. In ball searching, the
goal consists in finding the ball again. In ball tracking, the objective is to get

Ball

Pole (landmark)

Robot
Trajectory followed by
the robot
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closer to the ball. These behaviors are basic ones since no further analysis of the
situation is required.

4.3.2 Higher level behaviors involving situation analysis
Four kinds of high level behaviors have been designed to play soccer.

• The first behavior consists in curving the trajectory in function of the pole
(landmark) captured. The objective in the case of soccer game consists in bringing
back the ball to the opponent field. Every time a landmark is spotted, it is
memorized, and the turning circle is corrected in such a way that the robot goes to
the ball from the right or the left side, depending on which side of the field the pole
is situated. The robot must have the ball in its field of sight or have it memorized,
and have captured a landmark in the same time. The turning circle of the current
trajectory depends on which pole is detected. The machine must therefore analyze
the situation before triggering the behavior. In soccer game, this behavior is used to
defend its own goal or to attack the opponent one. In defense mode, the robot can
head for the ball located in the own field and bring it back by moving behind it. In
attacking mode, the robot can bring the ball back from the corners towards the
opponent goal. Figure 4 illustrates this behavior.

• The second behavior is used by players to attack the opponent goal. In this case,
the robot tries to align the ball and the center of the adversary goal along its
longitudinal axis. To trigger this behavior, the robot must spot the ball and the
opponent goal, the ball should be close enough. To this purpose, the robot uses the

angle of the ball and the goal computed by the vision module. However,
memorization should be carefully tuned. Refreshment rate must be sufficient
otherwise the robot could miss the ball. Figure 5 shows the role as an attacker.

Opponent goal

Robot

Ball

Pole Pole

Fig. 5. Attacker behavior in front of the opponent goal
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• The third behavior consists in defending the own goal when the situation is very
dangerous, that is when the robot sees the ball and its own goal in the same time.
When all conditions are met, the robot starts to get around the ball. The movement

is a sequence of straight line and turn-in-place motions, as shown in figure 6.
During the procedure, the robot does not turn the head. If it loses the ball, the
machine switches to turn-in-place motion until it sees the ball again, then it moves
straight forward until losing the ball, and so on. Normally the robot makes a turn of
approximately 180°, it can therefore push the ball to the opponent field.

• The last behavior is specially designed for the goalkeeper. First, the robot directs
its head to the ball. If the ball gets close, the goalie aligns its body to the ball. Once
the ball gets closer, the robot moves towards the ball to strike it and push it away.
After that, it searches for its goal, goes to it. It detects the walls of its goal thanks to
its infrared proximity sensor, and begins then to search for the opponent goal by
turning in place. Once it has found it, it tries to spot the ball again. The procedure
can restart. In this behavior, the robot has to estimate the distances to the ball and
to the goal. Experiments must be carried out to tune them since they depend on the
lighting conditions.

4.4 Behavior interaction

In the case of soccer, the interaction between the different behaviors is easily
managed. In fact, some behaviors are naturally preemptive over others. The direct

Robot

Own goal

Ball

Pole Pole

Fig. 6. Turn-round-the-ball defense. Successive turn-in-place and
forward motion sequences around the ball.
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attack of the goal has a higher priority than others. If it were the behavior that curves
the trajectory, the robot could miss the ball and the goal. In case of defense it is the
turn-round-the-ball behavior which preempts all the others. This is obvious since it
refers to the most critical situation. It can be seen as a rescue or last chance behavior
to prevent the other team from scoring. Figure 7 summarizes the behavior
interactions.

The experience brought by soccer experiments taught us that behaviors should not be
limited to classic basic ones such as turn to the right, turn to the left, go to a specific
location, stop to localize, achieve a fixed number of steps, and so on. It is better
designing some adaptive behaviors that interact with the environment. Decisions
should be made while moving, and relative positioning should be used most of the
time.

5 Conclusion

The experiments carried out on quadruped robots playing soccer allow us to test
behaviors in real situation. It helps us become aware of real problems of
implementation. Vision and locomotion skills should be taken into account in the
design of behaviors. A strategy that combines reactive and adaptive behaviors should
give satisfactory results, provided that the interaction between both is well managed.
We are satisfied by the improvements we added between Paris 98 and Stockholm 99.

Regarding Vision, we will try to increase the maximal distance of scene element
detection without decreasing the quality of identification, which is essential. This
point is necessary in order to guarantee a reliable absolute localization, on which we
are currently working.

Fig. 7. Scale of behaviors priorities. Example of soccer game.

Ball tracking Ball searching

Ball tracking + trajectory bending

Turn-round-the-ball defense Direct attack of the opponent goal

Absolute localization attempts

Recovering procedures

Ascending
priority

Evolution
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Another research subject is to embed an automatic color segmentation, like the one
we use for the interface, to modify the threshold value of the color detection
hardware. This will confer the vision system a better adaptation to inhomogeneous
illumination.

In the first series of experiments (Paris 98 and Stockholm 99), communication
between robots was not possible. However the next version of quadruped prototypes
might be provided with wireless communication links. Behaviors could then be
improved as robots could know the relative or absolute positions of others.
Information could then be crossed to increase the accuracy of positioning.

Another way to improve the overall behavior is to use gyrodometry. This technique
consists in using gyrometer data locally to correct drifts from odometry. The robot
can then estimate its displacement with enough precision over a few more steps.
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Abstract. Multi-agent teamwork is critical in a large number of agent appli-
cations, including training, education, virtual enterprises and collective robot-
ics. Tools that can help humans analyze, evaluate, and understand team be-
haviors are becoming increasingly important as well. We have taken a step 
towards building such a tool by creating an automated analyst agent called 
ISAAC for post-hoc, off-line agent-team analysis. ISAAC's novelty stems 
from a key design constraint that arises in team analysis: multiple types of 
models of team behavior are necessary to analyze different granularities of 
team events, including agent actions, interactions, and global performance. 
These heterogeneous team models are automatically acquired via machine 
learning over teams' external behavior traces, where the specific learning 
techniques are tailored to the particular model learned. Additionally, ISAAC 
employs multiple presentation techniques that can aid human understanding 
of the analyses. This paper presents ISAAC's general conceptual framework, 
motivating its design, as well as its concrete application in the domain of Ro-
boCup soccer. In the RoboCup domain, ISAAC was used prior to and during 
the RoboCup'99 tournament, and was awarded the RoboCup scientific chal-
lenge award. 

1   Introduction 

Teamwork has been a growing area of agent research and development in recent 
years, seen in a large number of multi-agent applications, including autonomous 
multi-robotic space missions [5], virtual environments for training [16] and educa-
tion [8], and software agents on the Internet [15]. With the growing importance of 
teamwork, there is now a critical need for tools to help humans analyze, evaluate, 
and understand team behaviors. Indeed, in multi-agent domains with tens or even 
hundreds of agents in teams, agent interactions are often highly complex and dy-
namic, making it difficult for human developers to analyze agent-team behaviors. 
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The problem is further exacerbated in environments where agents are developed by 
different developers, where even the intended interactions are unpredictable.  

Unfortunately, the problem of analyzing team behavior to aid human developers 
in understanding and improving team performance has been largely unaddressed. 
Previous work in agent teamwork has largely focused on guiding autonomous agents 
in their teamwork [6, 17], but not on its analysis for humans. Agent explanation 
systems, such as Debrief [7], allow individual agents to explain their actions based 
on internal state, but do not have the means for a team analysis. Recent work on 
multi-agent visualization systems, such as [9], has been motivated by multi-agent 
understandability concerns (similar to ours), but it still leaves analysis of agent ac-
tions and interactions to humans.  

This paper focuses on agents that assist humans to analyze, understand and im-
prove multi-agent team behaviors by  (i) locating key aspects of team behaviors that 
are critical in team success or failures; (ii) diagnosing such team behaviors, particu-
larly, problematic behaviors; (iii) suggesting alternative courses of action; and (iv) 
presenting the relevant information to the user comprehensibly. To accomplish these 
goals, we have developed an agent called ISAAC. A fundamental design constraint 
here is that unlike systems that focus on explaining individual agent behaviors [7, 
12], team analysts such as ISAAC cannot focus on any single agent or any single 
perspective or any single granularity (in terms of time-scales). Instead, when analyz-
ing teams, multiple perspectives at multiple levels of granularity are important. 
Thus, while it is sometimes beneficial to analyze the critical actions of single indi-
viduals, at other times it is the collaborative agent interaction that is key in team 
success or failure and requires analysis, and yet at other times an analysis of the 
global behavior trends of the entire team is important. 

To enable analysis from such multiple perspectives, ISAAC relies on multiple 
models of team behavior, each covering a different level of granularity of team 
behavior. More specifically, ISAAC relies on three heterogeneous models that ana-
lyze events at three separate levels of granularity: an individual agent action, agent 
interactions, and overall team behavior. These models are automatically acquired 
using different methods (inductive learning and pattern matching) -- indeed, with 
multiple models, the method of acquisition can be tailored to the model being ac-
quired. 

Yet, team analysts such as ISAAC must not only be experts in team analysis, they 
must also be experts in conveying this information to humans. The constraint of 
multiple models has strong implications for the type of presentation as well. Analy-
sis of an agent action can show the action and highlight features of that action that 
played a prominent role in its success or failure, but a similar presentation would be 
incongruous for a global analysis, since no single action would suffice. Global 
analysis requires a more comprehensive explanation that ties together seemingly 
unconnected aspects and trends of team behavior. ISAAC uses a natural language 
summary to explain the team’s overall performance, using its multimedia viewer to 
show examples where appropriate. The content for the summary is chosen based on 
ISAAC’s analysis of key factors determining the outcome of the engagement. 
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Additionally, ISAAC presents alternative courses of action to improve a team us-
ing a technique called ‘perturbation analysis’. A key feature of perturbation analysis 
is that it finds actions within the agents’ skill set, such that recommendations are 
plausible. In particular, this analysis mines data from actions that the team has al-
ready performed. 

Overall, ISAAC performs post-hoc, off-line analysis of teams using agent-
behavior traces in the domain. This analysis is performed using data mining and 
inductive learning techniques. Analyzing the teams off-line alleviates time con-
straints for these analysis techniques, allowing a more thorough analysis. Also, using 
data from the agents’ external behavior traces, ISAAC is able to analyze a team 
without necessarily understanding its internals, allowing analysis of teams devel-
oped by different developers in a given domain. 

ISAAC is currently applied in the domain of RoboCup soccer simulation [8]. Ro-
boCup is a dynamic, multi-agent environment developed to explore multi-agent 
research issues, with agent teams participating in annual competitions. Agent-team 
analysis is posed as a fundamental challenge in RoboCup since team developers 
wish to understand the strengths and weaknesses of teams and understand how to 
improve such teams. (There are at least 50 such development groups around the 
world.) Indeed, ISAAC has been applied to all of the teams from several RoboCup 
tournaments in a fully automated fashion. This analysis has revealed many interest-
ing results including surprising weaknesses of the leading teams in both the Ro-
boCup ’97 and RoboCup ’98 tournaments and provided natural language summaries 
at RoboCup ’99. ISAAC was also awarded the ‘Scientific Challenge Award’ at the 
RoboCup ’99 international tournament. ISAAC is available on the web at 
http://coach.isi.edu and has been used remotely by teams preparing for these compe-
titions. 

While ISAAC is currently applied in RoboCup, ISAAC’s techniques are intended 
to apply in other team domains such as agent-teams in foraging and exploration [2] 
and battlefield simulations [16]. For example, exploring actions, interactions, and 
global trends such as target hit rate, friendly fire damage, and formation balance, 
ISAAC could produce a similar analysis in the battlefield simulation domain, and 
use similar presentation techniques as well. 
 

2   Overview of ISAAC  

We use a two-tiered approach to the team analysis problem. The first step is acquir-
ing models that will compactly describe team behavior, providing a basis for analyz-
ing the behavior of the team. As mentioned earlier, this involves using multiple 
models at different levels of granularity to capture various aspects of team perform-
ance. The second step is to make efficient use of these models in analyzing the team 
and presenting this analysis to the user. Later sections delve into more specifics of 
these models. An overview of the entire process is shown in Figure 1. 
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Fig. 1. Flow Chart for ISAAC Model Generation and Analysis 

Input to all models comes in the form of data traces of agent behaviors. In the 
current implementation of ISAAC, these traces have been uploaded from users 
around the world through the Internet.  

As shown in Figure 1, acquiring the models involves a mix of data mining and 
inductive learning but is specific to the granularity of analysis being modeled. 
Analysis of an individual agent action (individual agent key event model) uses the 
C5.0 decision tree inductive learning algorithm, an extension to C4.5, to create rules 
of success or failure [10]. For analysis of agent interactions (multiple agent key 
interaction model), pre-defined patterns are matched to find prevalent patterns of 
success. To develop rules of team successes or failures (global team model), game 
level statistics are mined from all available previous games and again inductive 
learning is used to determine reasons for success and failure. 

Utilizing the models involves catering the presentation to the granularity of 
analysis to maximize human understandability. ISAAC uses different presentation 
techniques in each situation. For the individual agent key event model, the rules and 
the cases they govern are displayed to the user. By themselves, the features that 
compose a rule provide implicit advice for improving the team. To further elucidate, 
a multimedia viewer is used to show cases matching the rule, allowing the user to 
better understand the situation and to validate the rules (See figure 2). A perturba-
tion analysis is then performed to recommend changes to the team by changing the 
rule condition by condition and mining cases of success and failure for this per-
turbed rule. The cases of this analysis are also displayed in the multimedia viewer, 
enabling the user to verify or refute the analysis. 

For the multiple agent key interaction model, patterns of agent actions are ana-
lyzed similar to the individual agent actions. A perturbation analysis is also per-
formed here, to find patterns that are similar to successful patterns but were unsuc-
cessful. Both successful patterns and these ‘near misses’ are displayed to the user as 
implicit advice. This model makes no recommendations, but does allow the user to 
scrutinize these cases. 

The global team model requires a different method of presentation. For the analy-
sis of overall team performance, the current engagement is matched against previous 
rules, and if there are any matches, ISAAC concludes that the reasons given by the 
rule were the determining factors in the result of the engagement. A natural lan-
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guage summary of the engagement is generated using this rule for content selection 
and sentence planning. ISAAC makes use of the multimedia display here as well, 
linking text in the summary to corresponding selected highlights. 
 

 

Fig. 2. Multimedia Viewer highlighting key features 

ISAAC has been used in the RoboCup simulated soccer environment consisting 
of two opposing teams of eleven agents each. The agents do not have a centralized 
control, and act in a complex, dynamic, noisy environment managed by the soccer 
server, which acts as host and referee for the game. Figure 2 shows ISAAC’s multi-
media viewer, which displays the soccer field and plays from the games, and can 
highlight key features specific to ISAAC’s analysis. For instance in figure 2, the 
area around the right soccer goal is highlighted.  

3 Individual Agent Key Event Model 

This section examines the first of ISAAC’s three models, focusing on key actions 
taken by individual agents, and is specific to each team. In this and the following 
two sections, we first provide a conceptual overview of the model being analyzed 
and then discuss its instantiation in RoboCup. 

3.1 Conceptual Overview of the Individual Agent Key Event Model 

The individual agent model focuses on the analysis of critical events in a team’s 
behavior history relevant to the team’s success. There may be many critical events 
along the path to the team’s eventual success or failure that are widely separated in 
time, only loosely coupled to each other, but nevertheless critical to the team’s suc-
cess. For instance, in a battlefield simulation, there may be many distinct attacks on 
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enemy units, which are critical to team success, embedded in a larger history of 
maneuvering. 

We consider critical events to be the team’s intermediate successes or failures. 
When something occurs that directly influences the team’s eventual success or fail-
ure, this is considered to be an intermediate success or failure point. At present, we 
assume the identification of these intermediate points is part of the domain specific 
knowledge available to the individual agent analysis model. 

Having isolated cases of intermediate success or failure, we can now form rules 
of successful and unsuccessful behavior, which comprise the individual agent 
model. These rules are formed using inductive learning techniques over the cases of 
success and failure based on a set of potentially relevant features in these cases. 
These features, along with the decision on what are the cases of intermediate suc-
cess, are the only background information or bias given to the individual agent 
analysis technique. The features chosen must have the breadth to cover all informa-
tion necessary for the analysis, but should also be independent of each other if at all 
possible. In the future, a semi-automated attribute selection may be used [4]. 

Currently, C5.0 is used to form the rules of success and failure. Each rule de-
scribes a class of success or failure cases, based on its feature description. These 
rules and the cases they represent can be displayed to the user as implicit advice on 
how individual agents operate in critical situations. 

More explicit exploration of this advice is performed using an automated pertur-
bation analysis. After ISAAC has produced rules determining which circumstances 
govern success and failure classifications, ISAAC uses a perturbation analysis to 
determine which changes would produce the most benefit. Each learned rule con-
sists of a number of conditions. We define a perturbation to be the rule that results 
from reversing one condition. Thus a rule with N conditions will have N perturba-
tions. The successes and failures governed by the perturbations of a rule are mined 
from the data and examined to determine which conditions have the most effect in 
changing the outcome of the original rule, turning a failure into a success. Since 
these cases are mined from the original data traces, the recommended changes must 
already be within the agent’s skill set. Perturbation analysis is explained in greater 
detail in Section 3.3. 

3.2 Application of Individual Agent Key Event Model to RoboCup 

In applying the approach to RoboCup, the domain specific information has to be 
identified that would be used by ISAAC as bias in its analysis. In particular, in the 
RoboCup domain, success means outscoring the opponent. Shots on goal are there-
fore key points of intermediate success or failure as these are situations that can 
directly affect the outcome of the game. Thus, the focus of ISAAC’s individual 
agent analysis in RoboCup is shots on a team’s goal as well as shots by the team on 
an opponent’s goal. 
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Having defined shots on goal as key events, we need to determine which domain 
dependant features might be useful in classifying the success or failure of a shot on 
goal. After an initial set of experiments with a relatively large feature set, ISAAC 
currently relies on a set of 8 features to characterize successes and failures.  

Having determined which features to use in the analysis and the key events (the 
cases) to examine, the task is transformed to mining the raw data and feeding it to 
the C5.0 decision tree learning algorithm. From the resulting decision tree, C5.0 
forms rules representing distinct paths in the tree from the root of the tree to a leaf 
as a classification of success (goal-score) or failure (goal not scored). Each rule 
describes a class of similar successes or failures. 

Figure 3 shows an example success rule, describing a rule where shots taken on the 
Windmill Wanderer team will fail to score (Successful Defense). This rule states that 
when the closest defender is sufficiently far away (>13.6 m) and sufficiently close to 
the shooter’s path to the center of the goal (<8.98°), and the shooter is towards the 
edges of the field (>40.77°), Windmill Wanderer will successfully defend against 
this shot. When viewed using ISAAC, the user can see that the defender is far 
enough away to have sufficient time to adjust and intercept the ball in most of these 
cases. Thus the user is able to validate ISAAC’s analysis. This rule provides implicit 
advice to this team to keep a defender sufficiently distant from the ball, or to try to 
keep the ball out of the center of the field. 

 

Distance of Closest Defender > 13.6 m 
Angle of Closest Defender wrt Goal <= 8.981711 
Angle from Center of Field > 40.77474 
Æ class Successful Defense 

 

Fig. 3. Sample Rule from shots on Windmill Wanderer team of RoboCup’98 

The application of a decision tree induction algorithm to this analysis problem must 
address some special concerns. The goal-shot data has many more failure cases 
(failed goal shots) than success cases (goals scored). However, analyzing such data 
using a traditional decision tree induction algorithm such as C4.5 gives equal weight 
to the cost of misclassifying successes and failures. This usually yields more misclas-
sified success cases than misclassified failure cases. For example, in our analysis of 
shots by the Andhill team from the RoboCup’97 tournament, our original analysis 
misclassified 3 of 306 failure cases (less than 1%), but misclassified 18 of 68 success 
cases (26%). Since a much larger portion of the success cases is incorrectly classi-
fied, this produces overly specific rules that govern success cases. To compensate for 
this lopsided data set, the ability of C5.0 to weight the cost of misclassification is 
used. Specifically, the cost of misclassifying a success case is set to be greater than 
the cost of misclassifying a failure case [18]. ISAAC uses a 3 to 1 ratio by default, 
but this is adjustable. 
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More generally, differential weighting of misclassification cost provides a mecha-
nism for tailoring the level of aggressiveness or defensiveness of ISAAC’s analysis. 
Consider shots on goal against a team. If a very high cost is assigned to misclassi-
fying a successful shot on goal, the rules produced will likely cover all successful 
shots, and quite a few misclassified failure cases. In this case, the rule conditions are 
implicitly advising to make the team very defensive. On the other hand, if a low cost 
is assigned, the rules may not cover all of the successful cases. Therefore, ISAAC 
would only give “advice” relevant to stopping the majority of shots on goal. This 
may not be appropriate if we consider any goal to be a serious failure. Therefore, we 
allow the user to adjust the weight on success case misclassifications. 

3.3 Perturbation Analysis 

Perturbations of a failure rule enable users to see what minimal modifications 
could be made to agent behaviors to convert the failures into success. Mining in-
stances of perturbed failure rules, the developer determines steps that could be taken 
to move the agent from failure to successful behavior. 

For example, one of ISAAC’s rules states that when taking shots on goal, the An-
dhill97 team often fails to score when (i) ball velocity is less than 2.37 meters per 
time step and (ii) the shot is aimed at greater than 6.7 meters from the center of goal 
(which is barely inside the goal). ISAAC reveals that shots governed by this rule fail 
to score 66 times without a successful attempt. 

Now consider the perturbations of this rule. In cases where the rule is perturbed 
such that ball velocity is greater than 2.37 m/t and the shot aim is still greater than 
6.7m, Andhill scores twice and fails to score 7 times. In another perturbation, where 
ball velocity is again less than 2.37 m/t but now shot aim is equal to or less than 
6.7m (i.e. shots more towards the center of the goal), Andhill is now scoring 51 
times and failing to score 96 times (See figure 4). These perturbations suggest that 
improving Andhill97’s shot aiming capabilities can significantly improve perform-
ance, while trying to improve agents’ shot velocity may not result in a drastic per-
formance increase. 
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Fig. 4. Perturbation analysis showing Andhill ’97 scoring using a perturbed shooting behav-
ior 

Perturbations of success rules are also useful. There are two reasons for this. First, it 
allows ranking of conditions contributing to success. In particular, some changes to 
the rule will take a team further from success than another. For example, a team 
may succeed in scoring 95% of the time when all conditions are met. The percent-
age of success may drop to 50% if the first condition is changed and down to 5% if 
the second condition is changed. In this case, the developer may decide that even if 
the first condition is not met, shooting is still the correct course of action while do-
ing so if the second condition is not met is a bad decision. Secondly, allowing the 
user to see how the team succeeds or fails, more insight can be drawn as to why 
these conditions are important. Human oversight is important at this juncture to 
determine if the reasons ISAAC comes up with are truly the reasons the team is 
succeeding or failing.  

4 Multiple Agent Key Interaction Model 

 

4.1 Conceptual Overview of the Agent Interaction Model 

To analyze agent interactions, ISAAC relies on matching predefined (possibly user-
defined) patterns. These patterns consist of sequences of abstracted actions of differ-
ent agents that result in intermediate successes (or failures). The patterns are 
matched against the data traces to find actual instantiated interactions. ISAAC then 
classifies the patterns into those that lead to intermediate success or failures. This 
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approach shares similarities with meta-pattern based data-analysis [13], where a user 
provides ‘interesting templates’ to discover patterns in the data. 

The perturbation analysis in this model finds near misses in the case history, i.e., 
patterns similar to the successful patterns (within a given threshold) that end in fail-
ure. ISAAC identifies these near misses by perturbing the successful patterns, e.g., it 
may find interactions resulting in failure that result from a slight change in one of 
the actions specified in the pattern. Near misses help the user to scrutinize the dif-
ference between successful and unsuccessful patterns. 

For example, in an air combat simulation, suppose that ISAAC finds a common 
pattern where friendly aircraft respond to the enemy's pincer maneuver with a flank-
ing maneuver and a missile shot, causing an enemy aircraft to be shot down. The 
perturbation analysis will review traces to find instances where an identical pattern, 
with a slight variation in the missile shot (or one of the maneuvers), does not result 
in an enemy aircraft getting shot down. The user is then able to view and compare 
the successful and unsuccessful (yet similar) patterns to determine possible differ-
ences and causes for failure. 

4.2 Application of Agent Interaction Model 

The first step necessary to apply the agent interaction model to the RoboCup do-
main is the determination of the patterns to examine and a notion of success or fail-
ure of these patterns. We again use a soccer goal as a notion of success, so any pat-
tern leading to a goal is successful. The interaction patterns are made up of the play-
ers’ actions (kicks) causing the ball to be shot in to the goal.  

To further illustrate this type of analysis, we present examples from the Windmill 
Wanderer and ISIS teams from RoboCup ’98. The ISIS team scored 20 of their 35 
goals when the player kicking the ball before the shot was on the opponent team 
(described by a shooterÆopponentÆshooter pattern). This suggests a very oppor-
tunistic scoring behavior for ISIS, and viewing the cases shows that ISIS tends to 
push the ball deep into the opponent territory, and sometimes they are able to get the 
ball back for a quick shot. In contrast, the Windmill Wanderer team scored 17 goals 
from the shooter dribbling in before the shot (shooterÆshooterÆshooter) and an-
other 9 goals from a teammate controlling the ball before passing to the shooter 
(teammateÆteammateÆshooter), out of a total 37 goals. Thus, this team scores 
more often when they control the ball all the way in to the goal, a stark contrast 
from the ISIS team. 

For the Windmill Wanderer team from above, 27 near misses were found similar 
to the 17 goals from the dribbling pattern, suggesting this pattern was well defended 
or the team was making some mistakes. Windmill Wanderer placed third in the 
tournament, and the 27 near misses may have been the culprit in its third place fin-
ish. The developer can review and compare these cases in the multimedia viewer, 
and make the determination as to what changes would be most beneficial. 

94 T. Raines, M. Tambe, and S. Marsella



www.manaraa.com

p

5. Automated Game Summary: Team Model 

5.1 Conceptual Overview of Team Model 

The purpose of the global team model is to analyze why teams succeed or fail 
over the course of the entire engagement (as opposed to teams’ intermediate suc-
cess/failure at a single time point). The assumption of this model is that there can be 
many different factors that impact a team's overall success or failure. In a complex 
environment, a team may have to perform many actions well in order to be success-
ful. These actions may involve entirely different sub-teams, and very different kinds 
of events, perhaps widely separated in time, may be implicated in success or failure. 
Nevertheless, there may be patterns of these factors that, although not strongly re-
lated in the behavioral trace, do in fact correlate with whether a team succeeds in a 
domain. The global team analysis attempts to find these patterns to explain suc-
cess/failure.  

In designing this model, we had two options possible. One was to tailor the analy-
sis to specific teams. In particular, by analyzing data traces of past behaviors of a 
specific team, it would be possible to explain why this specific team tends to 
succeed or fail. This approach would be similar to the one followed in Section 3, 
which explained why agents’ critical actions tend to succeed or fail in a team-
specific manner. A second option was to analyze teams in terms of why teams suc-
ceed or fail in the domain in general, in a non-team-specific manner (which does not 
require data traces from the particular team being analyzed, but from other teams in 
this domain). Despite the advantages of option 1 (team-specific explanations), this 
option was rejected due to the lack of large amounts of team-specific engagement 
data, and option 2 was used. In particular, unlike the individual agent model as in 
Section 3, which can obtain lots of key event data points even from a single en-
gagement, a single engagement is just one data-point for the global team model. For 
instance, even a single RoboCup game provides large numbers of shots on goal to 
begin learning the individual agent model; yet, this single game is not enough to 
begin learning a global team model.  

Exercising option 2 above implies acquiring the team model by examining the 
behavior traces of many different teams in a domain. Here again we rely on the 
domain expert to provide the set of overall features that lead to success or failure 
over an entire engagement. Again the C5.0 induction algorithm is used on these 
features, classifying the engagement as a success or failure for each team, and learn-
ing rules that capture the dominant features that lead to success (or failure). 

A different approach is taken for using the rules learned via C5.0. When analyz-
ing a specific engagement, we mine the features from the engagement and deter-
mine which learned rule the current game most closely matches. This rule then be-
comes the reasoning for why each team succeeded or failed. ISAAC uses the rule as 
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the basis for its natural language summary generation to ease human understanding 
of the engagement as a whole.  

The learned rules are critical in ISAAC’s natural language summaries. Indeed, we 
initially attempted to provide a natural language summary without using such 
learned rules. In this case, we were only able to present all of the game statistics 
glossed with natural language phrases, with no ordering or reasoning behind them. 
This initial approach failed because all of the summaries were long, uniform, and 
they failed to emphasize the relevant aspects of the game. 

Instead, with the current method, ISAAC generates a natural language summary 
of each encounter employing specific rules as the basis for content selection and 
sentence planning in accordance with Reiter’s architecture of natural language gen-
eration [11]. Reiter’s proposal of an emerging consensus architecture is widely ac-
cepted in the NL community. Reiter proposed that natural language generation sys-
tems use modules for content determination, sentence planning, and surface genera-
tion. ISAAC’s NL generation can be easily explained in terms of these modules. 

Starting with the raw data of the game, ISAAC mines the features it needs, and 
matches it to a pre-existing rule. This rule is thus used in content determination for 
the natural language generation, since the rule contains that which ISAAC believes 
pertinent to the result of the game. Furthermore, the conditions of each rule also 
have some ordering constraints, since the rules come from a decision tree learning 
algorithm, and we use this to form our sentence planning. We consider branches 
closer to the root of the tree to have more weight than lower branches, and as such 
should be stated first. Each fact is associated with a single sentence, and ordered 
accordingly. From these, ISAAC creates a text template of the summary for per-
forming the surface generation. This template is augmented with specific data from 
the game, and links to examples of the features found earlier to be shown in the 
multimedia viewer. 

5.2 Application of Team Model to RoboCup 

To learn rules of why teams succeeded or failed in previous engagements, ISAAC reviews 
statistics of previous games. The domain expert must provide the domain knowledge of what 
statistics to collect, such as possession time and number of times called offside. ISAAC uses 
this information (10 features in all) to create a base of rules for use in analysis of future 
games. 

ISAAC learns and uses seven classes of rules covering the concepts of big win (a 
victory by 5 goals or more), moderate win (a victory of 2-4 goals difference), close 
win (1 goal victory), tie, close loss (by 1 goal), moderate loss (2-4 goals), and big 
loss (5 or more goal loss). The motivation for such subdivision is that factors leading 
to a big win (e.g., causing a team to outscore the opponent by 10 goals) would ap-
pear to be different from ones leading to a close win (e.g., causing a one goal vic-
tory) and should be learned about separately. While this fine subdivision thus has 
some advantages, it also has a disadvantage, particularly when the outcome of the 
game is at the border of two of the concepts above. For instance a 2-0 game (moder-

96 T. Raines, M. Tambe, and S. Marsella



www.manaraa.com

p

ate win) could very well have been a 1-0 game (close win). Thus, we anticipate that 
the learned rules may not be very precise, and indeed as discussed below, we allow 
for a “close match” in rule usage. 

To use these rules, ISAAC first matches the statistics of a new (yet to be ana-
lyzed) game with the learned rules. If there is a successful match, ISAAC checks the 
score of the game against that predicted by the matching rule before writing the 
summary. If the match is exact or close (e.g. the actual game statistic matched a 
close win rule, although the game had an outcome of 2-0), the template is used as is. 
If there are multiple matches, the closest matching rule is used. However, if no 
match is close to the actual score, ISAAC still uses the rule, but changes the tem-
plate to reflect surprise that the score did not more closely match the rule. 

The matched rule discussed above provides the content selection, so ISAAC now 
has a template to shape the game summary. The template orders components of the 
rule according to their depth in the original decision tree, in accordance with our 
sentence planning technique. ISAAC then fills in the template, mining the features 
of this particular game to create a summary based on the rule. An example rule is 
shown in Figure 5. 

Ball in Opponent Half > 69% 
Average Distance of Opponent Defender <= 15 m 
Bypass Opponent Last Defender > 0 
Possession time > 52% 
Distance from Sideline of Opponent Kicks > 19 m 
Æ class Win Big 

 

Fig. 5. Example team rule for big wins. 

To see how this rule is used in creating a natural language summary, we examine 
one summary generated using this rule as a template. In this case, ISAAC is arguing 
the reasons for which 11Monkeys was able to defeat the HAARLEM team: 

HAARLEM Offense Collapses in Stunning Defeat at the hands of 11Monkeys! 1 

11monkeys displayed their offensive and defensive prowess, shutting out their oppo-
nents 7-0. 11monkeys pressed the attack very hard against the HAARLEM defense, 
keeping the ball in their half of the field for 84% of the game and allowing ample scoring 
opportunities. HAARLEM pulled their defenders back to stop the onslaught, but to no 
avail. To that effect, 11monkeys was able to get past HAARLEM's last defender, creating 
2 situations where only the goalie was left to defend the net. 11monkeys also handled the 
ball better, keeping control of the ball for 86% of the game. HAARLEM had a tendency 
to keep the ball towards the center of the field as well, which may have helped lead them 
to ruin given the ferocity of the 11monkeys attack. 

The underlined sentences above correspond directly to the rule, with some aug-
mentation by actual statistics from the game. By using the rule for content selection 

                                                        
11 The title and first sentence of our summary does not come from the model, but is based solely on the 

score of the game. We used examples from (human soccer) World Cup headlines and let ISAAC ran-
domly choose among these in categories of tie, close win, moderate win, and big win. 
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and sentence planning, ISAAC is able to present the user the reasons for the out-
come of the engagement, and avoid presenting irrelevant data consisting of irrele-
vant features. 

6. Evaluation and Results 

To evaluate ISAAC, we evaluate each of its models in isolation and then the effec-
tiveness of the integrated ISAAC system. We begin by evaluating the individual 
agent model. 

A key measure of ISAAC’s individual agent model is the effectiveness of the 
analysis, specifically the capability to discover novel patterns. Section 3.3 high-
lighted a rule learned about the Andhill97 team concerning their aiming behavior. 
This rule was one instance of ISAAC’s surprising revelation to the human observers; 
in this case, the surprise was that Andhill97, the 2nd place winner of ’97, had so 
many goal-shot failures, and that poor aim was at least a factor. Not only was this 
surprising to other observers, this was also surprising to the developer of the team, 
Tomohito Andou. After hearing of this result, and witnessing it through ISAAC’s 
multimedia interface, he told us that he “was surprised that Andhill’s goal shooting 
behavior was so poor…” and “… this result would help improve Andhill team in the 
future.” [Andou, personal communication] 

Another interesting result from the individual agent analysis model comes from 
the number of rules governing shooting behavior and defensive prowess. Figure 6 
shows that in each year, the number of rules for defense decreased for the top 4 
teams, perhaps indicating more refined defensive structures as the teams progress. 
Also, the number of rules necessary to capture the behavior of a team’s offense is 
consistently more than that necessary for defense, possibly due to the fact that no 
single offensive rule could be effective against all opponent defenses. The key here 
is that such global analysis of team behaviors is now within reach with team analyst 
tools such as ISAAC. 
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Fig. 6. Number of rules by year. 

Another point of evaluation is understanding how well the model captures the 
shooting behaviors. To this end, ISAAC models were applied to predict game scores 
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at RoboCup ’99, a rather difficult problem even for humans. ISAAC used rules 
describing a team’s defense and matched them with the raw averaged data of the 
shots taken by the other team to produce an estimate of how many goals would be 
scored against that team in the upcoming game. Performing this analysis for both 

teams produced a predictive score for the outcome of the game2. This prediction 
obviously ignores many critical factors, including the fact that some early games 
were unrepresentative and that teams were changed by hand during the competition. 
Yet in practice, ISAAC’s predictive accuracy was 70% with respect to wins and 
losses, indicating it had managed to capture the teams’ defenses quite well in its 
model. 

To evaluate the game summary model, a small survey was distributed to twenty 
of the participants at the RoboCup ’99 tournament, who were witnessing game 
summaries just after watching the games. Figure 7 shows the breakdown of the sur-
vey, showing that 75% of the participants thought the summaries were very good. 

Another measure of game summaries is a comparison of number of features used 
in the current summaries versus those generated earlier that did not use ISAAC’s 
approach. On average, ISAAC uses only about 4 features from its set of 10 statistics 
in the summaries, resulting in a 60% reduction from a natural language generator 
not based on ISAAC’s machine learning based analysis. Thus, ISAAC’s approach 
was highly selective in terms of content. Indeed as mentioned earlier, summaries 
generated without ISAAC were much longer, lacked variety, and failed to empha-
size the key aspects of the game. 
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Fig. 7. Automated game summary survey. 

 

Yet another measure of ISAAC’s use of the team model for natural language gen-
eration is available by viewing the error rates from the machine learning algorithm 
used. These error rates tell us how accurately ISAAC’s learned rules reflected the 
game. On the original set of games for which ISAAC’s rules were learned, 87% of 

                                                        
2 No prediction was done for the preliminary rounds as ISAAC gathered data on the teams. Prediction was 

performed only on the double-elimination tournament. 

99Automated Assistants to Aid Humans



www.manaraa.com

p

the games were classified correctly (70% exact match, 17% close match), resulting 
in an error rate of 13%. Our test set of (unseen) RoboCup ’99 games produced 72% 
classified correctly (39% exact match, 33% close match), for an error rate of 28%. If 
an error does occur, ISAAC still produces a summary, but it reflects its surprise at 
the outcome, thus explaining the error. The high error rate on our training data could 
indicate that a better feature set is possible or that the data may be noisy. 

Evaluating ISAAC as an integrated system is more difficult. However, some ob-
servations can still be made. ISAAC was awarded the ‘Scientific Challenge Award’ 
by the RoboCup committee. ISAAC was used extensively at the RoboCup ’99 tour-
nament in Stockholm, and received a great deal of praise and other feedback. De-
velopers used ISAAC to analyze opponent teams after the early round matches to 
get a feel for the skill of upcoming opponents. Spectators and developers alike were 
able to view ISAAC’s game summaries just minutes after a game, and there was 
also a great deal of speculation concerning ISAAC’s predictions on future games. 

7. Related Work 

The research presented in this paper concerns areas of multi-agent team analysis and 
comprehensible presentation techniques. We compare research in each of these 
areas. 

André et al have developed an automatic commentator system for RoboCup 
games, called ROCCO, to generate TV-style live reports for matches of the simula-
tor league [1]. ROCCO attempts to recognize events occurring in the domain in real 
time, and generates corresponding speech output. While both ROCCO and ISAAC 
use multimedia presentations, ROCCO attempts to analyze events quickly to pro-
duce live reports. However, the ROCCO analysis does not use multiple models of 
behavior for multi-perspective analysis as in ISAAC, and its analysis is not designed 
to help users and developers understand teams’ abilities. ROCCO also has no capa-
bility to perform perturbation analysis. 

Bhandari et al’s Advanced Scout uses data mining techniques on NBA basketball 
games to help coaches find interesting patterns in their players and opponents’ be-
haviors [3]. Advanced scout also enables coaches to review the relevant footage of 
the games. Advanced Scout is able to capture statistical anomalies of which coaches 
can take advantage. However, Advanced Scout does not have some of ISAAC’s 
extensions including the use of multiple models to analyze different aspects of 
teams, perturbations to make recommendations, and game summaries for an analysis 
of overall team performance. 

Ndumu et al’s system for visualization and debugging multi-agent systems com-
prises a suite of tools, with each tool providing a different perspective of the appli-
cation being visualized [9]. However, the tools do not perform any in-depth analysis 
on the multi-agent system, and the system has no capability for perturbing this 
analysis. ISAAC also uses a visualization component, but only as an aid to under-
standing its analysis. 
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Johnson’s Debrief system enables agents to explain and justify their actions [7]. 
This work focuses on agents’ understanding the rationales for the decisions they 
make and being able to recall the situation. Debrief also has a capability for agent 
experimentation to determine what alternatives might have been chosen had the 
situation been slightly different. ISAAC performs something similar in its perturba-
tion analysis; however, ISAAC focuses on an entire team, not just an individual, 
necessarily. 

Stone and Veloso have also used a decision tree to control some aspects of agents 
throughout an entire game, also using RoboCup as their domain [14]. However, this 
work pertains to execution of agents rather than analysis of agent teams, and since it 
is internal to the agent, their work has no means of presentation. 

8. Conclusion 

Multi-agent teamwork is a critical capability in a large number of applications in-
cluding training, education, entertainment, design, and robotics. The complex inter-
actions of agents in a team with their teammates as well as with other agents make it 
extremely difficult for human developers to understand and analyze agent-team 
behavior. It is thus increasingly critical to build automated assistants to aid human 
developers in analyzing agent team behaviors. However, the problem of automated 
team analysts is largely unaddressed in previous work. 

We have taken a step towards these automated analysts by building an agent 
called ISAAC for post-hoc, off-line agent-team analysis. ISAAC uses two key novel 
ideas in its analysis. First, ISAAC uses multiple models of team behavior to analyze 
different granularities of agent actions, using inductive learning techniques, enabling 
the analysis of differing aspects of team behaviors. Second, ISAAC supports pertur-
bations of models, enabling users to engage in “what-if” reasoning about the agents 
and providing suggestions to agents that are already be within the agent skill set. 
Additionally, ISAAC focuses on presentation to the user, combining multiple pres-
entation techniques to aid humans in understanding the analysis, where presentation 
techniques are tailored to the model at hand. 

While ISAAC is intended for application in a variety of agent team domains, 
ISAAC has currently been applied in the context of the RoboCup soccer simulation. 
It is available on the web for remote use. ISAAC has found surprising results from 
top teams of previous tournaments and was used extensively at the RoboCup ’99 
tournament. ISAAC was awarded the ‘Scientific Challenge Award’ at RoboCup ’99 
where its analysis and natural language game summaries drew a crowd throughout 
the tournament. 
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Abstract. This paper describes analysis results of collaboration among

players of RoboCup '98 simulator teams and on-line adversarial model

analysis using LogMonitor. LogMonitor is a tool for analyzing games

from log�les and displaying statistical data such as counts of soccer plays.

Evaluation of collaboration in a multi-agent system is closely related with

applied domains, which make it di�cult to distinguish agent's universal

ability from task oriented programs. In viewing simulation soccer games,

play agents' skills are evaluated from the human soccer standards. This

situation is assumed to be similar to collaboration among teammates,

that is evaluated from human standards.

Adding to the basic actions of the player such as shooting, kicking, etc.,

a 1-2 pass among teammate agents is used to evaluate teams in collabo-

ration. LogMonitor data shows that 1-2 pass may be useful to evaluate

collaboration. Experiments show that adding adversarial information is

very useful to make a team more robust.

1 Introduction

Sporting games are examples of a multi-agent system. In sports, team play and
team tactics as well as an individual player's abilities are important. Reviewing
scorebooks gives us information about which player scored a goal, which made a
shot .etc. They are very useful for coaches to rank the players and to plan strate-
gies for upcoming games, even though similar plays are evaluated di�erently in
di�erent situations. Various kinds of computer-aided scoring or analyzing meth-
ods have been developed to use in human games[SoftRB].

The RoboCup simulator game is a multi-agent system which is played be-
tween player agents through network communication [Kitano98]. Teams pro-
grammed based on various paradigms participate in RoboCup, and the games
are recorded as log�les. RoboCup provides test beds for evaluating agent sys-
tems. Using log�les, Takahashi et al. reviewed RoboCup97 teams [Taka98], Letia
et al. used log�les to extract player's action model [Ial98], and Tanaka et al. made
clear changes of games from RoboCup97 to RoboCup98 [Tanaka].

It is important to evaluate the multi-agent system not only from the game
results but also from collaboration among agents. In RoboCup '98, an attempt
was made to evaluate soccer simulation games from teamwork, not from scores.
This paper describes analysis of collaborative plays using log�les of the evalua-
tion league at RoboCup 98 [Cup98]. The collaboration among agents is discussed

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 103−113, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000

LogMonitor: From Player’s Action Analysis to
Collaboration Analysis and Advice on Formation
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from scores and statistical values such as numbers of kicks , passes, or 1-2 pass,
etc. Next, the player agent's autonomy is discussed by comparing CMUnited
98, the champion team of RoboCup 98 with our team, Kasugabito-II. Experi-
mental games were presented, and the result showed a team composed of less
autonomous agents played weal by adding information on opponent teams.

2 LogMonitor

LogMonitor 1 is a tool for analayzing RoboCup simulation games from log�les
where the positions of the ball and all players of both teams at every simulation
step are written [Log]. The data in log�les are equivalent to images displayed on
the monitor.

2.1 Actions Analysis by LogMonitor

We enjoy the game by seeing CRT images and may also record the game by
taking note of which agent passed the ball, the quality of the pass, etc. For
recording the games by a computer in the similar ways to a human scorer, it is
necessary to recognize the player's actions such as passing, kicking .etc and the
ball movement from time sequence data in log�les.

The followings are methods used to recognize actions:

kick: The ball is kicked when the following conditions are satis�ed.
1. the ball direction is changed or the change of the ball's speed is greater

than the decreasing rate adapted in the soccer server at consecutive
fti; ti+1g and fti+1; ti+2g.

2. at least one player is within a kickable area at ti+1.
When there are more players within a kickable area, the nearest player is
assumed to kick the ball.

pass: Two consecutive kicks are assumed to be a pass, when two players of the
same team kicked the ball.

interception: Two consecutive kicks are assumed to be an interception, when
an opposing team player kicked the second time.

1-2 pass: A player kicks the ball to a teammate, runs behind an opponent
player, and receives the ball that the teammate returned.

2.2 Position Analysis by LogMonitor

Human player's abilities are measured by their running speed, run length, etc.
This corresponds to the allocation of stamina, and the range of moves during a
game. The positioning of players is important in teamwork. The following data
on positioning are displayed:

trajectory: the plot of a player's position in time sequence,

1 LogMonitor is gained from our Home Page.
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distance: the sum of distance which players moved when play mode is play on,

range: the area that a player moves during a game, by averages of the positions
and their horizontal/vertical variance.

3 Statistical Analysis of Evaluation Leagues at RoboCup

'98

The details of evaluation and log�les of games are available at Dr. Kaminka's
homepage [Gal98]. The following are short explanations of evaluation.

{ All participating teams played four half games against AT Humbolt97, the
champion team of RoboCup 97.

{ Four half games are referred to as phase A, B, C and D.

phase A : the game is played under normal conditions.

phase B : A manager of the evaluation assigns one player other than the
goalkeeper randomly. The team disabled the assigned player and compete
the game with ten players.

phase C : A member of AT Humbolt97 assigned another player who he
thought was the most valuable player other than the goalie. The team
omitted two assigned players and competed the game with nine players.

phase D : The team also omitted the goalie and competed the game with
eight players.

3.1 Discussion from Scoring Points

Table 1 shows the scores of teams that participated in the evaluation league and
the statistics of AT Humbolt97 plays. The �rst columns are the names of the
teams that participated in the evaluation league. The number under the team
name is the rank in the RoboCup '98 tournament league. The second column is
the phase and scores. The left score is the points the team gained and the right
score is AT Humbolt97's points.

Most teams won the game at phase A, so it can be said that the level of
RoboCup '98 is higher than that of RoboCup '97 2 . The game conditions become
harder for teams as the phase changes to B, C and D. The teams are said to be
robust, when their scores do not vary as the phases change. From the table,

{ The higher ranked teams, such as CMUnited, won the game in disadvan-
tageous phases, while lower ranked teams, such as Kasugabito-II which
were eliminated from the tournament, gained less points in disadvantageous
phases than the normal phase and lost the game.

2 At RoboCup '99, evaluation league were held with adding new half games. Games

with AT Humbolt97 shows that the level of RoboCup '99 is higher than that of

RoboCup '97 and '98.
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{ Some teams in the middle rank are said to be robust from the di�erence in

points scored. For example, Isis98 won the game at phase C with a better

score than phase A. CAT Finland lost the game at phase A, but won at

phase B.

We don't think there is any relation between tournament ranks and robustness
in play.

Table 1. Statistic data in evaluation games

phase AT-Humbolt97 1-2 pass

team Score K P I D AT

CMUnited-98 A 7 - 0 53 7 23 2654 2(2) 0(0)

(1) B 6 - 0 51 6 30 2395 5(2) 0(0)

C 3 - 0 55 11 30 2327 4(0) 0(0)

D 3 - 0 37 8 20 2006 0(0) 0(0)

AT Humbolt-98 A 6 - 0 76 11 36 2622 2(0) 0(0)

(2) B 9 - 0 87 11 46 3545 2(0) 0(0)

C 3 - 0 76 17 33 2462 1(0) 1(0)

D 5 - 0 80 15 43 2789 0(0) 0(0)

WindmillWanders A 5 - 0 66 10 42 2481 1(0) 0(0)

(3) B 7 - 1 58 9 33 2884 0(0) 0(0)

C 3 - 0 64 13 29 2629 0(0) 0(0)

D 2 - 1 55 10 29 2199 1(0) 0(0)

Isis 98 A 1 - 0 79 30 36 1976 1(0) 0(0)

(4) B 1 - 0 60 13 34 2771 2(0) 0(0)

C 2 - 0 62 17 32 1857 1(0) 1(0)

D 1 - 2 72 24 35 2378 0(0) 3(0)

Rolling Brains A 5 - 0 82 13 53 2737 0(0) 0(0)

(5-6) B 2 - 0 81 21 42 2624 1(0) 0(0)

C 1 - 0 60 14 33 2163 3(0) 0(0)

D 0 - 0 70 16 44 1994 0(0) 0(0)

Andhill A 6 - 0 101 33 53 2931 1(1) 2(0)

(5-6) B 5 - 1 83 21 44 2568 1(1) 0(0)

C 3 - 1 88 25 48 2469 1(0) 2(0)

D 5 - 0 91 26 48 2551 0(0) 0(0)

CAT Finland A 0 - 1 62 18 27 1659 0(0) 1(0)

(7-8) B 1 - 0 69 17 39 1669 0(0) 0(0)

C 1 - 1 78 24 36 2151 1(0) 0(0)

continued on next page
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team Score K P I D AT

D 1 - 3 84 30 35 2288 1(0) 3(0)

Gemini A 8 - 0 121 41 58 3241 0(0) 1(0)

(7-8) B 5 - 1 104 37 50 2899 0(0) 2(0)

C 1 - 0 119 44 52 2177 1(0) 3(0)

D 8 - 2 107 41 45 3431 0(0) 0(0)

Aiacs A 7 - 0 99 29 49 3008 0(0) 2(0)

(9-12) B 0 - 0 61 17 29 2091 1(0) 0(0)

C 6 - 1 82 24 42 2246 0(0) 1(0)

D 4 - 4 72 24 37 2453 0(0) 0(0)

PasoTeam A 0 - 1 68 11 44 1987 1(0) 1(0)

(9-12) B 0 - 3 58 12 35 2175 0(0) 0(0)

C 0 - 4 51 5 33 1996 2(0) 0(0)

D 0 - 5 51 10 31 2164 0(0) 0(0)

AT Humbolt-97 A 1 - 1 77 21 45 2290 1(0) 0(0)

(9-12) B 1 - 1 80 21 43 2244 0(0) 1(0)

C 1 - 4 81 21 49 2349 0(0) 0(0)

D 0 - 2 80 36 34 2360 0(0) 2(1)

DarwinUnited A 0 - 3 64 20 32 2289 2(0) 0(0)

(-) B 0 - 6 57 16 30 2395 1(0) 1(0)

C 0 - 3 71 23 34 2400 2(0) 2(0)

D 0 - 1 54 16 31 1978 1(0) 0(0)

Kasugabito II A 5 - 0 109 39 53 2807 1(0) 1(0)

(-) B 2 - 0 78 29 37 2226 0(0) 0(0)

C 0 - 2 81 34 35 2186 0(0) 2(0)

D 0 - 2 81 29 38 2358 1(0) 1(0)

K=kick P=pass I=interception D=distance
AT=AT Humbolt-97
rank(-)= eliminated from the tournament.

3.2 Discussion from AT Humbolt97's Side

It is di�cult to evaluate teams by their game scores. AT Humbolt97 was used to
normalize various team's ability. The second column is the numbers of kicks(K),
passes(P), interception(I) and distance(D) of AT Humbolt97's players. The val-
ues in Table 1 are calculated according to the methods in section 2.1.

Fig. 1 shows the changes of actions from A to B, from A to C, and from A
to D. The vertical axis shows the ratio of data change from phase A and the
horizontal axis is the team.

The players of the teams with less collaboration are thought to be weak
in covering a disabled player, so we expect that players of AT Humbolt97 can
pass, kick and move more easily as phases changed from A to D. Against our
expectation, the most vertical values of point in Fig. 1 are less than 1.0. This
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Fig. 1. Changes in actions at Phases.

means AT Humbolt97 didn't play and move more than in phase A, and doesn't
support our expectations. And the changes from phase A to B, A to C, and A to
D don't show the same tendencies. For example, in the games vs. CMUnited, the
number of passes of AT Humbolt97 remained equal at phase A and B, increased
50% at phase C, and increased a little more at phase D. On the other hand, at
the games vs. Kasugabito-II, they decreased in all phases following A.
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Fig. 2. 1-2 pass between CMUnited players.

3.3 Discussion from 1-2 pass as collaboration

A 1-2 pass is a collaborative actions. Fig. 2 shows a snapshot of a 1-2 pass shown
at phase B of CMUnited. The white line indicates trajectories of a player who
kicked the ball at t1 and received the return pass at t3. The black line shows the
passes. The displayed players are AT Humbolt97 players at t1.

The last column of Table 1 is the number of the 1-2 pass. The left number
is the number of 1-2 passes of teams evaluated and right number is that of
AT Humbolt97's 1-2 passes. The numbers in parentheses is the number of 1-2
passes which are connected to goals.

CMUnited players perform 1-2 passes the most at evaluations, and most of
their passes scored points. AT Humbolt97 didn't perform any 1-2 pass in games
with high ranked teams, but they did in games with lower ranked teams. These
�ndings seem to be similar to human teams that can perform well against weak
teams, but perform poorly against strong teams.

3.4 Discussion of Autonomous Movement

Without communication among agents, an agent which moves by itself according
to changing situations can be said to be autonomous. Fig. 3 shows the trajectories
of a forward player of CMUnited 98 (left) and Kasugabito-II (right).

The �gures are trajectories of the same player at phase A, B, C and D from
the top. The numbers under the �gure are the number of kick, distance, the
variance of horizontal movement, and the variance of vertical movement.

The CMUnited player moved twice as much as the Kasugabito-II player and
the range of his movement was wider. CMUnited 98 and Kasugabito-II played
at preliminary games, and the score was 5-0. From the score, our Kasugabito-II
played a good game. However, the CMUnited player's attack in front of the goal
was superior according to the �gures.

109LogMonitor



www.manaraa.com

CM United player

Phase A(13, 830, 15.7, 15.8)

Phase B(8, 702, 18.1, 18.5)

Phase C(4, 718, 14.6, 13.2)

Phase D(11, 495, 7.9, 7.9)

Kasugabito-II player

Phase B(10, 376, 3.8, 2.3)

Phase A(13, 348, 4.5, 2.6)

Phase C(10, 308, 2.8, 3.0)

Phase D(12, 347, 3.3, 2.8)

Fig. 3. Trajectories of Players.

4 Robustness and Opponent's Information

Agent programs are said to be robust when it can adapt environmental changes

without hearing of the change from others. When knowing of the changes, the

agent programs may modify their parameters to adapt to the changes.

4.1 Experiment for Adding Opponent's Information

At evaluation leagues, participating teams could not change their programs or

parameters before the games. At regular games, the participants can modify their
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Fig. 4. Kasugabito players' initial position.

programs or tune parameters for the next game. This adjustment is equivalent
to adding opponent's information gained from the previous games. We test the
e�ectiveness of the adjustment before a game by comparing the di�erence of
the score's between two games. One game is done with parameters modi�ed by
human, and the other games with no modi�cations.

experiment 1 The evaluation games between AT-Humbolt97 and Kasugabito-
II were played again in our computer environment.

experiment 2 At the beginning of phase B, C and D, the initial positions of
Kasugabito-II players were modi�ed by one of our students.

Fig. 4 shows the initial positions of Kasugabito-II players in Phase A for expla-
nation.

phase B disabled player = No.8(Defensive MF).
The No.7 player in the counter position of No.8 was moved to the center, for
the purpose of defending the right and left side.

phase C disabled player = No.2 (CF).
Another forward No.3 was moved to the center, and defense positions of
three attractive MDs (No.4, 5, 6) were changed 5m forward.

phase D disabled player = No.1 (goalie)
Defense positions of the center DF (No.10) was moved closer to the penalty
area.

4.2 Discussion

Table 2 shows the result of the experiment games. The running environment is
di�erent from that of RoboCup98, so the values of the score are di�erent from the
values in Table 1. However, the scores in experiment 1 show a similar tendency
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as that shown in the evaluation games. Kasugabito-II won the game at phase

A. AT-Humbolt97 became superior to Kasugabito-II as phase changed from A

to D, and AT-Humbolt97 won from Phase C on. In experiment 2, Kasugabito-II

continued to win the game till phase D. Judging from the scores, Kasugabito

seems to have become more robust than in experiment 1.

The second column of Table 1 shows AT-Humbolt97 players' data and the

last column Kasugabito-IIs' data. At phase B and C of experiment 2, the number

of kicks and passes are more, and the distance is longer than in experiment 1 for

both teams. At present, we cannot account for the changes in data. However,

the experiments support the claim that adding the opponent's information made

Kasugabito-II more robust even though the player agents were the same. This

indicates that making use of opponent information as well as the agent's ability

itself is important to make teams more robust.

Table 2. Results of experiments (AT-Humboldt side)

AT Humbolt Kasugabito-II

Score K P I D K P I D

experiment 1

A 3 - 0 106 41 53 2553 118 27 55 2706
B 2 - 1 75 25 37 2042 72 16 34 1869
C 1 - 2 89 29 52 2265 81 17 49 2287
D 0 - 3 99 42 40 2303 81 18 34 1974

experiment 2

B 3 - 1 103 41 44 2333 86 20 41 2311
C 3 - 0 111 42 54 2509 103 26 51 2264
D 2 - 1 88 33 43 2249 91 20 42 1977

K=kick P=pass I=interception D=distance

5 Summary

This paper presents analysis of collaborative actions in soccer simulation games.

While there are many papers on how to implement multi-agent systems, there are

few on evaluation of multi-agent systems. One of the reasons is that evaluation

standards depend on the applied �eld. In soccer simulation games, we can use

many of the standards used in human soccer.

In analyzing the log�les of evaluation games at RoboCup'98, it is clear that:

{ There is no direct relation with scoring to collaboration by analyzing the

data of basic soccer actions, such as kicking, passing, etc.

{ The 1-2 pass is assumed to be collaborative actions among agents. The num-

ber of 1-2 passes seems to be related to the ranking of teams in the tourna-

ment.
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{ The di�erence in their autonomy between CMUnited players and Kasugabito-
II players seems to be bigger than the di�erence of the scores of their game.

{ Adjusting players' initial position made Kasugabito-II as robust as CMU-
nited from the standpoint of scoring.

Through these analysis results, we think it is necessary to give player agents
advice on games as human coaches do. We have been developing an on-line
coach agent based LogMonitor that analyzes the game on-line [kIII].

We appreciate the RoboCup98 committee who planned the evaluation league,
AT-Humbolt team who prepared AT-Humbolt 97, and Gal Kaminka who edited
the log�les.
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Abstract. This paper uses statistical analysis to demonstrate the progress

to date in answering the RoboCup Synthetic Agent Challenge. We ana-

lyze the complete set of log data produced by the simulator tournaments

of 1997 and 1998, applying techniques such as principal component anal-

ysis to identify precisely what has improved, and what requires further

work. Since the code that implements our analysis produces its results

in real-time, we propose releasing a proxy server that makes statistical

analysis available to RoboCup developers. We believe such a server has

a crucial role to play in facilitating and evaluating research on the three

speci�c challenge problems of opponent modeling, teamwork and learn-

ing. We also suggest that | if RoboCup is to make the most of the

e�orts of participating researchers | the time is ripe for the institution

of a modular team based on a common model.

1 Introduction

In the year between the �rst and second Robotic Soccer World Cups (RoboCup-
97 and RoboCup-98), the level of play of the teams has unquestionably improved.
This can be seen by the way that the best teams from 1998 beat the best teams
from 1997. However, this kind of high-level observation does not answer the ques-
tion of why the teams perform better. Our principal contribution in this paper
is to qualitatively demonstrate the improvement in RoboCup soccer abilities by
showing how a team's play can be analyzed with statistics. We analyze the entire
set of log data produced by the 1997 and 1998 simulator tournaments in terms
of 32 skill-based features.

The RoboCup Synthetic Agent Challenge [Kitano et al.1997] de�nes three
separate challenges of opponent modeling, teamwork and learning. Our research
in particular demonstrates that signi�cant progress has been made towards meet-
ing the teamwork challenge. For instance, our analysis of player correlations
shows that forwards (and defenders) exhibit far greater teamwork in 1998. Fur-
ther, our analysis techniques are also important for directing future research on
the Synthetic Agent challenges. Most obviously, by highlighting both the aspects
of play that have improved and also those that have not, our statistics enable

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 114−127, 2000.
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researchers to identify the most promising directions for further investigation.
More importantly, however, the code that implements our analysis techniques
produces its results in real-time, as games are running. We therefore propose
o�ering this code to the RoboCup community in the form of a proxy server.
We describe how such a proxy server can directly facilitate research on all three
challenge problems, as well as on systems such as automated commentators and
post-game analyzers. Further, we note that this kind of server has an obvious role
in conducting the evaluation procedures set out in the challenge paper itself. This
discussion leads us to suggest a new approach to RoboCup that would enable
more e�ective evaluation and combination of the e�orts of RoboCup researchers:
the creation of a modular team based on a common model.

As far as we are aware, there have been few previous attempts to address
the statistical analysis of soccer in an academic context. [Tanaka-Ishii et al.1998]
have de�ned notions such as pass bigrams and suggested the use of Voronoi dia-
grams to measure the areas of inuence of players. Also, [Takahashi et al.1998]
and [Matsubara et al.1998] have carried out limited log analyses of the 1997
RoboCup and the 1998 Japan Open, respectively. To date, though, the only
signi�cant progress in the statistical analysis of soccer has been the coach-
ing tools and analysis software produced by commercial companies (e.g., see
[SoftSport1998]). National teams are assumed to keep databases of statistics,
but the details of such resources are a closely guarded secret.

2 The Data

Our analysis is based on all the log �les of the �rst two RoboCups (55 games
from 1997 and 81 games from 1998), and focuses on the di�erences between the
winning and losing teams. Since team designers are allowed to manually change
their team settings and code at half-time, we collect separately the statistics for
the winners and losers of each half-game (excluding the 36 half-games that were
drawn). The size of the data �les for the 236 half-games that produced a winner
is around 245Mbyte.

In interpreting this data, it is important to bear in mind that the simulator
league also changed between the RoboCups of 1997 and 1998. Most notably:
{ A goalkeeper (with a catch ability) was introduced.
{ The stamina model was changed to make long-term resource management

more important.
{ An o�-side rule was introduced.
{ A limit was imposed on the maximum ball speed.
It is natural that client team programs change when the rules change. This

is reected in the statistics we present in the following section.

3 The Statistics

We analyzed the log �les in terms of a set of thirty-two features that describe
di�erent aspects of a soccer game. These features are shown in Figure 1, along
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Fig. 1. The 32 evaluation features (plus `score') that we used to analyze the RoboCup
tournaments. The scales show the range of the values taken by these features for one
team in one half game in 1997 (upper scale) and in 1998 (lower scale). The vertical
bars denote the overall averages, and the � and � marks denote the averages for the
winning and losing teams. Circled numbers refer to the �gure numbers of the graphs
in the text.

with some simple scales giving information on the values they took in 1997
(upper line) and in 1998 (lower line). (Note that X values are measured along
the longer side of the �eld and Y values along the shorter side, with zero in
both cases being the center spot.) Broadly, the features fall into three categories
that we will discuss in detail below: 8 that represent general aspects of a team's
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formation (x3.1), 8 that represent formation in terms of the speci�c notion of
player correlations (x3.2), and 16 that deal with passing and shooting skills
(x3.3).

We illustrate our discussion with 11 graphs that detail the frequency dis-
tribution of selected features. In each of these graphs, the x-axis is discretized
into 30 equal and contiguous intervals that span the observed maximum and
minimum values of the feature in question. Considering the losers and winners
in 1997 and 1998 separately, the percentage of games for which the value of the
feature falls within each interval is then counted, and a smoothed curve �tted
through the 30 points.

We concentrate throughout this section on highlighting the overall changes
in playing skills from 1997 to 1998. We should point out, though, that the real-
time nature of our code (discussed in x4) also supports the investigation of other
aspects, such as the way that individual statistics change dynamically as a game
develops.

3.1 Formation

Figure 2 shows the average of all the players' X-positions. Players in the oppo-
sition's half have a positive X-value, so the larger the values in the �gure, the
more attacking the formation. Both in 1997 and 1998, the winners were more
attacking than the losers (the curves are further to the right).
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Fig. 2. The average X-location of all players (m)

In real soccer, the entire formation of a team follows the movement of the ball
across the �eld. We de�ne the compactness of a team as the X-distance between
its front-most player and its rear-most player (excluding the goalkeeper). Fig-
ure 3 shows the distribution of average compactness in RoboCup, demonstrating
clearly that teams in 1998 were more compact than in 1997. This improvement
is probably a result of the introduction of the o�-side rule. The presence of o�-
sides allows a team to protect itself against counter-attack if they move up-�eld

117A Statistical Perspective on the RoboCup Simulator League



www.manaraa.com

as a unit with the ball. This becomes an aspect of the game that teams cannot

a�ord to neglect.
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Fig. 3. The average compactness (m)
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Fig. 4. The variance of compactness (m2)

Figure 4 shows the variance of compactness during games. This does not

show a remarkable di�erence between winners and losers or over the two years.

So, although team formation has improved to dynamically follow the ball, the

degree of compactness does not yet change signi�cantly during the game. That

the players follow the ball more closely in '98 can also be seen from Figure 1:

the average distance between the ball and players decreases in '98. At the same

time, though, the average distance covered by a single player has also decreased,

indicating that teams have improved their formations whilst also handling their

resources better.

3.2 Player Correlations

Another way to analyze players' movements is in terms of correlations between

player locations. We calculate these correlations in the form of two 22�22 sym-

metric matrices, one for the correlation of players' X-locations and the other for
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the players' Y-locations. These matrices are generated for each time step of the
game.

Figure 5 and Figure 6 show the average of the values in the X and Y correla-
tion matrices over entire half-games. These averages are calculated for the entries
in the 11�11 sub-matrices giving correlations between teammates (there were
no negative elements in these sub-matrices, making the average a realistic mea-
sure). Although the Y-correlations show no signi�cant change, the X-correlations
show a substantial improvement in the movements of the 1998 winners. In fact,
since this curve has two peaks it shows that there are some winners that could
correlate and others that could not.
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Fig. 5. The average X-correlation with teammates
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Fig. 6. The average Y-correlation with teammates

To examine teamwork in smaller groups, we also calculated the average X-
correlation values for just a team's front 3 attackers and for its back 3 defenders
(excluding the goalkeeper). Again, these results (Figure 7 and Figure 8) show
a marked improvement in the winning teams of 1998. In contrast to this, the
Y-correlations again do not

show an improvement. In fact, all the average values for Y-correlations in
Figure 1 show a decrease in 1998. This apparent worsening of play is partially
due to the skewing of the 1997 �gures by a small number of games that exhibited
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Fig. 7. The average X-correlation among attackers

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
e
r
c
e
n
t
a
g
e
 
o
f
 
g
a
m
e
s

’Winner98’
’Loser98’

’Winner97’
’Loser97’

Fig. 8. The average X-correlation among defenders

the `rugby e�ect': teams simply surrounding the ball with their players in a
scrum that slowly moved across the �eld. Motivated by the introduction of the
o�-side rule, teams have improved their X-correlations to the extent that the
1998 average is higher than the biased 1997 value. For the Y-correlations, such
improvements remain as further research.

One �nal use of correlations is to demonstrate the marking abilities of teams.
The average of a team's X-correlations with opponents is shown in Figure 9 (the
correlation matrix is symmetric, so there is only one graph for each year). This
demonstrates that marking has increased from '97 to '98. In general, however,
the symmetric nature of player correlations makes it di�cult to identify which

team's players are actually doing the marking. We are investigating how to
collect more statistics on marking by examining the dependencies between the
directions and the timings of players' movements.

3.3 Passing, Shooting & Dribbling Skills

Here, we look at the remaining sixteen features from Figure 1, which all deal
with ball-handling skills. In RoboCup, client programs issue large numbers of
kick commands. To distinguish kicks that have a genuine e�ect, we de�ne a
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Fig. 9. The average X-correlation with opponents

genuine kick sequence as two successive successful kicks of the ball that occur
with a time lag of more than 0.5s and at a physical separation of more than
0.5m. A successful pass is then a genuine kick sequence in which the two kicks
are made by players of the same team; a dribble is a genuine kick sequence in
which the two kicks are made by the same player.

A team's possession time is de�ned as starting with the �rst kick of a team's
kick sequence, and continuing until either an opponent kicks the ball, or the
ball leaves open play (a free kick, goal kick, throw in, corner, or center kick
is awarded). We measure the possession of one team as the rate of the total
possession time in the game. A steal occurs when the possession transfers from
one team to another without the ball leaving open play. The pass success rate
of a team is then de�ned as the ratio of its passes to the total of its number
of passes plus the number of the opponent's steals. A winning passwork pattern

is de�ned as any chain of three players A, B, C from the same team such that
passes from A to B and from B to C occur at least once, and C scores at least
one goal. Finally, a pass using space is a pass where the ball never comes within
5m of an opponent.

Let us look at some of the graphs for the ball-handling features. One of the
most interesting is Figure 10, which shows the total number of shots on goal. The
curves for the 1997 and 1998 winners both have multiple peaks, suggesting that
there are two types of strategies for shooting. Another interesting conclusion can
be drawn from Figure 11, which shows the average pass length. This suggests
that shorter, more stable passwork is one of the keys for strong play. In Figure 12
we also show the average pass success rate. This is slightly better for winners
than for losers, and has a small tendency to increase from 1997 to 1998.

In fact, most of the graphs for the ball-handling features show small improve-
ments such as that of Figure 12 rather than the larger di�erences of Figure 10 and
Figure 11. To provide a better picture of the true importance of ball-handling
skills, we therefore carried out the principal component analysis described in the
following section.
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3.4 Principal Component Analysis

To use principal component analysis (PCA) in our analysis, we calculated the
eigenvectors of the 32�32 correlation matrix of the features in Table 1. These
eigenvectors give the directions in which the data cloud is stretched most, and so
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Fig. 12. The average pass success rate
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allow us to identify the features that play the most important roles in RoboCup
games. For the data from the 1998 RoboCup (including the drawn half-games),
Table 1 shows the ten features that had the largest elements in the eigenvector
corresponding to the largest eigenvalue. Note that the features related to ball
handling are prominent. So, whereas the previous sections revealed that sub-
stantial progress has been made between '97 and '98 in team formation and
co-ordinated movement, here we see that an underlying ability to handle the
ball well is also crucial for success.

Table 1. The RoboCup98 features highlighted by PCA

Feature Value
total number of passes 0.297
deviation of the number of passes per player 0.287
average pass success rate 0.271
number of pass chains 0.269
number of backwards passes 0.234
average distance covered by one player 0.230
number of players making zero passes -0.222
total number of shots on goal 0.219
average X-correlation with teammates 0.214
average X-correlation among attackers 0.194

We also used principal component analysis to identify the 1998 RoboCup
games that produced the best play. For each half-game, we found the inner
product of the vector of the feature values (for each team) with the vector of
largest eigenvalues. Since this produces larger values for teams that played well,
we can identify the good teams independently of the actual tournament results.
Table 2 shows the ten teams that produced the highest scoring games. Note
that these teams all fared well in the actual tournament itself. Our analysis
demonstrates in detail the reasons for this success.

Table 2. PCA top ten half-games played in RoboCup98

Team (�nal rank) Game
1 AT Humboldt (2) 1st half vs Gemini
2 CMUnited (1) 1st half vs Andhill98
3 CMUnited (1) 2nd half vs Rolling Brains
4 CMUnited (1) 2nd half vs Kasugabito II
5 AT Humboldt (2) 2nd half vs Andhill98
6 CMUnited (1) 2nd half vs Andhill98
7 Tumsa (Best 12) 1st half vs Gemini
8 Windmills (3) 2nd half vs AT Humboldt
9 Andhill98 (Best 6) 1st half vs Gemini
10 Windmills (3) 1st half vs AT Humboldt
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3.5 Statistics Summary

The above sections have demonstrated the progress in the RoboCup simulator
league from 1997 to 1998. Our overall conclusions can be summarized as follows:
{ Teams work together to follow the play better in '98, despite having to

manage stamina more carefully.
{ Teamwork has improved signi�cantly along the long side of the �eld, but not

along the shorter.
{ Improved teamwork can be seen in '98 in the way that forwards (and de-

fenders) share their roles.
{ Teams carry out more marking in '98.
{ Ball-handling skills have not improved signi�cantly on average, but principal

component analysis shows that they are crucial for strong play.
These results demonstrate that progress has been made towards meeting

the teamwork Synthetic Agent challenge. To a lesser extent, an improvement in
opponent modeling is also demonstrated by our analysis of marking.

4 Prospects: A statistics proxy server

The statistical analyses we have described above answer the question of the
extent to which soccer skills in RoboCup have progressed to date. In addition to
this, however, the code that we have implemented to carry out this analysis also
has a direct bearing on the future prospects of research on the Synthetic Agent
Challenge.

In particular, our code produces its results in real-time, as a game is running.
Thus, we suggest o�ering this code to the RoboCup community in the form of
an independent proxy server. In our prototype server, we have incorporated two
further techniques developed by [Tanaka-Ishii et al.1998]: the representation of
ball-play chains as �rst order Markov processes, and the calculation of players'
defensive areas with Voronoi diagrams. Figure 13 shows the likely uses of such
a proxy server.

In addition to facilitating research on automated commentators and post-
game analyzers, then, we envisage that a proxy server will directly enable re-
search on the three challenge problems. Obvious applications are:
{ facilitate o�-line learning from game logs and on-line learning via the touch-

line coach planned for 1999,
{ identify the opponent's key players, passwork patterns and styles of play

(opponent modeling),
{ identify players not ful�lling their assigned roles, enabling suitable adapta-

tions to be made (teamwork).
Another application we foresee is related to the speci�c evaluation procedures

laid out in the challenge paper itself. To our knowledge, only one of these evalu-
ations | a test of team robustness | has so far been carried out. This test took
place at RoboCup 1998, and involved 13 of the 37 participating teams. With the
1997 champions as the �xed opposition, each of these 13 teams played a single
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Fig. 13. Likely uses of a statistics proxy server

half-game with 11, 10, 9 and then 8 players. The logs of this test can be found

at http://www.isi.edu/soar/galk/RoboCup/Eval/. We are not aware of any

detailed analysis, but the logs clearly demonstrate that evaluation will not be

straightforward. As might be expected, conducting just one half-game with each

number of players results in noisy data. For example, the CAT-Finland team

lost 0-1 when playing with 11 players, but with just 10 players it won 1-0, and

with 9 players it drew 1-1.

Thus, to generate meaningful results from the robustness test, statistical

analyses of the kind presented in this paper will be important. Indeed, since

almost all of the evaluation procedures laid out in the challenge paper involve

the playing of games, we expect to see our proxy server used in this way very

often.

5 Prospects: A modular common model

We feel that what is ultimately most important in RoboCup evaluation is identi-

fying the AI techniques that produce good performance; only by identifying the

best techniques can they be e�ectively re-used in the future to advance RoboCup

research. Within the current framework of RoboCup, however, this kind of eval-

uation is hard to carry out. Almost all teams use a combination of a number

of techniques. So, even with a detailed statistical analysis of full games, it is

in general di�cult to identify which AI techniques worked best for particular

aspects of the game. Similarly, the evaluation procedures described in the chal-

lenge paper focus on varying the conditions under which a team plays a game

rather than varying the AI techniques used for particular sub-problems. The

prevailing tendency in RoboCup, then, is simply to assume that teams that win

are the ones that employ good techniques. This must be true to some extent,
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but the reverse is certainly not true: teams that lose do not necessarily employ
bad techniques. They may actually excel at some aspects of soccer whilst being
let down by others.

We suggest that the current situation in the RoboCup simulator league is
similar to that in another research �eld often regarded as a challenge problem:
Computer Go. Super�cially, this �eld appears very healthy, with over 100 active
programs being developed (including about ten that are commercial), and a
number of computer tournaments (two with the status of World Championships).
However, it was recently pointed out by [M�uller1998] that progress is much slower
than it could be. A typical program has between 50 and 100 modules, and it
is generally the weakest of these that determines the strength of the program.
Thus, the �eld progresses by all of the program developers simultaneously trying
to improve the level of their worst modules. M�uller proposed that the overall rate
of progress would be signi�cantly improved if researchers worked together on the
implementation of a common model .

Although RoboCup is young compared to Computer Go, we believe that a
similar argument applies. A common model would improve the rate of progress,
provided it has the essential feature of being modular. Modularity is important
because it is this that facilitates the isolation and direct evaluation of competing
techniques for any individual aspect of the game. This in turn increases the
chances of being able to identify and retain the best aspects of every RoboCup
team, including those with poor overall match results.

Thus, we propose the institution of at least one modular RoboCup team
based on a common model. To function successfully and to bene�t most from
the available manpower, we suggest that such a team should be:
{ open source; anyone is free to use the code, and to contribute improved

versions of any module.
{ well-tested; contributors demonstrate the advantages of their modules with

match results or statistical analysis such as that described in this paper.
{ well-documented; the learning curve is as painless as possible.
{ updated frequently; there is an e�cient organization for selecting and in-

tegrating currently best modules that keeps all contributors informed of
progress.
Already, the �rst two RoboCups have identi�ed important sub-tasks of soc-

cer. A small sample of these tasks includes the automatic learning of passwork
skills, the pre-compilation of communication options, static evaluation functions
for player positioning, and the speci�cation of a small number of distinct `player
modes'. We believe that formalizing a common model incorporating such mod-
ules will expedite RoboCup research. Ultimately, it will also lead to a deeper
understanding of soccer itself, and of the multiple challenges it represents.

6 Conclusions

We have used statistics to qualitatively demonstrate the progress to date in
the simulator league of RoboCup. Our results highlighted the changes in play
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from 1997 to 1998 in terms of 32 features. We also demonstrated the utility

of examining the correlation of players' movements and of applying principal

component analysis.

Further, we emphasized that our analysis is important to the future of the

RoboCup research. We proposed the free distribution of a proxy server that can

supply in real-time the full range of statistical analyses described in this paper,

and pointed out that such analyses will have a crucial role in facilitating and

evaluating research on the challenge problems of opponent modeling, teamwork,

and learning. Finally, we suggested that to make the best use of the e�orts of

RoboCup researchers, at least one modular team based on a common model

should be instituted.
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Abstract. The quantity of image information is very large, and this is

why it is di�cult to process them in real time, such as video frame rate.

In this paper we demonstrate the developed real-time color detection

system for the vision system of RoboCup Small-Size League. The pixel's

color information is converted to HSV color system at �rst, and judged

whether it has the color information of target. The detected information

is converted to gray scale NTSC signal to be captured by PC, which is

faster than the full color frame grabber.

1 Introduction

The quantity of image information is very large, and this is why it is di�cult

to process them in real time, such as video frame rate. Pixel information from

video camera is transfereed from the upper-left corner of image to the lower-right

corner serially, and the color detection of pixel can be processed only according

to its color information, not those of neighbor pixels.

In this paper, we describe the real-time color detection system for the vision

system of RoboCup Small-Size League using specially designed LSI. We also

describe the real-time color conversion system from RGB to HSV employing

pipelined operation of look-up table using ROM. The original color image is

fed into the developed system, containing color conversion system and color

detection system, and then the gray scale image generated by color detection

results comes out in 600ns, and this system can be regarded as a '�lter' of

image.

The post-color-detection processes, such as labeling, recognition, are pro-

cessed for these detected 'gray' image, which is much easier to process in real

time than the case of both color detection and other processes are executed by

software.

2 Elements of Color Detection System

Figure 1 shows the structure of the developed real-time color detection system

for vision system of RoboCup Small-Size League. The video signal from color

CCD camera in NTSC format is converted to RGB signal at �rst, and then
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NTSC
 -> RGB

A/D
Conversion

RGB
 -> HSV

Color
Detection

RGB
 -> NTSC

fH=15.7kHz 6bits x 3 18bits -> 16bits

Fig. 1. Structure of real-time color detection system

converted to digital signal of 6�3 bits. The digitized RGB signal is converted
to the pair of HSV (Hue, Saturation, and Value), and then judged whether it is
a target color or not by color detection circuit. The color detection results are
converted to gray scale NTSC video signal again, which PC can easily capture
by frame grabber. The detection result per pixel comes out 600ns after original
pixel data is fed in, which can be regarded as 'simultaneously,' and the processed
image is generated by passing a kind of '�lter.'

2.1 Color conversion methodology

The video signal in NTSC format from color CCD camera is at �rst converted
to RGB signal, with the horizontal synchronous frequency of 15.7kHz. It may
be usual to express the color information of each pixel by the pair of RGB, that
is the intensities of red, green, and blue, that are intrinsically acquired by CCD
color imager. It will be a better way to express the color information of pixel by
the pair of HSV, since the pair of HSV is more invariant than the pair of RGB
for the change of lighting condition.

The conversion rule of the pair of RGB to the pair of HSV is a simple,
but a non linear function. One idea to execute this conversion is to calculate
this simple, but non linear conversion rule for each pixel. This procedure can be
easily implemented by software program, but it needs much processing time. For
example, the pixel clock cycle time is about 100ns in NTSC video signal, and
the conversion from RGB to HSV should be completed in 100ns for real-time
process, that is almost impossible by employing software process.

(R,G,B) (H,S,V)
H=....
S=....
V=....

(a)

(R,G,B) (H,S,V)

(b)

Look-Up Table
Calculation

Fig. 2. Two methodologies to convert from RGB to HSV, (a)calculation per pixel,
(b)employing look-up table

The other idea to execute this RGB to HSV conversion is to employ look-
up table of RGB to HSV. The HSV values should be calculated for all case of
possible RGB values once, and they are stored in look-up table. In conversion
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process, the input RGB values is used to indicate the according point of this
look-up table, and the according result in this look-up table will be obtained
much faster than to calculate it, as shown in Fig.2.

The look-up table can be easily implemented by ROM (Read Only Memory),
where input RGB values are used as its address, and output HSV values are read
out as the data in its address. Assuming the number of bits of RGB values as
6�3 bits, the total address space of ROM is equal to 218 = 256K, which is
reasonable to implement by using popular ROM IC. If we employ 8�3 bits for
RGB values, the needed address space is 224 = 16M, which will need more than
8 chips of ROM for one conversion look-up table bank.

2.2 Color detection criteria

HU

HL

>

>

SU

SL

>

>

VU

VL

>

>

H

S

V

J

Fig. 3. Structure of color detector

The simple color detection criteria we have employed here is to detect all
of hue, saturation, and value stay in the desired range, which is expressed as
follows,

J = (HL < H) and (H < HU )

and (SL < S)and (S < SU )

and (VL < V )and (V < VU );

where J is the judgement ag of detection, H , S and, V are the value of hue,
saturation, and value, respectively, HL and HU are the preset lower and upper
thresholds of hue, respectively, and so on.

In our developed system, the number of bits of each component is 6 for hue, 5
for both saturation and value, and the comparison operation should be executed
in the accuracy of these bits. They are also needed the register where the upper
and lower thresholds of each component are stored.

The whole circuit structure of the color detector is shown in Fig.3.
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2.3 Design of color detection chip

We have designed the color detection chip using CMOS 1.2�m, double metal,
double poly technology through LSI fabrication service of VDEC[VDEC, 1998]1 .

Fig. 4. Designed real-time color detection chip

The designed color detection chip consists of three blocks; 6bits magnitude
comparators and 6bits registers and logic AND gates. We have designed them
manually using layout editor, and gathered them in one chip with their inter-
connections drawn by layout editor Fig.4 shows the photograph of fabricated
chip. The chip size is 2.3mm�2.3mm, and the number of transistors is 2,174.
The measured operation speed of this chip is 11.2ns, which is fast enough for
color detection in one pixel clock cycle, about 100ns.

The operation of color detection can be processed only according to the
information of one pixel, and the detection circuit does not need to have frame
memory which stores the whole image, and this is why the designed circuit
consists of small size transistors and operates fast enough.

1 The VLSI chip in this study has been fabricated in the chip fabrication program
of VLSI Design and Education Center(VDEC), the University of Tokyo with the
collaboration by Nippon Motorola LTD., Dai Nippon Printing Corporation, and
KYOCERA Corporation.
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3 Developed Color Detection System

The developed real-time color detection system consists of two blocks; color

conversion block and color detection block.

3.1 Developed color conversion block

Fig. 5. Developed real-time RGB to HSV conversion board

Figure 5 shows the developed circuit board to convert pixel color information

from RGB to HSV. The acquired RGB signal of pixel is 18bits; 6bits for red,

green, and blue respectively. We have employed the total 18bits for RGB values

in order to reduce the number of ROMs for look-up table in reasonable level.

The converted HSV information is assumed to be composed of 6bits of hue,

H, 5bits of saturation, S, and 5bits of value, V. The conversion look-up table

is implemented by 4Mbits EPROM of 27HC4096, which consists of 16bits�218.

The data for each memory cell should contain according values of HSV, and this

contains 6+5+5=16bits.

RGB

RGB->HSV#A

RGB->HSV#B

RGB->HSV#C

HSV

100ns

150ns

Fig. 6. Operation timing of RGB to HSV conversion

The access time of the ROM we employed is 150ns, which is longer than
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the cycle time of pixel clock, about 100ns. In order to maintain the average
processing time per pixel within 100ns, we have employed three banks of ROM,
and they are used in order, which is a kind of pipeline architecture, shown in
Fig.6. The RGB is passed to ROM of bank#A, and the result will come out
after 150ns. The RGB data of the following pixel is passed to ROM of bank#B,
and the next to bank#C, and at this time the conversion result of bank#A is
obtained, and passed to output latch of �nal HSV conversion result, and the
result of bank#C will be obtained in the next cycle, and so on.

The control of this pipeline operation of three ROM banks is implemented by
programmable logic (Complex Programmable Logic Device; CPLD) of XC95108
by Xilinx Corp[Xilinx, 1998], with using ABEL (Advanced Boolean Expression
Language) as function description language.

3.2 Developed color detection block

Fig. 7. Developed real-time color detection board

Figure 7 shows the developed color detection block including the designed
chip above. The HSV signal of each pixel is passed to four color detection chip
at the same time, in order to detect four colors simultaneously. The four outputs
of all color detection chip are gathered again, in order to generate the gray scale
image according to the detected color using 4bits priority encoder. For example,
it generates 'white' pixel for input of 'orange' pixel (that is the color of ball),
'bright gray' for 'blue' (that is the color of robots' marker), 'medium gray' for
'pink' (that is the color of robots' second marker to detect their directions), and
'dark gray' for 'yellow' (that is the color of enemy robots' marker). The registers
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of each color detectors which hold the upper and lower thresholds are set by
external controller, it is set by the keyboard in this system. These thresholds are
decided manually, in order to the target color can detect independently.

The generated gray scale image based on color detection is converted to
NTSC video signal, which frame grabber of PC can capture. It will be a best
way to send the detection results to PC by digital data, and we are currently
under development of this block.

Fig. 8. Whole of the developed real-time color detection system

Figure 8 shows the whole of the developed real-time color detection system,
including NTSC to RGB converter, clock generator and A/D, D/A conversion
blocks, the color conversion block, the color detection block, and RGB to NTSC
converter.

4 Experimental Results

We have carried out the experiments for color detection. Sample color images are
captured by CCD color video camera, and this signal is fed into the developed
system. The color detection results in gray-scale image is again captured by PC.
Figure 9 shows one of the experimental results. The input image of Fig.9(a),
where the text of 'Red' is written in red ink, 'Blue' in blue ink, and so on, is
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Fig. 9. The experimental result of color detection using the developed system,
(a)original color image, (b)generated gray image based on color detection

processed by the developed system with the sequence of Fig.1. The generated
gray image based on color detection is shown in Fig.9(b). We can recognize
some lack of component pixels containing in each text, but it will be improved
by tuning the threshold values of each color, and reducing the noise in A/D and
D/A conversion block. It will be an another way to increase the number of bits
of each color values, but it will result in the increase of the size of ROM. It
will be reasonable to employ 7�3 bits for each color values, which will result in
221 � (7 + 7 + 7) ' 16Mbytes in one bank of look-up table.

5 Conclusion

In this paper, we have described the developed the real-time color detection
system for the vision system of RoboCup Small-Size League. The color image is
fed into this system, and the result of color detection is automatically generated
in NTSC video format, which can be easily captured by gray-scale frame grabber,
that is faster than full-color frame grabber. This system is expected to be e�ective
to reduce the load of image processing system; it can process just after color
detection.
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Abstract. An innovative technique for segmentation of color images is
proposed. The technique implements an approach based on thresholding
of the hue histogram and a feed-forward neural network that learns to rec-
ognize the hue ranges of meaningful objects. A new function for detecting
valleys of the histogram has been devised and tested. A novel blurring
algorithm for noise reduction that works effectively when used over hue
image has been employed. The reported experimental results show that
the technique is reliable and robust even in presence of changing envi-
ronmental conditions. Extended experimentation has been carried on the
framework of the Robot Soccer World Cup Initiative (RoboCup).

1 Introduction

The task of identification of objects placed at different locations in gray level
images is usually difficult unless uniform lighting conditions have been achieved.
Uneven illumination leads to variations in light intensity reflected from objects.
This is true in the RoboCup framework [10], where light conditions vary during
the day and due to different game fields. Considering this problem, in [4] a
method for calibrating lighting conditions in the scene is proposed, in which a
brightness map of the area is employed to select areas for which different color
calibrations are needed. But in general, it is necessary to resort to additional
criteria, such as size or shape in order to identify objects of interest. With this
respect, color becomes a powerful descriptor that greatly simplifies the object
identification and extraction tasks.

Several authors analyzed the advantages of color image analysis with respect
to gray level image analysis [15]. The most widely adopted approaches are the
statistical methods. They are based on the assumption that an analytic expres-
sion for the distribution functions of the pattern classes is known, such as the
Gaussian probability density function. This assumption may be unrealistic, es-
pecially in the case of images acquired by a vision system placed on a mobile
robot, due to the presence of illumination changes, shadowing and obstacles in
the robot working environment.

The starting point of our segmentation technique is the HSI color space and
particularly the hue component. In the last RoboCup edition many teams em-
ployed intensity (or value), saturation and hue components of pixels in order to
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label them. In [1] a real-time color detection system based on HSV information
of pixels using designed LSI is described. Also the italian robot Rullit [5] adopt-
ing an omnidirectional vision sensor, performs the color classification by using
the HSV color space. Alternative color models have been used by other teams
during RoboCup games. For example, in [6], authors adopt a particular decision
tree using the rgG color space, where r and g are red end green normalized
components and G is roughly related to brightness.

To accomplish the task of a robust segmentation of color images oriented to
the vision system of a mobile robot, as in the RoboCup framework, we employ a
novel approach based on a feed-forward neural network that learns to recognize
the hue range of the objects of interest. Unlike statistical methods, a neural net-
work does not require the exact knowledge of the statistical distribution of input
items, as it generates an internal representation of input data distribution by a
suitable learning process. Furthermore, a neural network deals effectively with
noisy and partial data, as it is able to generalize to new and unexpected situa-
tions. Connectionist approach has often been used to perform the segmentation
step in an image analysis process providing high performances [3].

Ranges to be recognized have been extracted by using an effective technique
for thresholding based on analysis of the hue histogram. Thresholding has been
used by the Agilo RoboCuppers Team also in its vision system in which the Y UV
color space is used to distinguish different color classes: particularly color clusters
are found in the UV -plane and a color label is assigned to them according to
their position in that plane.

Images acquired by optical or electronic means are likely to be degraded by
imperfection of sensing mechanism, that occurs in the form of a noise. Several
filters have been reported in the literature to remove noise from images. As our
analysis is based on the analysis of the hue component of HSI color model, we
propose a novel technique to remove noise from hue images that performs well
when works on angular values.

The described approach has been tested in the framework of the Robot Soccer
World Championship Initiative. In this framework, a mobile robot acquires the
color images by a CCD camera fixed on its top (see Fig. 1).

The images are then processed by a PC on board of the robot. Although the
color of the objects in the scene are clear and well defined, several disturbing
conditions, such as shadowing, nonuniform lighting and light reflections arise
during the RoboCup competition, that impose tight constraints to the segmen-
tation step. Therefore different game fields may be characterized by similar but
not equal color, e.g., the green color of the training field may not be exactly
equal to the green color of the game field.

The presented technique is part of the vision system adopted by the soccer
player robots of the Italian robot team ART (Azzurra Robot Team) [11], a robot
team in “F2000” category (middle size league). The technique is also employed
as a first step of a more complex vision system for an autonomous robot aimed
at the description of static and dynamic scenes [7, 8].
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Fig. 1. Images of the adopted experimental framework. The soccer field is green, the
walls and the field lines are near white, the goal area is blue and the ball is red.

2 Color imaging

Color images are widely used due to the superior characteristics over gray-level
images. They contain object spectral information and provide valuable details for
quick objects identification. Color information processing provides more reliable
and accurate results for machine perception and scene analysis.

Andreadis and Tsalides [2] showed that the HSI color space compensates for
illumination variations, hence contributing to simplified segmentation. Accord-
ing to the Phong shading model, hue has the property of multiplicative/scale
invariance and additive/shift invariance [13]. According to these features, the
hue parameter is our starting point for developing image processing algorithms
based on color information. This choice allows us to work on a 1D space, rather
than in a 2D (such as IQ, a ∗ b∗, u ∗ v∗) or a 3D (such as RGB, CieXY Z) color
space. This simplify the search for significant clusters that identify meaningful
regions of pixels.

3 Noise removing by circular blurring

The purpose of pre-processing is to improve the image in ways that increase the
chances for success of the subsequent processes. The alteration of the image may
be generated in a number of ways, such as interference, noise, light reflection, etc.
To maximize the noise attenuation is only one aspect of image pre-processing.
On the other hand, it might happen that noise is attenuated so hardly that the
useful image details are lost.

Many methods for scalar image processing have been developed for gray-level
image processing. A direct application of such methods to the hue image can be
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performed, but this generalization exhibits some drawbacks, the most important
of which lies in not considering exact relationship between hue values. Hence,
the development of new methods becomes necessary to realize efficient low-pass
filtering of hue image. In this section, a new algorithm for hue image blurring
and noise reduction is presented. This technique is based on mask processing.

Throughout this section let us denote the hue levels of pixels under the mask
at any location by h1, h2, . . . , hN (let N be the number of pixels within the mask)
and suppose that hue values lie in the range [0, L−1], due to sampling performed
over this range. The only requirement on L is that it should be integer, positive,
and finite.

Defining n as the largest integer value lower than k/L, that is

n =
⌊

k

L

⌋
, (1)

we introduce the following circular indexing function

IL(k) = k − nL ∀k ∈ ZZ (2)

This operator allows us to perform any operation over the domain of the hue
values considering automatically its circular nature, without changing the form
of equations.

Given IL(k), the counterclockwise distance between hi and hj is defined as:

D(hi, hj) = IL(hj − hi) (3)

The most important properties of this function are:

D(hi, hi) = 0 ; (4)
D(hj , hi) = L−D(hi, hj) . (5)

Defining

di = min
1≤j≤N

i6=j

{D(hi, hj)} i = 1, 2, . . . , N , (6)

the reference value of the set {h1, h2, . . . , hN} is the value B such that

B = hb (7)

where

b = arg max
1≤i≤N

{di} . (8)

We can define a new sequence of relative hue values H = {H1, H2, . . . , HN},
where

Hi = D(B, hi) i = 1, 2, . . . , N . (9)
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Now, both median and linear filtering may be used to obtain the new relative
hue level of the pixel located at the center of the considered mask. Median
filter are best suited to double-exponential and impulsive noise but may not be
effective for Gaussian noise, while linear filters are optimal in removing additive
white noise (Gaussian or non-Gaussian) but will produce rather poor results in
an impulsive noise environment.

Using linear filtering, the relative hue value of the pixel located at the center
of the current mask is replaced by

mlin = w ·H =
1
N

N∑

i=0

wiHi (10)

while the median of set H is defined as the value mmed such that

mmed = arg min
Hj∈H

{
N∑

i=1

|Hi −Hj |
}

. (11)

The absolute hue level of the center pixel in the defined window is replaced
by

M = IL(m + B) , (12)

where m is either mlin or mmed according to the choice of the used filter.

4 Thresholding

We employed a thresholding technique to perform low-level image processing.
According to the definition of the hue in the HSI model, the hue histogram is
a periodic function in the same range of the hue.

Fig. 2 shows three “typical” hue histograms of color images of the chosen
framework. It should be noted that the color modes (the peaks in the histograms)
extend themselves within similar hue ranges. Each color mode corresponds to an
object in the scene: the first one is related to the ball, the second one indicates
the wall and the lines, the third one is related to the game field and the last one
indicates the game goal. In the figure, the hue ranges corresponding to the color
modes are highlighted.

In the literature several techniques for searching valleys and peaks of gray
level histogram are presented [14, 9, 12, 16]. These methods fail when directly
used for the analysis of the hue histogram, because the hue is periodic. For this
reason we developed a special technique for histogram analysis, in order to find
meaningful modes of the hue histogram.

Hue histogram is defined as follows:

q(k) =
r(k)
R · S k = 0, 1, . . . , L− 1 (13)
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Fig. 2. Typical hue histograms related to images of the game field.

where r(k) is the number of pixels with hue value equal to hk, i.e., the k-th
sampled hue value, and L is the number of hue samples. R and S are, respectively,
width and height of the image.

To be able to deal correctly with hue histogram, for searching valleys and
peaks, it is necessary to redefine the histogram function, according to the circular
domain. Hence, starting from the histogram function q(·), it is possible to define
a new function p(·), called extended histogram function, by means of functional
composition with the function IL(·) defined in (2)

p(k) = q(k) ◦ IL(k) = q[IL(k)] ∀k ∈ ZZ . (14)

To improve the performances of the following histogram analysis, the hue
histogram is first smoothed to remove noise by means of:

p̂(k) = p(k) ∗ wσ(k) =
σ∑

i=−σ

p(k − i)wσ(i) ∀k ∈ ZZ (15)

where wσ(·) is a Gaussian smoother, defined as

wσ(k) =

{
1√
2πσ

exp
(

−k2

2σ2

)
|k| ≤ σ

0 otherwise
∀k ∈ ZZ (16)

and σ is the standard deviation related to the width of the smoother.
It is therefore possible search the valley points in the histogram, according

to its circular property using a valley detection signal r(·) generated from the
extended histogram function by convoluting it with a valley detection kernel
vP (·):
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Fig. 3. An example of hue histogram and corresponding valley detection signal.

r(k) = p̂(k) ∗ vP (k) =
bP/2c∑

i=−bP/2c
p̂(k − i)vP (i)

k = 0, 1, . . . , L− 1 (17)

where the valley detection kernel vP (·) is defined as

vP (k) =






k
|k|

1√(
1− |k|

k0

)2
+4 k2

k2
0

ζ2
|k| ≤ bP

2 c, k 6= 0

0 otherwise
(18)

P is the dimension of the kernel mask, ζ and k0 are adjustable parameters
(typically, ζ ∈ [0.1− 2] and k0 ∈ [1− 3] ). Valleys are placed on zero crossing to
negative points of the r(·) signal.

In Fig. 3 an example of a hue histogram and the corresponding valley de-
tection kernel is shown: the above mentioned zero crossing points are drawn as
painted black dots. Only meaningful valleys are found, due to the robustness of
the kernel with respect to small and irrelevant jitters.

5 The neural networks approach

As previously explained, the hue range and the shape of a meaningful color
mode of the histogram are not clearly defined because they greatly depend on
illumination conditions, shadows effect and so on.

We compared several techniques for classifying the modes extracted from
the hue histogram. The statistical minimum distance classifier and the optimum
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Bayes classifier have not been provide satisfactory results, due to the variability
of the histogram. Because of this, we have been chosen a neural network for the
classification step.

To code the hue ranges of the histogram to feed them as input to the neural
network, we compared three different approaches: the bit range, the Gaussian
and the value coding. Let L be the number of the considered hue sampled lev-
els. Each level corresponds to one of the input units of the neural network. In
the bit range coding, we set to 1 all the input units corresponding to the hue
levels belonging to the considered range, and we set the other units to 0. In the
Gaussian coding, we consider a Gaussian distribution of probability over the
considered hue range. Then, we set to 1 the input units corresponding to the
hue levels belonging to the range [m−σ, m+σ], where m is the mean value and
σ is the standard deviation of the hue of the considered color mode. The units
outside the range are set to 0. In the value coding, we set the input units to the
effective values of the color mode of the considered hue range; the units that do
not belong to the considered hue range are set to 0.

The choice of the number L of sampled hue levels corresponding to the input
nodes of the network is an important issue. We have chosen L = 32 according to
the width and the resolution of the hue segments, corresponding to the classes
of objects of interest. Experiments showed that for L > 32 the network does not
improve its performances, while for L < 32 the hue segments overlap and the
classification ratio degrades.

In the considered application, we recognize the following four classes of ob-
ject: the field, the wall and lines, the goal and the ball. Hence, we chosen the
number Oout of the units in the output layer so that each node represents one
of the above mentioned classes; i.e., Out = 4.

We chose the number Hid of hidden nodes by considering the variation of
performances of the network by varying Hid. The number of hidden nodes was
assumed to be the lowest one that achieves the minimum error on the test set.
Experiments showed that the best performances were reached with Hid = 16.

In conclusions, we experimented the best performances with a feed-forward
neural network with 32 input nodes, 16 hidden nodes and 4 output nodes. We
chose the sigmoid activation function for every node. The learning rate was 0.5.

After the classification of the hue ranges performed by the neural network,
the obtained classified ranges are used to label each pixel in the image.

6 Experimental results

In this section, the performances of our segmentation technique based on neural
network are analyzed. To produce the training set that has trained the network,
we used a sequence of images drawn by some films realized on a soccer field
during testing. In these images, there were all of the objects of interest.

Image pre-processing has been made by using the technique described in the
Sect. 3: experimental results showed that a linear mean filter performs better
than a median filter.
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Fig. 4. An example of the operation of the thresholding (see text).

Thresholding of training and testing images has been made by using the effi-
cient technique based on the convolution of the hue histogram with the suitable
defined valley detection kernel, as described in Sect. 4.

A visual example of the obtained results are reported in Fig. 4 that shows the
acquired image and wall, field, and goal images in which white patches represent
selected regions.

To analyze in details the performances of the network, we accomplished three
different tests: Test A, Test B and Test C, described below. In all of the tests,
the training and the test sets are non-overlapping sets of patterns. We repeated
the tests for all the three input coding described in the previous section.

In Test A, we analyzed the performances of the network by using training and
testing images drawn by the same soccer field. To generate the training an the
testing sets, we used 300 images acquired by the robot moving in the soccer field
built in our laboratory. Different lighting conditions have been considered during
acquisition in order to provide the network with a high degree of robustness.

We divided the training set into 5 mutually exclusive groups of 60 patterns.
In each group, there were 15 patterns of each of the four classes. The network
has been trained using 4 of these groups and tested using the fifth group. This
train-and-test process has been repeated 5 times, using all groups of 60 test
patterns. At the end, a mean misclassification error has been evaluated: the
results are shown in the first row of Tab. 1. Results show the high reliability of
the network when it works with pattern generated from images acquired in the
same environment of the training phase.

To verify the capabilities of the network to work in different environmental
conditions, during Test B we used the same training set of Test A but the test
set was made up by images acquired by the robot during the previous RoboCup
competition held in Paris in 1998. Therefore, environmental conditions, tonality
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Table 1. Misclassifications of the neural network (see text).

Bit range Gaussian Value

Test A (%) 0.33 0.67 0.67
Test B (%) 10.0 19.0 17.0
Test C (%) 6.17 7.83 9.33

of colors and illuminations in test set were very different with respect to the
training set. The corresponding misclassification errors are shown in second row
of Tab. 1. It should be noted that the error is maintained within acceptable
limits. These results confirm that our method is satisfactory with respect to
severe environmental changes.

To evaluate the performances of the network working on noisy data, during
Test C we used the same training set of the previous tests, and a test set made
up by noisy images. We produced the test set as follows: each pattern of the
training set has been modified by operating a right shift and a left shift of the
input values. Hence, for any training pattern, we produced two new test patterns.
Altogether, 600 new patterns have been generated, on which the network has
produced the results shown in third row of Tab. 1. Once again, experimental
results highlight that the network is robust with respect to the noise.

By analyzing Tab. 1 with respect to the input coding, it should be noted that
the bit range always performed better in terms of misclassification error with
respect to the other coding. This is due to the fact that the bit range coding
do not make any assumption on the form of the hue histogram. It therefore
provides a low sensibility with respect to the form of the color modes. The result
is an improvements in terms of robustness and adaptation to the environmental
situations.

7 Conclusions

The problem of automatic segmentation of color images acquired by a camera
placed on a mobile robot platform has been discussed. A new algorithm for noise
removing in hue image has been presented. A special technique for dealing with
multiple threshold selection from hue histograms has been developed. Here, a
new valley detection signal is proposed. A feed-forward neural network has been
employed to classify hue ranges corresponding to hue modes extracted from
histograms.

Experimental results showed that the proposed approach is effective and
robust with respect to changes of environmental conditions, such as shadows and
illumination variations. Although this method has been applied in the RoboCup
experimental framework, it is an effective intermediate level step in generic image
interpretation tasks where the color is a meaningful descriptor.

We suppose that, training the network with a new training set according to
the new working environment, this method is suitable to be used in different
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environments. This fact provides our method a high degree of adaptability re-
defining the correspondences between the chromatic components and objects by
the neural network. Furthermore, we think that the approach based on to feed
the representation of the most meaningful modes of the histogram as input to
the neural network may be easily extended to N -dimensional analysis.
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Abstract. This paper describes a practical method for calibrating the
geometry and colour information for cameras surveying large rooms. To
calibrate the geometry, we use a semi-automatic system to assign real
world to pixel coordinates. This information is the input to the Tsai cam-
era calibration method. Our system uses a two stage process in which
easily recognizable objects (squares) are used to sort the individual da-
ta points and to find missing objects. Fine object features (corners) are
used in a second step to determine the object’s real world coordinates.
An empirical evaluation of the system shows that the average and maxi-
mum errors are sufficiently small for our domain. Objects are recognized
through coloured spots. The colour calibration uses six thresholds (Three
colour ranges (Red, Green, and Blue) and three colour differences (Red -
Green, Red - Blue, Green - Blue)). This paper describes a fast threshold
comparison routine.

1 Introduction

Our research work focuses on the design of intelligent agents in highly dynamic
environments. As a test-bed, we use the RoboCup domain, which is introduced
in section 2. In this domain, small toy cars play a game of soccer.

This paper describes an accurate, cheap, portable, and fast camera calibra-
tion system (Section 3). After an initial preprocessing step (which is guided by
the user), it automatically computes real world coordinates for features in the
image (Section 4). Section 5 discusses our algorithm in more detail. The Tsai
camera calibration algorithm is briefly described in section 6.

Section 7 shows the accuracy that can be obtained by our method in a sample
and a real world problem. Both the average and maximum error are sufficiently
small for our application.

Section 8 discusses the blob detection used in our video server. Objects are
identified using coloured spots. The colour detection uses the R-G-B colour mod-
el. Each colour is identified by twelve parameters. Six parameters identify the
minimum and maximum threshold for the red, green, and blue colour channels.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 148−161, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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Another six parameters identify minimum and maximum values for the difference
channels (red - green, red - blue, and green - blue).

To be able to maintain a frame rate of 50 fields per second without special
purpose hardware, the video server uses a number of optimizations described in
section 9.

In section 10, we discuss ideas for further research to improve the accuracy
of the calibration and to find colour thresholds automatically.

2 The Laboratory Setup

RoboCup [4] is a domain initially proposed by Alan Mackworth ([5]) to provide
a challenge problem for AI researches that requires the integration and coordi-
nation of a large number of techniques. The problem is to create autonomous
softbots and robots that can play a game of soccer.

RoboCup is a difficult problem for a team of multiple fast-moving robots
under a dynamic environment that requires the designer to incorporate tech-
niques such as: autonomous agents, multi-agent collaboration, strategy acqui-
sition, real-time reasoning, robotics, and sensor-fusion. RoboCup also offers a
simulation environment for research on the software aspects of RoboCup.

RoboCup is a standard problem which allows the evaluation of proposed
methods to solve these problems in a friendly competition. Apart from Machine
Learning, which has used databases of problems extensively in research [6], such
an agreed upon evaluation method is sadly missing from lots of AI research
areas. However, the importance of such test-beds has been realized in other AI
fields as well. The planning community agreed on a common domain description
language and held the first planning competition in 1998.

The RoboCup environment at the University of Auckland consists of a com-
mercially available cheap video camera mounted on a tripod. The video camera
is connected to a video server (a Pentium PC). The video server interprets the
video data and sends position, orientation, and velocity information to other
clients on the network (three PCs).

Lighting is provided by fluorescent lamps on the ceiling. All the equipment
is readily available and most of the room has been unchanged. Although playing
soccer is our main objective, there are other tasks that we are working on such
as parallel parking and time trials on a race track. Time trials along a race track
(called Aucklandianpolis [1]) proved to be very popular with students. Figure 1
shows our environment.

In contrast to all other teams in the RoboCup competition, our camera is
mounted on the side of the playing field, which introduces large perspective
distortions. Therefore, the geometry calibration is very important.

Since we are often asked to give demos of our system, we needed an accurate,
cheap, portable, and fast method for camera calibration.
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Fig. 1. Aucklandianapolis at the University of Auckland. The tripod of the vision
system can be seen on the top right corner of the image. The video camera is just
out of the picture. The video server determines position and orientation of the cars by
bright dots on the car. As can be seen, the speed trials took their toll on our cars.
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3 Camera Calibration

The problem of camera calibration is a very fundamental problem in Computer
Vision. The input to a calibration method is a set of known world coordinates and
their matching pixel coordinates in the image and the output is a set of external
and internal parameters for a camera model. Given this calibrated camera model,
it is easy to determine the real world coordinates of image points (if at least one
dimension is known) or compute the image coordinates for known real world
coordinates.

Traditional camera calibration relies on the availability of known image co-
ordinates for some known world points. For example, a simple pin hole camera
model requires that at the real world coordinates of at least 12 image points
are known [3]. Once a sufficient number of matching points have been found,
well known camera calibration algorithms can be used. For example, the Tsai
calibration method uses a complex eleven parameter model with six external
and five internal parameters [7]. In our work, we are using a public domain im-
plementation of the Tsai calibration method, which is available from the WWW
[9].

This paper focuses on the problem of finding a suitable set of matching points
for camera calibration. The need for portability and speed of the calibration
method ruled out traditional methods of using feature points inherent in the
scene (since these feature points will not be available when moving to different
rooms) or of painting feature points into the scene (a labour intensive and error
prone task for a large set of points). The creation of a special calibration pattern
of sufficient size and with a sufficient number of points was also too expensive.
For example, a large wooden board with calibration points (a) would be difficult
to move, (b) may not fit into rooms that do not have similar geometry (e.g., a
part of the rectangle is cut out by a wall), and (c) expensive and labour intensive
to manufacture.

However, we clearly needed a portable calibration pattern1, so we decided to
use readily available and light material. We looked at a number of possibilities
including carpets (have a dense texture and are expensive) and linoleum carpets
(accurate pattern, but expensive and has an undesirable warping property).

In the end, we decided to use a duvet cover (250x200cm) with a square
pattern on it. The back half of the duvet cover was removed to reduce artifacts
due to the transparency of the cloth material. The duvet cover is well suited for
our environment, since it is easily portable and can be adapted to room outlays2.
Drawbacks are that the cloth material stretches and warps. Both drawbacks
can be minimized through the handy use of an iron. However, they can not be
eliminated and thus introduce errors, which limit the accuracy of the camera
calibration that can be obtained.

1 Otherwise our overweight charges when flying to the RoboCup competitions would
be even higher

2 It is also a handy blanket for my graduate students when they get caught up in their
work and end up sleeping in the lab
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Figure 2 shows a picture of the calibration duvet cover as seen by the video
camera.

Fig. 2. Calibration Pattern as seen by the Camera

4 Find Matching Points Algorithm

Given the picture shown in Fig. 2, our system uses a semi-automatic method
for calculating the matching points. In the preprocessing step, the user removes
unwanted parts of the picture, such as the table top on the left side of the
calibration picture. Secondly, the colour image is converted into a gray scale
image and thresholded, so that only the white squares are left in the image.
Currently, we use a global threshold value on the red channel, which was sufficient
for our environment.

After this initial preprocessing step, the system automatically computes the
matching points. The idea is to find features in the image that can be assigned
world coordinates by the known geometry of the calibration pattern (i.e., by
knowing that the dimensions of the squares are 8.0 × 8.1cm). A false colour
image of the result of the preprocessing step can be seen in Fig. 3. The figure
shows some of the practical problems in assigning real world coordinates to image
features: (a) some of the squares are missing from the right side of the image,
and (b) some parts of the squares are missing (e.g., in the bottom right corner).

First, the system uses a simple pattern (5 by 5 pixel squares) to find the
white squares in the picture. This step ignores small artifacts and handles missing
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Fig. 3. Calibration Pattern after Preprocessing

squares. The centre point of each square is computed by calculating the moments
along the x and y direction. Then, the squares are sorted. This sorting step is of
critical importance, since if it is done in the wrong order, the assigned real world
coordinates will be wrong, which will result in unusable calibration parameters.

The following algorithm find_real_world is used to sort the squares and to
assign real world coordinates to their centres. The algorithm takes an unsorted
sequence of squares as input and assigns a real world coordinate to the centre of
each square. First, the squares are sorted in increasing order of their y coordinate
(line 3). This is used to repeatedly extract the next row from the sequence. A
row is defined by an initial sequence of squares from y_sort_squares, whose y
coordinates are within the tolerance limit eps. The system also initializes the
variable guess_y, which is used as a guess of the distance in pixels between the
previous and the current row. Lines 8-12 calculate the ratio of the actual distance
between the previous and the current row to the current estimate. This ratio is
used to check for missing rows in the input image. The current y coordinate
Wy, and guess_y are updated in lines 13-14. Similarly to the rows, the squares
within a row are then sorted based on their x coordinate (line 16) and an x
coordinate is assigned (line 24) based on a guess of the distance in pixels to the
next square guess_x (lines 20-23 and line 27).

Note that the estimates to the next row and column are adaptive, so this
method will work in pictures with obvious perspective distortion (as can be seen
in Fig. 3) as long as the change from one row to the next is not more than 50%.
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1 Procedure find_real_world_coords(unsorted_squares) {

2

3 y_sort_squares=sort(unsorted_squares,y-direction);

4 guess_y=0; prev_avg_y=0;

5 Wy=0;

6

7 while (row=extract_row(y_sort_square,eps)!=empty) {

8 avg_y = average_y_coor(row);

9 if (guess_y != 0)

10 factor = (avg_y-prev_avg_y)/guess_y;

11 else

12 factor = 0;

13 Wy=Wy+factor*SQUARE_Y_DIMENSION;

14 guess_y=avg_y-prev_avg_y;

15

16 x_sort_squares=sort(row,x-direction);

17 guess_x=0; prev_square=null;

18 Wx = 0;

19 foreach square in x_sort_square {

20 if (guess_x != 0)

21 factor=(square.x-prev_square.x)/guess_x;

22 else

23 factor=0;

24 Wx=Wx+factor*SQUARE_X_DIMENSION;

25 square.realworld_x = Wx;

26 square.realworld_y = Wy;

27 guess_x = square.x - prev_square.x;

28 prev_square = square;

29 }

30 prev_avg_y = avg_y;

31 }

Table 1. Algorithm for finding real world coordinates
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After approximate real world coordinates have been assigned to the centres
of all squares, the system uses four edge detection steps to find the coordinates
of all four corners. If a corner has been identified, it is assigned a real world
coordinate by the geometry of the calibration pattern (for example in the first
column, the first top left corner has coordinates 0.0, 8.1, the bottom left corner
of the next square is 0.0, 16.2 and the top left corner of the second square is
0.0, 24.3.

This means that the assignment of the real world coordinates to the corners is
independent of the assigned real world coordinates of the centres of the squares
themselves. This is an important feature in our algorithm, since the centres
of objects are distorted by the perspective projection and are moved to the
lower end of the picture (see Fig. 4), which means that they are unsuitable for
applications that require high accuracy. Of course, given an accurate camera
model, this perspective distortion can be compensated for, but this leads to a
chicken and egg problem, since we are using this information to calibrate the
camera in the first place.

Image plane

Car

Video Camera

Centre of Gravity

shifted downwards

Frontal View of Image Plane

Colored Spot

Fig. 4. Movement of the center of a circle under perspective distortion

The real world coordinates of the centres are only used for sorting the squares,
which means that only their relative values are important since they are used
to determine, which square is the next square in a row or column or whether a
square is missing.

Also we found in our tests that this two-stage approach (sort centre of
squares, find corners for each square) works better than assigning world co-
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ordinates to all corner points. Missing squares or missing data points makes this
one step assignment very difficult and error prone.

5 Discussion

The find_real_world_coors algorithm assumes that the perspective distortion
increases along the y axis. This assumption does not always hold. Sometimes, our
camera has to be mounted such that the perspective distortion increases along
the x axis. In this case, the user can simply rotate the image by 90 degrees. Note
that rotation by 90 degrees simple involves swapping pixel coordinates and does
not incur a loss of information.

Given the corners of the calibration carpet, it is also possible to compute the
necessary rotation angle. We experimented with arbitrary rotation angles and
found that the errors introduced through the rotations were too big and that
the calibration data computed was therefore useless.

The algorithm also does not deal with missing squares in the first column.
Without knowing the values for the perspective distortion it is impossible to
compute where the next row starts and therefore to find out whether the first
square in a column is missing.

In practice, both of these aspects are under the user’s control. The carpet is
manually aligned with the camera coordinate system through visual feed back.
The second problem is solved by the user removing any leading columns with
missing squares.

6 Tsai Camera Calibration

After the computation of the matching points, we use a PD implementation of
Tsai’s camera calibration to compute the extrinsic and intrinsic parameters of
the camera model.

The Tsai calibration method uses a four step process to compute the param-
eters of a pin hole camera with radial lens distortion.

Firstly, the position (XT , YT , ZT ) and the orientation (RX , RY , RZ) of the
camera with respect to the world coordinate system is computed. This involves
solving a simple system of linear equations. This step translates the 3D World co-
ordinates into 3D camera coordinates and computes the six extrinsic parameters
of the camera model.

In Step 2, the perspective distortion of a pin hole camera is compensated for.
This step is a non-linear approximation and computes the focal length f of the
camera. The output of this step are the ideal undistorted image coordinates.

Thirdly, the radial lens distortion parameters (κ1, κ2) are computed. These
parameters compensate for the pin cushion effect of video cameras, that is s-
traight lines along the edges of the camera are rounded. An example is seen in
the top and bottom row of the calibration image in Fig. 2. The output of step 3
are the distorted image coordinates.
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Lastly, the image coordinates are discretized into the real image coordinates
by taking the number of pixels in each row and column of an image into consid-
eration.

The last three steps compute five intrinsic parameters of the camera model
(focal length, lens distortion, scale factor for the rows, and the origin in the
image plane).

The Tsai method is a very efficient, accurate, and versatile camera calibration
method and is therefore very popular in computer vision.

7 Evaluation

We evaluated the system in practice (by calibrating different rooms on a number
of occasions) and quantitatively through the use of syntheticly generated and
real camera pictures.

The synthetic picture was generated by computing a perfect image of all fea-
ture points (corners of squares) given our current camera setup (camera mounted
on a tripod, 2.58m above ground). Since in this case the matching points are
100% accurate, it gives an indication of the maximum accuracy that can be
obtained with an eleven parameter camera model.

Given the input image shown in Fig. 2, the corner detection finds 815 corner
points. Table 2 summarizes the average error and the standard deviation of the
error with increasing number of calibration points n. The data in the table was
generated by averaging the results of three cross validation runs for each pic-
ture. In each test, n points were selected at random. The camera was calibrated
with the data from the calibration points and then the average error, standard
deviation, and the maximum error (all in millimeters) were computed.

n Synthetic Picture Real picture

avg. err stddev Max. err avg err stddev Max. err

50 0.9936 0.0653 0.7291 15.2802 7.6748 85.0945
100 0.0964 0.0553 0.3307 17.2455 7.9873 50.0908
150 0.0931 0.0511 0.3068 13.0654 3.8769 37.0576
200 0.0939 0.0557 0.5121 13.8500 5.0923 55.2477
300 0.0904 0.0498 0.3186 13.6753 4.3130 43.3685
400 0.0901 0.0504 0.3207 13.6320 4.2632 56.5799
500 0.0899 0.0497 0.3152 13.5105 3.6942 34.5634

Table 2. Results of the Evaluation. All measurements are in millimeters.

As expected, increasing the number of calibration points improves the cali-
bration of the camera in the synthetic picture. A similar trend can be observed
in the real picture.
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The differences in errors between the synthetic and the real world image
are due to warping of the material and inaccuracies in determining the feature
coordinates precisely.

Also, even when using only 150 points, the predictive power of the algorithm
is sufficient for our purposes. The error of the calibration is less than 1.3cm
on average and the maximum error is 3.4cm. This data is confirmed by testing
the accuracy of the coordinates in uncovered areas of the picture (on the very
top and bottom of the image). Although, there were no calibration points that
covered these areas, the measured error for this region is around 1.5cm.

The system also proved its worth during competition. The camera calibration
was tested at the PRICAI-98 RoboCup and RoboCup-99 competition and proved
very stable and fast [2]. For example, it took us less than 15 minutes to calibrate
the geometry of our camera system.

8 Colour Calibration

In the RoboCup domain, the ball is a bright orange golf ball and to simplify
recognizing the cars they are marked with coloured dots (blue and yellow) or
table tennis balls. These dots provide position and orientation information. Since
we do not have access to special purpose video hardware, all processing must be
done by the video server (Pentium 200MHz).

A simple and fast method for the colour detection is to use minimum and
maximum thresholds for the three colour channels R, G, B. In this model, a
colour is defined as a cube in the R–G–B cube. This method is not robust
enough, since in any practical situation, the colour values will vary greatly with
lighting across the field. This means that the thresholds for the colours must be
made very large and only a small number of different colours can be detected.
In our experience, even when spending a lot of time fine tuning the calibration,
it is impossible to distinguish more than four colours with this method.

Although a change in lighting will affect the absolute colour values (e.g., the
R, G, B channels are lower in a shadow), the relative distribution of colours
is more stable. Therefore, our video server also computes the three difference
channels R - G, R - B, and B - G and uses minimum and maximum thresholds
for the three difference channels.

The addition of the difference thresholds allows us to detect eleven separate
colours reliably, which is sufficient in our domain.

9 Object Tracking

To be able to maintain recognition at 50 fields/sec, the video server uses a
number of optimization techniques to reduce computation time: integer threshold
comparison, object prediction, and a sampling grid.
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9.1 Integer Threshold Comparison

The most frequently used subroutine in our video server is the colour matching
routine. Therefore, it was a natural choice for optimization.

Firstly, we tried standard improvements such as hand coding the routine in
80X86 assembly language. Secondly, we even used the special purpose MMX
instructions. Neither of these approaches led to the hoped for improvement.
The Assembly language implementation only led to 5% speedup. The MMX
routine run somewhat faster, but stalled the FPU which slowed down subsequent
computations of the real world coordinates. Both approaches, of course, have the
additional disadvantage that they are specific to the Pentium CPU and are thus
not portable to others architectures.

Therefore, we looked to a general solution that would make use of the fol-
lowing facts:

– Most modern processors support word (32 bit) operations on integer operand-
s and word memory accesses.

– Pixels are stored as words (32 bit) in either ARGB (big endian) or BGRA
(little endian) format.

The motivation for our approach is to test all three channels R,G and B
against the minimum in one operation by interpreting the pixel as a 32 bit
word. Similarly, our method only uses one operation in the comparison against
the maximum.

Our implementation is based on the realization that subtracting two bit fields
will result in a borrow if the first operand is smaller than the second operand.
If bits at position i are both 0, then there can never be a borrow. Therefore, if
the resulting bit is a 1, it must have resulted from a borrow at position i− 1.

Our colour threshold routine uses the least significant bit of the alpha, red,
and green channel as a stop bit to detect borrows from the red, green, and
blue channel respectively. This means that the least significant bit of the colours
is ignored. This does not cause a problem, since there is very little difference
between for example, a red value of 110 or 111.

The algorithm for our colour thresholding routine is shown in table 3. Vari-
able pixel is an integer representation of the pixel value. Variable lower is
the concatenation of Rmin, Gmin, and Bmin anded with 0x7efefeff (so that
the least significant bits are cleared). Variable upper is the concatenation and
masking of the least significant bits of the upper thresholds respectively.

The least significant bits of the red and green channel in the pixel are cleared
and the lower threshold is subtracted from the pixel. Should a colour channel
(R, G, B) be less than the corresponding threshold, a borrow will have resulted
in bits 8, 16, or 24. If such a borrow occurred, the routine returns 0, otherwise
1.

Comparisons against the upper thresholds are done similarly by subtracting
the pixel value from the maximum threshold.

We use a similar method to calculate and test the difference thresholds R-G,
R-B, and G-B. This routine resulted in a 20% speedup in our code.
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Table 3. The Colour Threshold Routine

int matchColourThreshold(int pixel, int lower, int upper) {

int ret;

pixel = pixel & 0x7efefeff;

if (((pixel - lower) & 0x81010100)||

((upper - pixel) & 0x81010100)) {

ret = 0;

} else {

ret = 1;

}

return ret;

}

9.2 Object Prediction

Another method that we use to speed up the object detection routine is to use
the previous position of an object as a starting point for a new search. The
video server maintains the X and Y velocities of all object. When looking for an
object in the next frame, a new position for the object is predicted using these
velocities and a small 32*16 pixel subarea is searched for the object.

If the object is not found within this area, the object is put on a scan queue.
Object prediction works very well in our domain. In over 90% of the times,

an object can be found in the predicted region. The reason for prediction failure
is most often a fast moving ball, which is deflected or occluded by a robot.

9.3 Sampling Grid

Given the current hardware, we do not have sufficient processing power to scan
the whole image even once. Therefore, we use a sampling grid whose size is
determined by the smallest object that we are trying to find.

In our domain, these are the yellow and blue ping pong balls, which on the
far end of the field are about 6*3 pixels. Therefore, we are using a 6*3 scanning
grid.

9.4 Field Mask

As can be seen in the sample picture 2, only about 2/3 of the image contains
the actual playing field. The tables on the left side and the top of the picture
are not used. The video server uses a mask to distinguish the playing field from
the surrounding area. This has two advantages: (a) finding objects is faster since
only a sub area of the image must be scanned, and (b) the video server is more
robust, since if someone with blue shoes walks through the image it will not be
incorrectly classified as an opponent.
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10 Conclusion

This paper describes a practical implementation of camera calibration in large
rooms. It combines the use of a well known calibration algorithm with a semi-
automatic method for computing the matching points.

The method uses a two stage approach. Initial approximations of the centres
of objects (in our example squares) are used to sort the objects, but specific
object features are used to assign real world coordinates. We intend to use feature
detection mechanisms with sub-pixel accuracy, such as the ones described in [8]
in the future to improve the accuracy of the calibration.

Object detection is based on blob detection of coloured spots on the car and
the ball. The videoserver uses three colour ranges and three difference ranges
to identify different colours. Under general lighting conditions, such as the ones
that exist during RoboCup, this method allows us to distinguish between up to
eleven different colours. A fast integer threshold comparison is used which lead
to a 20% speed-up of the video server.

Currently, only geometry and brightness information in the calibration image
is used to calibrate the camera. We are currently working on extending the
system to compute the colour changes for blue and white squares. This would
allow us to estimate the spectrum of the light source. The goal is to compute the
colour thresholds for orange, blue, and yellow balls automatically given a single
calibration picture as input.
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Abstract. This paper investigates the use of reinforcement learning in

solving the path-tracking problem for car-like robots. The reinforcement

learner uses a case-based function approximator, to extend the stan-

dard reinforcement learning paradigm to handle continuous states. The

learned controller performs comparable to the best traditional control

functions in both simulation and also in practical driving.

1 Introduction

The CITR at the University of Auckland has a mobile robotics lab, which hosts
the Aucklandianapolis competition ([2]). The goal of the competition is to drive
car-like (non-holonomic) robots �ve laps around a race track as quickly as pos-
sible. The cars are simple remote controlled toy cars with proportional steering
and speed controls. A parallel port micro-controller based interface ([7]) allows
us to control the cars (65 speed settings, 65 direction settings). Position and
orientation information for the cars is provided by a video camera mounted on
top of the playing �eld.

A non-holonomic path planner ([3]) creates a path for the car around the
race track. The path contains only three di�erent path segments: (a) straight
lines, (b) maximum turns to the right, or (c) maximum turns to the left. The
toy cars do not have shaft encoders so there is a feed forward control error when
driving a given path.

Therefore, we need a controller which keeps the car on the track. Note that
the control function described in this paper only depends on the curvature of
the path and is thus mostly independent of the path itself. This means that our
results are also applicable to more dynamic environments, such as RoboCup.

Some popular methods to control a non-holonomic mobile robot in such a
path tracking problem include:

1. Feedback control as described by Alessandro and Giuseppe [5].
2. A Sliding-mode controller suggested in [1], which was used during initial

trials for the Aucklandianapolis. This state of the art controller performed
extremely well in simulation, but performed poorly in the practice. The

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 162−173, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000

Path Tracking Control of Non-holonomic
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motivation of this project was to improve on its performance in the real
world, see section (5).

3. A Fuzzy logic controller [8] which currently holds the unoÆcial track record
for the Aucklandianapolis. The fuzzy logic controller is able to drive a car
twice as fast as the sliding mode controller mentioned above.

This paper describes another method based on dynamic programming, a
reinforcement learning controller. At the core of the reinforcement learner is a
value function, called Q-value, which is why it is also called Q-Learning ([9]).

The following section describes the kinematic model of the car-like vehicle, or
just car for simplicity. The model is used throughout the paper. Section 3 gives
a brief introduction to reinforcement learning. Section 4 describes a case-based
function approximator, which is used to approximate the value function in our
implementation. Section 5 describes the results of our experiments using both
simulation and practical driving. Section 6 concludes the paper.

2 Kinematic Model

In this research, we use a kinematic model, which is relative to the path. The
controller knows the current position and orientation errors and the curvature
of the path. However, the future path is not known. This model is appropriate
in highly dynamic domains such as RoboCup.

The kinematic model is shown in Fig. 2. The car is at position (x,y) and is
following a path with curvature R. The point (x̂,ŷ) is the closest point on the
path to point (x,y). The position error ~y is the distance between points (x,y)

and (x̂,ŷ). �̂ is the tangent of the path at the point (x̂,ŷ), � is the orientation of

the car, ~� is the orientation error of the car (that is, ~� = � � �̂).

x̂ x

y

y
y

q

q

q

q

Y
^

^
~

^

~

Path

Car

X

Curvature R

Fig. 1. The Kinematic Model
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In the representation used in this paper, the current state of the system is
de�ned by the positional error ~y, the orientation error ~� and the curvature of the
path R (a 3-tuple). The input to the controller is the three tuple for the current
state and the outputs are desired settings for speed and direction.

3 Reinforcement Learning

This section gives a brief introduction to reinforcement learning. The most im-
portant concepts in reinforcement learning are the agent and the environment.
The agent (a remote-controlled car in our case) has a number of possible actions.
The agent performs some actions in the environment (which is modeled through
a set of states). In some states, the agent receives feedback from the environment
about how good or bad a certain state is. This feedback is called reward. The
task of reinforcement learning is to �nd the action with the highest expected
reward (Q-value) in the current state. In the path tracking problem, the reward
is based on how well the agent tracked the given path.

At any time, the agent is in one state (X), it �nds the optimal action (U)
and executes it. Usually, the selected action is the one with the highest expect-
ed reward (Q-value). To prevent premature convergence on suboptimal action
sequences, a reinforcement learner will sometimes not select the best action so
that it can further explore the environment. This is called the exploration vs.
exploitation trade-o�.

After executing the action, the agent enters another state(X 0). The agent may
get a reward (positive or negative reinforcement) when entering certain states.
The function Q(X;U) is the value function for a given state(X) and action(U).
It is the immediate reward r after the execution of the action(U), plus the best
Q-value (discounted by a factor ) in the following state. The reinforcement
learning algorithm is shown below (Algorithm 1).

Algorithm 1 Reinforcement Learning Algorithm

for each pair of < X;U > do

Q(X;U) 0
end for

Observe the current state X
loop

1.Select an action U and execute it
2.Receive immediate reward r
3.Observe the new state X'
4.Update the table entry for Q(X,U), as follows:

Q(X,U) = r +  �maxU0 Q(X 0; U 0)
end loop

Initially, since all function values are zero, the agent just selects an action
randomly. With more and more experience, the function values may converge
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to the actual values [6] and the agent may use the learned function values for
optimal control.

It is important to note that in general, the size of the state space determines
how quickly the algorithm will converge on the correct function. The larger the
state space, the longer it will take to learn the correct function.

3.1 Reward function in the car domain

The reward function is of critical importance in the design of a reinforcement
learner. The reward function must accurately reect the progress that an agent is
making towards achieving a goal, since otherwise the agent will learn the wrong
behavior.

In the car driving domain, we want to keep the car on the path, so it is
reasonable to base the reward function on the position (~y) and orientation error
(~�). Preliminary experiments, however, with Balluchi's controller ([1]) suggest-
ed that it is also important to have a smooth control function. Therefore, the
reward function in this research is based on the weighted sum of normalized
position error (~y) and orientation error (~�) as well as the necessary control work
(Di�erence in control setting U at time t and time t�1) as shown in Equation 1.

r = �w1 � (
~y

2
)2 + w2 � (

~�

2�
)2 + w3 � (

Ut � Ut�1

9
)2 (1)

In a control problem, in principle a reward can be associated with every
state. However, to get a better estimate of the real reward of a state, we return
as reward the sum of the rewards for the last �ve states.

3.2 Reinforcement Learning with Continuous States

One may notice that the algorithm listed above assumes discrete states and
actions. This is a problem in our path-tracking domain. Although the actions
of the car (i.e. left-turn, right-turn etc) are discrete, the state, a 3-tuple vector
< ~y,~�;R >, is continuous. We must provide some mechanism to quantize the
state space before reinforcement learning can be applied in this problem. There
are at least two approaches.

The �rst one is to quantize the state directly and apply reinforcement learn-
ing. An example is shown in �gure 2. This method is simple but inexible and
ineÆcient. It will unnecessarily increase the size of the state space. For example,
assume that the car is facing in the right direction when following a straight
line. In this case, if the car is only slightly to the right of the line, we want to
turn gently left to approach the line and to not overshoot it. If the car is far
away from the line, we want to turn sharply to get back onto the path. There-
fore, we would require a �ne quantization. But if we are following a circle, then
independently of how far away we are from the outside of the circle, we want
to make a sharp turn, since all circles are maximum turns. This means that the
�ne quantization will generate unnecessary states, which will greatly reduce the
convergence speed of the algorithm.
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Fig. 2. Static Quantization. Each intersection of lines represents of the discretization

grid a world state.

The second method is the use of a function approximator for the value func-
tion Q. In this case, the quantization is implicit and based on previous cases,
which are stored in a database. Figure 3 shows an example of a case-based quan-
tization. A state is assigned a value based on a prototypical case (e.g., close to
the straight line or further away). In this simple example, all cases have the
same area of inuence. The key is to calculate the distance from the current
state to those existing states in the database. In the example, only the nearest
case determines the type of state, but in our implementation, a nearest neighbor
set is computed.

In general, this distance is used to measure the contribution of all those
selected states in the database in the Q evaluation. The research described in
this paper uses a case-based function approximator, which is described in more
detail in the following section.

4 Reinforcement learning using a Case-based Function

Approximator

Function approximators are used to represent the value function(Q) for a con-
tinuous state problem. In discrete space, a �nite resource can be used to store
the value function, whereas in continuous space this is not the case. There are
many functions approximators. For more details please see [10]. The Case-based
function approximator is one of them and it is suitable for our task because of
its structure. Operations are de�ned for the evaluation and update of the value
function. Details can be found in [10].
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Fig. 3. Case-based Quantization

4.1 Case Structure

Every case in the database corresponds to one input point Xi that the agent has
visited( Xi =< ~yi; ~�i; Ri > in our case). One case Ci is:

Ci = (Xi; Qi; ei; fUij ; Qij ; eijg)
where i = 1 : : :N is the number of cases
and j = 1 : : :M , M is the number of actions

(2)

From 2, it can be seen that Ci consists of two separate portions, the �rst
portion (xi; Qi; ei) is associated only with the state, the other (Uij ; Qij ; eij) is
associated with actions within the state. ei is the eligibility trace of the state
[11], while eij is the eligibility trace for action j within the state i.

4.2 Function Evaluation

To evaluate the value function Q(XQ; UQ) for the query stateXQ, the database is
searched for those states that are similar to the state in question. The distance
(di) from an existing state (Xi) to the query state Xq can be used for the

estimation of similarity (di = f( ~yi� ~yq)+ g( ~�i� ~�q)+h(Ri�Rq)) . After search
through the entire database, a nearest neighbor set NNq for the query state
Xq is generated. NNq consists of those states with distance to Xq less than a
prede�ned threshold �k . That is

NNq = fQijdi <= �kg (3)
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The distance measure di is de�ned as:

di =

vuut� ~yi � ~yq
2

�2

+

 
~�i � ~�q
2 � �

!2

+

�
Ri �Rq

2

�2

(4)

The distance is based on three parts: current distance error, current orien-
tation error and the curvature of the path. The distance error is normalized to
�1::1 meter, the orientation error to 360 degrees, and the curvature to 0::2.

From NNq in Equation (3), all existing cases in the database that are similar
to the current input Xq can be found, thus the Q value for the query point
< Xq,Uq > can be calculated by the following formulas:

Qi(Uq) = (1� �)Qi + (5)

�

0
@ X
8uij2Ci

Ku(duij)P
jK

u(duij)
Qij

1
A8Ci 2 NNq

Q(Xq ; Uq) =
X

8Ci2NNq

Kx(dxi )P
j K

x(dxj )
Qi(Uq) (6)

The value Qi(Uq) is the overall Q value for the current query action Uq in
state Xi. It consists of two parts: (a) the Q value for state Xi and (b) the sum
over all actions in this state.

The action having the highest Q(Xq; Uq) is selected as the current action for
the input Xq .

4.3 Learning Update

All Q-values in the database must be updated after a new reward is returned from
the environment for the given action. The eligibility traces (ei,eij in Equation(3))
are also updated according to their contribution to Q(Xq ,Uq). Based upon the
distance function, a new case is created if no case near enough to the query input
Xq exists [10].

4.4 An Example of Function Evaluation

This section gives an example of how to evaluate the Q-value for an input Xq =<
0:5; 0; 1 > and to �nd the best action for state XQ. For simplicity, after searching
the database, only two cases are in NNq in Equation (3), as shown in Figure
4. Table 1 shows details of the cases in NNq. There are only three actions(0
for left-turn, 1 for go-straight, 2 for right-turn) here. The actual implementation
uses nine di�erent steering angles.

In Table 1, diq is calculated by Equation (4), The selection ofKu in Equation
(5) and Kx in Equation (6) is based on the strategy of exploitation and explo-
ration[6]. Set � = 0.6 in Equation(5), and let Ku be such that in Equation(5)
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Fig. 5. One of the situations as shown in Fig. 4

Case ~y ~� Ri Q Q0 Q1 Q2 diq

1 0.6 0.3 1 -0.2 -0.8 -0.6 -0.3 0.069

2 0.4 -0.1 1 -0.1 -0.7 -0.1 -0.2 0.052

Table 1. The two cases in the nearest neighbor set NNq
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Qi(Uq) = (1� �)Qi+ �Qiq (that is, only the value of the action that is the same
as the query action is considered), Kx(dxi ) = dxi .

The distance of case 1 and 2 to the query state are given as:

d1 =

s�
0:6� 0:5

2

�2
+

�
0:3� 0

2�

�2
+

�
1� 1

2

�2
= 0:069

d2 =

s�
0:4� 0:5

2

�2

+

�
�0:1� 0

2�

�2
+

�
1� 1

2

�2
= 0:052

The overall Q values for the actions in state X1 and X2 are computed using
Equation 5.
Q1(0) = (1� �)Q1 + �Q0 = (1� 0:6) � (�0:2) + 0:6 � (�0:8) = �0:56
Q1(1) = (1� �)Q1 + �Q1 = (1� 0:6) � (�0:2) + 0:6 � (�0:6) = �0:44
Q1(2) = (1� �)Q1 + �Q2 = (1� 0:6) � (�0:2) + 0:6 � (�0:3) = �0:26

So action 2 (right turn) has the best Q value in case 1.
Q2(0) = (1� �)Q2 + �Q0 = (1� 0:6) � (�0:1) + 0:6 � (�0:7) = �0:46
Q2(1) = (1� �)Q2 + �Q1 = (1� 0:6) � (�0:1) + 0:6 � (�0:1) = �0:1
Q2(2) = (1� �)Q2 + �Q2 = (1� 0:6) � (�0:1) + 0:6 � (�0:2) = �0:16

Similarly, action 1 (straight) has the best Q value for case 2. As shown below,
we evaluate the best action for the current state Xq by using Equation 6.

Q(Xq; 0) =
d1

d1+d2
Q1(0)+

d2
d1+d2

Q2(0) =
0:069
0:121

(�0:56)+ 0:052
0:121

(�0:46) = �0:52

Q(Xq; 1) =
d1

d1+d2
Q1(1) +

d2
d1+d2

Q2(1) =
0:069
0:121

(�0:44) + 0:052
0:121

(�0:1) = �0:29

Q(Xq; 2) =
d1

d1+d2
Q1(2)+

d2
d1+d2

Q2(2) =
0:069
0:121

(�0:26)+ 0:052
0:121

(�0:16) = �0:22

As Q(Xq ; 2) has the highest value, the agent will take action 2, namely turn
right when the input Xq is < 0:5; 0; 1 >

5 Experiments

The controller described above has been implemented both in simulation and
practical driving. Surprisingly, the database generated during simulation can be
directly applied to practical driving. This means that the controller in a real
world environment does not need to learn from scratch, which is very diÆcult
in practice because it requires too many training episodes and because you need
to put the car close to the path again if the current trial fails.)

The Aucklandianapolis race track is used as the sample path, both in simu-
lation and practical driving.

Table 2 shows the average position and orientation errors for di�erent num-
bers of learning episodes. Each trial consists of 200 steps. The data is averaged
over 100 trials after the training phase.
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Fig. 6. Learned result in simulation after 1000 trials

Figure 7 shows the result of using the learned controller to drive the car in
practice. As can be seen, the controller can use the results from simulation to seed

the controller to drive the car in practice. Ideally, one would like the controller
to improve its performance now in practice with increased experience. However,
there is no noticeable improvement in practical driving. There are two reasons:
(a) the reinforcement learner has settled, that is most Q values are known, on
the current controller so that it is unlikely that it will explore new actions, and
(b) it takes a lot longer to drive a track in practice as opposed to simulation
where it is easy to drive a few thousand laps.

Experiment Training Avg. ~y(m) Avg. ~�(radius)

1 200 0.2684 0.3202

2 400 0.2126 0.2802

3 600 0.0734 0.1381

4 800 0.0462 0.1043

5 1000 0.0509 0.1033

6 2000 0.0477 0.0943
Table 2. Average Control Errors in Simulation
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Fig. 7. Using the learned result in practical driving

6 Conclusions

In this paper we describe some aspects of reinforcement learning, such as func-
tion value representation and how it is used in the problem of path-tracking.
Reinforcement learning can be adapted to control a car in path-tracking. The
training can be initialized using a simulation and after the performance has sta-
bilized, training can continue with practical driving. Since the representation
is independent of the path ahead, the learned controller can be used in real
time path following tasks, independently of whether the path is static (as in the
Aucklandianapolis) or dynamic (as in the RoboCup competition).

The performance (average control errors) of the simulation in our experiment
is satisfactory. The learned values in the simulation can also be used in the real
world task of driving our toy cars.

The reinforcement learning controller has also proven itself in the Aucklan-
dianapolis competition. It won the 1999 competition in 2 minutes 30 seconds,
which is twice as fast as Balluchi's controller and comparable to the Fuzzy Logic
controller ([8]). The reinforcement controller is the only controller that has been
used successfully to drive cars with and without linear steering behavior. The
Fuzzy Logic controller works by interpolating steering angles and thus works
only for cars with at least an approximate steering behavior.
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However, further work is needed to achieve signi�cant improvement during
learning (as in the simulation) in the real world with its many sources of errors
e.g., noise, actuator error and slipping.

Another improvement is the use of dynamic weights in the reward function.
A simple example shows that given our representation, static weights are insuf-
�cient to learn the correct control function. Assume that the car is following a
straight line. When the car is far away from the path, then it will need to steer
towards the path, which means that it will get a reduced reward due to the ori-
entation error. In this case, the weight on the orientation error should be small.
However, when close to the line, the orientation error is more important than
the position error and should receive more weight. Full details of the practical
evaluation of the reinforcement learner are given in [4].
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Abstract. This paper presents the vision system of the robot soccer
team Agilo RoboCuppers 1 { the RoboCup team of the image under-
standing group (FG BV) at the Technische Universit�at M�unchen.

We present a fast and robust color classi�cation method yielding signi�-
cant regions in the image. The boundaries between adjacent regions are
used to localize objects like the ball or other robots on the �eld. Further-
more for each player the free motion space is determined and its position
and orientation on the �eld is estimated. All this is done completely
vision based, without any additional sensors.

1 Introduction

The vision module is a key part of our robot soccer system described elaborately
in [1, 5]. Given a video stream, the vision module has to recognize relevant ob-
jects in the surrounding world and provide their positions on the �eld to other
modules. Each robot is only equipped with a standard PC based on a single
Pentium 200 MHz processor. Consequently, we have to focus on e�cient and
computationally inexpensive algorithms to serve the real time constraints. This
is done with the help of the image processing tool HALCON (formerly known as
HORUS [3]). This tool provides e�cient functions for accessing, processing and
analyzing image data, including framegrabber access and data management.

In general, the task of scene interpretation is a very di�cult one. However,
its complexity strongly depends on the context of a scene which has to be in-
terpreted. In RoboCup, as it is currently de�ned, the appearance of relevant
objects is well known. For their recognition, the strictly de�ned constraints of
color and shape are saved in the model database and can be used. These con-
straints are matched with the extracted image features such as color regions and
line segments. Figure 1 shows a data ow diagram of our vision module.

Besides recognizing relevant objects, further tasks of the image interpretation
module are to localize the recognized objects and to perform the self-localization

1 The name is derived from the Agilol�nger, which were the �rst Bavarian ruling
dynasty in the 8th century, with Tassilo as its most famous representative.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 174−185, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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Fig. 1. Data ow diagram of the vision module.

of the robot on the �eld. For this the intrinsic camera parameters as well as the
external ones relative to the robot were determined by calibration.

This paper is organized as follows: Section 2 describes the algorithms applied
for the color based image segmentation and object extraction. In Section 3 the
estimation of the position of relevant objects in the 3-D coordinate system of
the observing robot is discussed. A video based self-localization algorithm using
the �eld boundary lines is presented in Section 4. Section 5 shows the achieved
results and, �nally, a conclusion is given.

2 Color based Image Segmentation and Object Detection

This section describes how an YUV-image, as captured from the camera, is
segmented into regions representing one color class each. The overall aim of this
segmentation process is to extract one segment for each visible object of the
current scene. Since all important objects of the RoboCup scenario have distinct
and unique colors, color is the key feature used for object recognition.

First, color regions are determined by the image processing module using a
fast classi�cation algorithm which assigns a color class label to each pixel (see
Equation 1) according to its YUV-values.

(y; u; v) �! fno color; black; white;

green; blue; cyan;

magenta; red; yellowg
(1)

Then various image processing operators are applied in order to determine the
regions which contain the important objects of the RoboCup scenario, e.g. ball,
lines, robots and goals.

2.1 Building a robust color Classi�er

Previous RoboCup events have shown that the illumination conditions di�er
from �eld to �eld. Therefore, an adaption to the actual lighting conditions of
the �eld is needed.
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Fig. 2. The color classi�er training tool.

For building an adapted color classi�er we have developed an interactive
classi�cation tool which supports supervised learning of the appropriate color
classes (see Figure 2). The YUV-color space is used in order to distinguish dif-
ferent color classes. While the Y-channel heavily depends on the light intensity,
the U- and V-values are relatively invariant regarding the brightness of the light.
Since we use a camera with deactivated auto white balance the U- and V-values
of a class have a quite small variance. The classi�cation tool determines color
clusters in the UV-plane according to test-samples and assigns color class labels
to them. For achieving a robust classi�er the training can be performed over
several di�erent images.

A color class label is assigned to a cluster in the YUV-color space as follows.
An YUV-image is grabbed and the Y-channel is displayed. The user draws a
region which contains only pixels of the same color class and assigns a label
to it. First, the minimum and maximum brightness values according to the Y-
channel are determined. Then a 2-D histogram for the U- and V-channels of the
selected region is computed. This 2-D histogram is interpreted as a 256 � 256
image, and several threshold, closing and opening operators are applied to it.
This eliminates faulty responses arising form color noise in the camera image,
and provides a compact cluster representing one color class in the UV-plane.

This procedure is repeated for all color classes of interest incorporating dif-
ferent images. As a �nal result the color calibration tool saves a 256� 256 color
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Fig. 3. The color segmented view of a robot.

class label image for the U- and V-channels and the minimum and maximum

Y-values for each color class label.

2.2 Fast color based Segmentation

During the match the interface integrating the framegrabber device driver into

the image processing library performs the color based segmentation. For each

pixel the U- and V-values serve as indices into the previously determined color

class label image. Each pixel is assigned to one region which corresponds to a

speci�c color class, if its brightness is within the previously determined brightness

interval for that color class. It is noteworthy that this procedure determines one

region for each color class and that these regions need not to be interconnected

and may be distributed all over the image.

After the whole image has been processed the framegrabber interface returns

the determined color regions using a runlength encoding. This encoding is the

default data structure used by the image processing system HALCON for storing

regions. Consequently all HALCON operators can now easily and e�ciently be

applied to the pre-segmented image.

2.3 From Color Regions to Object Segments

Once the color regions are known, several di�erent operators are applied in order

to determine the independent segments which contain objects such as the ball,

robots or goals.

First, di�erent morphological operators to the color regions are applied, in

order to remove small disturbances and make the regions more compact. Then we
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determine the single object segments performing a connected component analysis
using the 8-neighborhood. Each of these segments is now regarded as an object
hypothesis. Finally, objects can simply be recognized through the computation
of certain shape features and veri�ed by plausibility tests. For example, the ball
segment can be detected using the shape feature anisometry, goals are discovered
by their size, and lines by their length and their angle of inclination. Figure 3
shows a result of our segmentation and object recognition process. The yellow
goal, the goal keeper, the ball and one opponent are clearly visible.

3 Object Localization

In this section we explain how the 2-D regions, introduced in the previous section,
are used to estimate the position of relevant objects such as the ball, the goals
or other robots in the 3-D coordinate system of the observing robot.

The cameras of the robots are calibrated using the approach presented in
[6]. With the help of the intrinsic camera parameters pixel coordinates can be
converted into image coordinates. Since we use a camera with a wide viewing
angle, about 90 degree, for this conversion it is important to take the radial
distortions of the lens into account even if not high precision is needed and high
speed is desired.

3.1 Restriction on a 2-D Localization Problem

We assume that all relevant objects are located on the ground of the �eld, i.e.
the distance between an object and the plane de�ned by the ground of the �eld
is zero. Of course for a jumping ball this is not correct. However, such cases
are quite rare in RoboCup games. The restriction onto the ground provides
an one-to-one correspondence between a point on the ground plane E and its
observation in the image plane.

In order to estimate the location of an opponent, for example, we determine
in the corresponding segmentation result the lowest point p. This point and the
optical center of the camera de�ne a viewing ray r. Its intersection with the
plane E of the �eld yields an estimate of the opponents maximum distance and
its direction in camera coordinates, see Figure 4. The 3-D point P corresponding
to the observed image point p = [px; py]

T is given by

P =
h

�py
[px; py; f]

T (2)

Here the focal length of the camera is denoted by f and its height, the distance
to the ground, by h. The point P given in camera coordinates can easily be
expressed in the coordinate system of the robot, since the pose of the robot's
camera is given in robot coordinates.

In general the 3-D point P corresponding to the observed image point p lies
not exactly on E. However for the robots taking part in the RoboCup competi-
tion the distance d(P;E) is in general small enough.
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Fig. 4. An estimate of the object distance is given by the intersection of the viewing

ray with the ground plane of the �eld.

The segmentation algorithm described in the previous section only classi�es
a pixel if its classi�cation is quite sure. This means some pixels do not belong to
any segment, especially at the border of two segments. Therefore, the distance
computed as discussed above is an upper limit for the object distance. In order
to obtain a lower limit we use the highest point p0 under p classi�ed as �eld.
This point de�nes a second viewing ray r0. Its intersection with the plane E

yields a lower limit for the object's distance.

3.2 Using Shape Restrictions for the Localization of the Ball

Due to noise, reections or other disturbances the segmentation process may
provide more than one red segment as candidates for the ball. In order to decide
if a segment actually corresponds to the ball we use several plausibility checks.
For all hypothesis given by red segments we compute the distances. Using the
ball's distance we determine the radius r of the ball's projection onto the image
plane. A segment of size sx in x-direction and size sy in y-direction is rejected
as ball hypothesis if the condition

(sx < bxr) or (sy < byr) (3)

holds. The parameter by is chosen to be smaller than bx since due to reections
on the top of the ball this part quite often can not be classi�ed as red. Further-
more we reject segments which cover a number of pixels which is too small in
comparison with the calculated projection of the ball.
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3.3 Free Motion Space

In order to navigate autonomously it is essential to know where the robot can

move without collision. The localization approach described above yields the

positions of objects localized with a relatively high probability. However, objects

which could not get localized could still represent an obstacle. Therefore, we

compute the free motion space independently of the object localization.

Fig. 5. Free motion space: The possible moving area of the robot is equally divided into

sectors. To each of the sectors a maximal moving distance is associated, representing

the space in which the robot can move without collision.

We divide the space of possible motion directions into sectors of equal angle

as depicted in Figure 5. Each of these sectors on the �eld corresponds to a

region in the image plane. Since the white lines of the �eld are no obstacles in

contrary to the also white wall, we distinguish the white lines from the white

wall by investigating the neighborhood of white regions. For determining the free

motion space the green �eld regions and the white line regions are merged. Then

morphological operations are applied in order to eliminate small artifacts. Since

the ball can be moved by the robot the ball is also no real obstacle. Therefore, we

compute for each sector the furthest point such that all closer points are either

green or red, which means they are no obstacle. This point de�nes the length of

a sector.

4 Self Localization

Obtaining the pose of the robots in the �eld coordinate system is a crucial

term for the strategic planning of the robots, especially for actions, where sev-

eral robots have to collaborate. Our self-localization algorithm is based on the

boundaries of the �eld. They are easy to detect and allow a robust pose estima-

tion. If a robot detects only one boundary line, the distance to this line and the
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robot's orientation can be adjusted. With two lines the robot can determine its
absolute position and orientation. In the following sections we will discuss the
feature extraction and pose estimation process.

4.1 Feature Extraction

The aim of the feature extraction process is to detect one or two lines of the �eld
boundary, for which the relative 3-D coordinates are computed.

To detect the �eld boundaries only the border area between the �eld regions
{ green �eld and white lines { and the white wall regions is investigated. This
area or region of interest can easily be achieved by a dilatation operation applied
on both the wall and the �eld region followed by intersecting the two resulting
regions.

Two di�erent methods were implemented for ascertening the �eld boundaries.
The �rst approach uses directly the �eld-wall-border region mentioned above.
The skeleton is calculated and transformed into a set of contours C. In the
second method, a subpixel accurate edge �lter is applied onto the Y -channel
only within the previously determined region of interest, also calculating a set
of contours. This method results in much more accurate contours but needs
more computation time (approx. 30 ms vs. 5 ms). Both methods can be used
alternatively.

The next steps remove camera distortions and approximate the contour seg-
ments with straight line segments. For this the following process is performed:

1. 8ci 2 C : Compute a regression line.
2. Filter lines by angle and length. Vertical lines and too short lines are dis-

carded.
3. Join contours ci and cj which are collinear and closer than a maximum

distance.

To achieve 3-D line segments we project the endpoints of the 2-D line seg-
ments onto the ground plane using the method described in Section 3.1. Collinear
3-D line segments are joint.

4.2 Obtaining Correspondences

For the self-localization we use a model of the �eld consisting of the four bound-
ary lines. In order to estimate the pose we have to �nd correspondences between
the 3-D model lines and the 3-D backprojection of their 2-D observations result-
ing from the method described in Section 4.1.

The two goals with their distinct colors are used to obtain the needed cor-
respondences. If a 2-D line segment is adjacent to a goal segment then this line
segment corresponds to the 3-D line next to the observed goal. This test is per-
formed using a dilatation method described in [2]. If a second orthogonal 3-D
line segment is given then this segment corresponds to a side line. The position
of the goal segment and the 2-D line segment in the image de�nes whether the
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Fig. 6. The RoboCup monitor visualizes the actual positions of robots, ball hypotheses

and free motion spaces.

line segment corresponds to the left or right side line. Due to noise the two
back-projections are usually not exactly orthogonal. In this case we substitute
the back-projections by two orthogonal lines having minimal distance to the
original back-projected lines.

If no goal is extracted we can not establish correspondences as described
above. In this case an absolute relocalization is not possible. Therefore, the
pose of the robot at time ti is predicted from the data at time ti�1 and the
odometric data from the robot. We match the back-projected lines given in the
robot coordinate system with the model line given in the world coordinate system
such that the di�erence of the robot's new and predicted orientation is minimal.
With this renewing method a correct match is performed, if the error of the
orientation prediction is lower than 45 degree which holds most of the time.

4.3 Pose Estimation

Once the correspondences are given, we have to determine the robot's pose, such
that the back-projected lines, given in robot coordinates, �t to the model lines,
given in world coordinates.

The robot's pose has three degrees of freedom and is represented by a two-
dimensional translation vector T := (Tx;Ty)

T and a rotation angle �. Since
the feature extraction yields either zero, one or two line segments we have to
distinguish three cases. In the quite rare case where no line segment is given no
vision based update of the robot's pose is possible.

For a single line segment the problem is underdetermined. However, the ro-
tation and one component of the translation can still be determined. The new
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orientation �t and the previous orientation �t�1 are related by

�t = �t�1 +��t (4)

where ��t denotes the angle between the back-projected line and the corre-
sponding model line. Furthermore the robot is able to update its distance to the
observed line. Similar to the orientation, the relation between the new translation
Tt and the old translation Tt�1 is

Tt = Tt�1 +�Tt: (5)

Here the vector �Tt is the distance vector between the model line and the back-
projected line. Note, after the orientation is updated using Equation (4), these
two lines are parallel and �Tt is usually not zero. The translation along the line
can not be estimated from a single line. Therefore the component of Tt parallel
to the line is obtained from the previous translation vector Tt.

If two line correspondences are given, the orientation can be updated again
using Equation (4). Since the two back-projected lines are forced to be orthogonal
(see Section 4.2), the quantity��t is the same for both lines. With two lines both
components of the translation can be updated. Once again the new translation
is given by Tt = Tt�1 + �Tt. However here �Tt denotes the distance vector
between the intersection of the model lines and the intersection of the back-
projected lines.

5 Results

We have implemented the above robot vision system in an object-oriented frame-
work that allows the implicit modeling of time within image processing systems
[4]. The whole system is based on a modular design and we are able to ex-
change all image processing algorithms at run-time. This o�ers great exibility
and enables us to build rapid prototypes of sophisticated vision algorithms. The
algorithms presented in this paper are currently applied and represent up-to-now
the best solution for our robot soccer team.

In order to verify and measure the accuracy of the (self) localization algo-
rithms we have developed a monitoring program that visualizes the positions,
orientations, free motion spaces and ball hypotheses of the robots (see Figure 6).
In a second window the states of the robots are displayed, such as the current
action and role as well as the planning state (see Figure 7).

The vision system has been tested on a Linux operating system using an
low-cost Pentium 200 MHz processor. An inexpensive PAL color CCD camera
(Siemens SICOLOR 810) is mounted on top of the robot console and linked to
the S-VHS input of the video capture card (BT 848 based with PCI interface).
Gain, shutter time, and white balance of the camera are adjusted manually.

With this con�guration we are currently able to process 7 to 12 frames with a
size of 384�172 pixels per second. The frame rate mostly depends on the method
used for determining the �eld boundaries in order to perform self localization.
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Fig. 7. A second window displays the states of the robots.

Overall the self-localization and object detection algorithms work quite robust.
The robots are capable to detect the ball and score goals as well as to detect other
robots and avoid collisions. However, there are still cases where a robot estimates
its pose incorrectly. In general this occurs when most of the goal and border lines
are hidden behind other robots. We are currently investigating further methods,
incorporating lines on the �eld as well as global sensor fusion, to overcome this
problem.

6 Conclusions

We have presented a system that segments objects by their color and generates a
3-D interpretation of the scene in real time. Our robot team has proven it's play-
ing capabilities at several occasions (i.e. RoboCup'98 in Paris and the German
Vision RoboCup'98 in Stuttgart). However a few problems remain.

The presented color classi�cation algorithm is fast and robust, but we still
have to adjust the classi�er manually before each game. A more precise assign-
ment of the color class labels to regions in the YUV-space might be one solution,
but we are also considering time, position and orientation dependent solutions.

We hope to overcome the problem of incorrect pose estimations with a global
sensor fusion system, that constructs a global view of the playing �eld from the
local robot views. So far we had di�culties in exploiting this possibility, as we
were relaying on a very unstable wireless radio ethernet. A further approach will
also exploit the positions of �eld lines and the non-linear center circle in the 3-D
CAD model.
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Abstract. This paper describes the mechanical and electrical design,
as well as the control strategy, of the FU-Fighters robots, a F180 league
team that won the second place at RoboCup’99. It explains how we solved
the computer vision and radio communication problems that arose in the
course of the project.
The paper mainly discusses the hierarchical control architecture used to
generate the behavior of individual agents and the team. Our reactive
approach is based on the Dual Dynamics framework developed by H.
Jäger, in which activation dynamics determines when a behavior is al-
lowed to influence the actuators, and a target dynamics establishes how
this is done. We extended the original framework by adding a third mod-
ule, the perceptual dynamics. Here, the readings of fast changing sensors
are aggregated temporarily to form complex, slow changing percepts.
We describe the bottom-up design of behaviors and illustrate our ap-
proach using examples from the RoboCup domain.

1 Introduction

The “behavior based” approach has proved useful for real time control of mobile
robots. Here, the actions of an agent are derived directly from sensory input
without requiring an explicit symbolic model of the world [1, 2, 5]. In 1992, the
programming language PDL was developed by Steels and Vertommen as a tool
to implement stimulus driven control of autonomous agents [8, 9]. PDL has been
used by several groups working in behavior oriented robotics [7]. It allows the
description of parallel processes that react to sensor readings by influencing
the actuators. Many basic behaviors, like taxis, are easily formulated in such a
framework. On the other hand, it is difficult and expensive to implement more
complex behaviors in PDL, mostly those that need persistent percepts about
the state of the environment. Consider for example a situation in which we want
to position our defensive players preferentially on the side of the field where
the offensive players of the other team mostly concentrate. It is not useful to
take this decision based on a snapshot of sensor readings. The positioning of the
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defense has to be determined only from time to time, e.g. every minute, on the
basis of the average positions of the attacking robots during the immediate past.

The Dual Dynamics control architecture, developed by Herbert Jäger [3, 4],
arranges reactive behaviors in a hierarchy of control processes. Each layer of the
system is partitioned into two modules: the activation dynamics that determines
at every time step whether or not a behavior tries to influence actuators, and
the target dynamics, that describes strength and direction of that influence. The
different levels of the hierarchy correspond to different time scales. The high-level
behaviors configure the low-level control loops via activation factors that set the
current mode of the primitive behaviors. This can produce qualitatively different
reactions if the agent receives the same stimulus again, but has changed of mode
due to stimuli received in the meantime.

The remainder of the paper is organized as follows: The next section describes
the mechanical and electrical design of our RoboCup F180 league robots. Then
the vision and communication systems are presented. In Section 5 we explain
the hierarchical control architecture that we use to generate behaviors for the
game of soccer and illustrate it using examples from the RoboCup domain.

Fig. 1. A FU-Fighters robot kicking the ball. (Photo: Stefan Beetz)
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2 Mechanical and Electrical Design

Our robots were designed in compliance with the new F180 size RoboCup reg-
ulations. We built four identical field players and a goal keeper. All robots have
stable aluminum frames that protect the sensitive inner parts, as shown in Fig. 1.

They have a differential drive with two active wheels in the middle and
are supported by one or two passive spheres that can rotate in any direction.
Two Faulhaber DC-motors allow for a maximum speed of about 1 m/s. The
motors have an integrated 19:1 gear and an impulse generator with 16 ticks per
revolution.

One distinctive feature of our robots is a kicking device (Fig. 2) which consists
of a rotating plate that can accumulate the kinetic energy produced by a small
motor and release it to the ball on contact.

Fig. 2. Sketch of the kicking device.

We use C-Control units from Conrad electronics for local processing. They in-
clude a Motorola microcontroller HC05 running at 4 MHz with 8 KB EEPROM
for program storage, two pulse-length modulated outputs for motor control, a
RS-232 serial interface, a free running counter with timer functions, analog in-
puts, and digital I/O. The units are attached to a custom board containing a
stabilized power supply, a dual-H-bridge motor driver L298, a beeper, and a
radio transceiver SE200. The robots are powered by 8 + 4 Ni-MH rechargeable
mignon batteries.

3 Video Input

The only physical sensor for our control software is an S-VHS camera that cap-
tures the field from above. The camera produces an analog video stream in
NTSC format. Using a PCI-framegrabber, we feed images to a PC running MS-
Windows. We capture RGB-images of size 640 × 480 at a rate of 30 fps and
interpret them to extract the relevant information about the playing field. Since
the ball, as well as the robots, are color-coded, we designed our vision software
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to find and track several colored objects. These objects are the orange ball and
all the robots that have been marked with colored dots, in addition to the yellow
or blue team ball.

To track the objects we predict their positions in the next frame and then
inspect the video image first at a small window centered around the predicted
position. We use an adaptive saturation threshold and intensity thresholds to
separate the objects from the background. The window size is increased and
larger portions of the image are investigated only if an object is not found.

The decision whether or not the object is present is made on the basis of a
quality measure that takes into account the hue and size distances to the model
and geometrical plausibility. When we find the desired objects, we adapt our
model of the world using the measured parameters, such as position, color, and
size.

4 Communication

The actions selected by the control module are transmitted to the robots via
a wireless serial communication link with a speed of 9600 baud. We use radio
transmitters operating on a single frequency that can be chosen between 433.0
MHz and 434.5 MHz in 100 KHz steps. The host sends commands in 8-byte
packets that include address, control bits, motor speeds, and a checksum. A
priority value can be used to transmit more packets to the most active players.

The microcontroller on the robots decodes the packets, checks their integrity,
and sets the target values for the control of the motor speeds. No attempt is
made to correct transmission errors, since the packets are sent redundantly. To
be independent from the state of the battery charge, we implemented locally a
closed loop control of the motor speeds. The microcontroller counts the impulses
from the motors 122 times per second, computes the differences to the target
values and adjusts the pulse length ratio for the motor drivers accordingly. We
use a simple P-control to adapt the motor power.

5 Behavior

5.1 Architecture

Our control architecture is shown in Figure 3. It is based on the Dual Dynamics
scheme developed by H. Jäger [3, 4]. The robots are controlled in closed loops
that use different time scales and that correspond to behaviors on different levels
of the hierarchy.

We extend the Dual Dynamics concept by introducing a third element,
namely the perceptual dynamics, as shown on the left side of the drawing. Here,
either slow changing physical sensors, such as the charging state indicators of
the batteries, are plugged-in at the higher levels, or the readings of fast changing
sensors, like the ball position, are aggregated by dynamic processes into slower
and longer lasting percepts. The boxes shown in the figure are divided into cells.
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slow

Sensors Behaviors Actuators

Internal Feedback

fast

medium

Fig. 3. Sketch of the control architecture.

Each cell represents a sensor value that is constant for a time step. The rows
correspond to different sensors and the columns show the time advancing from
left to right.

A set of behaviors is shown in the middle of each level. Each row contains an
activation factor from the interval [0, 1] that determines when the corresponding
behavior is allowed to influence actuators.

The actuator values are shown on the right hand side. Some of these values
are connected to physical actuators that modify the environment. The other
actuators influence lower levels of the hierarchy or generate sensory percepts in
the next time step via the internal feedback loop.

Since we use temporal subsampling, we can afford to implement an increas-
ing number of sensors, behaviors, and actuators in the higher layers without an
explosion of computational cost. This leads to rich interactions with the envi-
ronment.

Each physical sensor or actuator can only be connected to one level of the hi-
erarchy. One can use the typical speed of the change of sensor readings to decide
where to connect a sensor. Similarly, the placement of actuators is determined
by the time constant they need to produce a change in the environment. Behav-
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iors are placed on the level that is low enough to ensure a timely response to
stimuli, but that is high enough to provide the necessary aggregated perceptual
information, and that contains actuators which are abstract enough to produce
the desired reactions.

5.2 Computation of the Dynamics

The dynamic systems of the sensors, behaviors, and actuators can be specified
and analyzed as a set of differential equations. Of course, the actual computations
are done using difference equations. Here, the time runs in discrete steps of
∆t0 = t0i − t0i−1 at the lowest level 0. At the higher levels the updates are
done less frequently: ∆tz = tzi − tzi−1 = f∆tz−1, where useful choices of the
subsampling factor c could be 2, 4, 8, . . . . In the figure, c = 2 was used.

A layer z is updated in time step tzi as follows:

szi – Sensor values:
The nz

s sensor values szi = (szi,0, s
z
i,1, . . . , s

z
i,nz

s−1) depend on the readings of

the nz
r physical sensors rzi = (rzi,0, r

z
i,1, . . . , r

z
i,nz

r−1) that are connected to
layer z, the previous sensor values szi−1, and the previous sensor values from

the layer below sz−1
ci , sz−1

ci−1, sz−1
ci−2, . . . .

In order to avoid the storage of old values in the lower level, the sensor values
can be updated from the layer below, e.g. as moving average.

αz
i – Activation factors:

The nz
α activations αz

i = (αz
i,0, α

z
i,1, . . . , α

z
i,nz

α−1) of the behaviors depend on
the sensor values szi , the previous activations αz

i−1, and on the activations of

behaviors in the level above αz+1
i/c . A higher behavior can use multiple layer-

z-behaviors and each of them can be activated by many behaviors. For every
behavior k on level (z+1) that uses a behavior j from level z there is a term
αz+1
i/c,kT

z
j,k(α

z
i−1, s

z
i ) that describes the desired change of the activation αz

i,j .

Note that this term vanishes, if the upper level behavior is not active. To
determine the new activations the changes from all T -terms are accumulated.
A product term is used to deactivate a behavior, if no corresponding higher
behavior is active.

Gz
i – Target values:

Each behavior j can specify for each actuator k a target value gzi,j,k =

Gz
j,k(s

z
i , a

z+1
i/c ).

az
i – Actuator values:

The more active a behavior j is, the more it can influence the actuator values
az
i = (azi,0, a

z
i,1, . . . , a

z
i,nz

a−1). The desired change for the actuator value azi,k
is: uz

i,j,k = τzi,j,kα
z
i,j(g

z
i,j,k − azi−1,k). If several behaviors want to change the

same actuator k, the desired updates are added:
azi,k = azi−1,k + uz

i,j0,k
+ uz

i,j1,k
+ uz

i,j2,k
+ . . .
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target_dist

speed

drive fast slow downturn stopaccelerate

target_dir

difference

Fig. 4. Recording of two sensors (distance and direction of the target) and two actu-
ators (average motor speed and difference between the two motors) during a simple
taxis behavior. The robot first turns towards the target, then accelerates, drives fast,
slows down, and finally it stops at the target position.

5.3 Bottom-Up Design

Behaviors are constructed in a bottom-up fashion: First, the processes that
should react quickly to fast changing stimuli are designed. Their critical pa-
rameters, e.g. a mode parameter or a target position, are determined. When the
fast primitive behaviors work reliably with constant parameters, the next level
can be added to the system. For this higher level more complex behaviors can
now be designed that influence the environment, either directly, by moving slow
actuators, or indirectly, by changing the critical parameters of the control loops
in the lower level.

After the addition of several layers, fairly complex behaviors can be designed
that make decisions using abstract sensors based on a long history and that use
powerful actuators to influence the environment.

In a soccer playing robot, basic skills, like movement to a position and ball
handling, reside on lower levels, tactic behaviors are situated on intermediate
layers, while the game strategy is determined at the topmost level of the hierar-
chy.

5.4 Examples

To realize a Braitenberg vehicle that moves towards a target, we need the di-
rection and the distance to the target as input. The control loop for the two
differential drive motors runs on the lowest level of the hierarchy. The two ac-
tuator values used determine the average speed of the motors and the speed
differences between them. We choose the sign of the speed by looking at the tar-
get direction. If the target is in front of the robot, the speed is positive and the
robot drives forward, if it is behind then the robot drives backwards. Steering
depends on the difference of the target direction and the robot’s main axis. If
this difference is zero, the robot can drive straight. If it is large, it turns on the
spot. Similarly, the speed of driving depends on the distance to the target. If the
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target is far away, the robot can drive fast. When it comes close to the target it
slows down and stops at the target position. Figure 4 shows an example where
the robot first turns around until the desired angle has been reached, accelerates,
moves with constant speed to a target and finally decelerates. Smooth transitions
between the extreme behaviors are produced using sigmoidal functions.

catch

block

robot_dir
robot_pos
ball_pos left_speed

right_speed

catchball_pos

target_posblock

speed

difference
movetarget_dist

target_dir

ball_dir

Fig. 5. Sketch of goal keeper behavior. Based on the position, speed, and the direction
of the ball it decides to either block the ball or to catch it.

This primitive taxis behavior can be used as a building block for the goal
keeper. A simple goal keeper could be designed with two modes: block and
catch, as shown in Figure 5. In the block mode it sets the target position to
the intersection of the goal line and a line that starts behind the goal and goes
through the ball. In the catch mode, it sets the target position to the intersection
of the predicted ball trajectory and the goal line. The goal keeper is always in
the block mode, except when the ball moves rapidly towards the goal.

Fig. 6. Trajectories generated in the run mode of the field player. It smoothly ap-
proaches a point behind the ball that lies on the line from the ball target through the
ball.
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The control hierarchy of the field player that wants to move the ball to a
target, e.g. a teammate or the goal, could contain the alternating modes run
and push. In the run mode the robot moves to a target point behind the ball
with respect to the ball target. When it reaches this location, the push mode
becomes active. Then the robot tries to drive through the ball towards the target
and pushes it into the desired direction. When it looses the ball, the activation
condition for pushing is no longer valid and the run mode becomes active again.
Figure 6 illustrates the trajectory of the field player generated in the run mode.
A line is drawn through the ball target and the ball. The target point is found
on this line at a fixed distance behind the ball. The distance from the robot to
this target point is divided by two. The robot is heading always towards the
intersection of the dividing circle and the line. This produces a trajectory that
smoothly approaches the line. When the robot arrives at the target point, it is
heading towards the ball target.

individual
behaviors

local view robot actuators

team
behaviors

team
aktuators

global view team

individual

Fig. 7. Sketch of the relation between the team and the individual robots.

Each of our robots is controlled autonomously by the lower levels of the
hierarchy using a local view of the world, as indicated in Figure 7. We present,
for instance, the angle and the distance to the ball and the nearest obstacle to
each agent. In the upper layers of the control system the focus changes. Now
we regard the team as the individual. It has a slow changing global view to
the playground and coordinates the robots as its extremities to reach strategic
goals. For example, it could position its defense on the side of the field where
the offensive players of the opponent team mostly attack and place its offensive
players where the defense of the other team is weak.

We implemented some of these complex behaviors for the RoboCup’99 com-
petition. They include for instance dynamic homing, where the home positions of
our defensive players are adjusted such that they block the offensive robots from
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the other team, and the home positions of our offensive players are adjusted,
such that they have a free way to the goal. Another example is ball interception,
where we predict the ball trajectory and the time it takes for the robot to reach
successive points on this trajectory. We direct the robot towards the point where
it can first reach such a point earlier than the ball. This results in an anticipative
behavior. We also detect when a robot wants to move, but does not move for a
longer time, e.g. because it is blocked by other robots or got stuck in a corner.
Then we reverse for a short time the motor speeds, in order to unstuck the robot.

6 Summary

We designed robust and fast robots with a kicking device, reliable radio commu-
nication, and high speed vision. To generate actions, we implemented a reactive
control architecture with interacting behaviors on different time scales. These
control loops are designed in a bottom-up fashion. Lower level behaviors are
configured by an increasing number of higher level behaviors that can use a
longer history to determine their actions.

This framework could be used in the future to implement mechanisms, like
adaptation and learning using Neural Networks [6]. We successfully participated
in the RoboCup’99 F180 league competition, finishing second, next to Big Red
from Cornell University.

We thank the companies Conrad ELECTRONICS GmbH, Dr. Fritz Faul-
haber GmbH&Co KG, SiemensElectroCom Postautomation GmbH, and Lufthansa
Systems Berlin GmbH for their support that made this research possible.
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Abstract. Versatile physical and behavioral features as well as their
exploitation through computation-power onboard the robot-players are
feasible and necessary goals for the RoboCup small robots league. We
substantiate this claim in this paper by classifying di�erent approaches
and by discussing their potentials and limitations for research on AI
and robotics. Furthermore, we present the most recent results of our
approach to these goals in form of the so-called CubeSystem, a kind of
construction-kit for robots and other autonomous systems. It is based
on a very compact embedded computer, the so-called RoboCube, a set
of sensor- and motor-modules, and software support in form of a special
operating system and highlevel languages.

1 Introduction

The Small Robots League of RoboCup [KAK+97, KTS+97] allows global sensing,
especially bird's view vision from an overhead camera, and restricts the size of
the physical players to a rather extreme minimum. These two, most signi�cant
features of the small robots league bear an immense potential, but as well some
major pitfalls for future research within the RoboCup framework.

First of all, it is tempting to exploit the set-up with an overhead camera
for the mere sake of trying to win, reducing the robot-players to RF-controlled
toy-cars within a minimal, but very fast vision-based closed-loop. The severe
size limitations of the players in addition encourage the use of such \string-
puppets" with o�-board sensing and control instead of real robots. The Mirosot
competition gives an example for this type of approach [Mir]. This framework
would lead to dedicated solutions, which are very e�cient and competitive, but
only of very limited scienti�c interest from both a basic research as well as
from an application-oriented viewpoint. If the teams in the small robots league
would follow that road, this league could degenerate to a completely competition-
oriented race of scienti�cally meaningless, specialized engineering e�orts.

Though the two major properties of the small robots league, global sensing
and severe size restrictions, discourage the important investigation of on-board
control, they also have positive e�ects. First of all, the global sensing eases
quite some perception problems, allowing to focus on other important scienti�c
issues, especially team behavior. An indication for this hypothesis is the apparent
di�erence in team-skills between the small robots league and the midsize league,
where global sensing is banned.
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The size restrictions as a second point also have a bene�cial aspect for the
investigation of team-behavior. The play-�eld of a ping-pong-table can easily be
allocated in a standard academic environment, facilitating games throughout the
year. It is in contrast di�cult to embed a regular �eld of the midsize league into
an academic environment, thus the possibilities for continuous research on the
complete team are here limited. The severe size restriction of the small robots
league has another advantage. These robots can be much cheaper as costs of
electro-mechanical parts signi�cantly increase with size. Therefore, it is more
feasible to build even two teams and to play real games throughout the year,
plus to include the team(s) in educational activities.

The rest of this article is structured as follows. In section two, di�erent team-
approaches are classi�ed and possible implications are discussed. Section three
presents the hardware aspects of the CubeSystem, i.e., the RoboCube V2.0 and
the mechanical components used in our approach to the RoboCup small robots
league. In the fourth section, the software aspects of the CubeSystem are dis-
cussed. First, its operating system CubeOS and highlevel language support are
shortly presented. Then, it is shown with the example of path-planning that the
RoboCube is indeed capable of quite powerful computations within realtime con-
straints. Last but not least the implications for team-coordination when using
very heterogeneous systems are discussed. Section �ve concludes the paper.

2 Classi�cation of Team-Approaches

For a more detailed discussion of the role of heterogeneity and on-board control
in the small robots league, it is useful to have a classi�cation of di�erent types
of teams and players.

Minoru Asada for example proposed in the RoboCup mailing-list to use a
classi�cation of approaches based on the type of vision (local, global or com-
bined) and the number of CPUs (one or multi). He also mentioned that in the
case of multiple CPUs a di�erence between systems with and without explicit
communication between players can be made. Though this scheme is useful, it is
still a �rst, quite rough classi�cation. Therefore, we propose here to make �ner
distinctions, based on a set of crucial components for the players.

In general, a RoboCup team consists of a (possibly empty) set of host-
computers and o�-board sensors, and a non-empty set of players, each of which
consist of a combination of the following components:

1. minimal components
(a) mobile platform
(b) energy supply
(c) communication module

2. optional components
(a) computation power
(b) shooting-mechanism and other e�ectors
(c) basic sensors
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(d) vision hardware
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Fig. 1. There are several basic components which can be, except the minimal ones,

freely combined to form a player. Situation A shows the most simple type of player,

a radio-controlled toy-car, which can hardly be called a robot. Situation B shows a

much more elaborated player. Unfortunately, the size-constraints of the small robots

league put a strong negative pressure against the important implementation of on-board

features for the players.

Note, that the most simple type of player, consisting of only minimal com-
ponents, is hardly a robot. It is more like a \string-puppet" in form of a radio-
controlled toy-car without even any on-board sensors or computation power
(though it could well be possible that this type of device has an on-board
micro-controller for handling the communication protocol and the pulse-width-
modulation of the drive motors). The actual control of this type of players com-
pletely takes place on the o�-board host(s).

Based on this minimal type of player, the optional components can be freely
combined and added. In doing so, there is a trade-o� between

{ on-board sensor/motor components,

{ on-board computation power, and

{ communication bandwidth.

A player can for example be built without any on-board computation power at
the cost of communication bandwidth by transmitting all sensor/motor-data to
the host and back. So, increasing on-board computation power facilitates the use
of a smaller communication bandwidth and vice versa. Increasing sensor/motor
channels on the other hand increases the need of on-board computation power
and/or communication bandwidth.
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On-board features are important for research in robotics as well as AI and
related disciplines for several reasons. Mainly, they allow research on important
aspects which are otherwise impossible to investigate, especially in the �eld of
sensor/motor capabilities. For e�ector-systems for example, it is quite obvious
that they have to be on-board to be within the rules of soccer-playing. Here, the
possibilities of systems with many degrees of freedom, as for example demon-
strated in the SONY pet dog [FK97], should not only be encouraged in special
leagues as e.g. in the one for legged players, but also within the small robots
league. In general, a further splitting of the RoboCup activities into too many
leagues seems not to be bene�cial and it also seems not to be practical. Too
many classi�cations which would justify just another new league would be pos-
sible. In addition, the direct competition and comparison of di�erent approaches
together with the scienti�c dialogue are one of the main features of RoboCup.

In the case of sensors and perception, the situation is similar to the one of
e�ector-systems, i.e., certain important types of research can only be done with
on-board devices. This holds especially for local vision. It might be useful to
clarify here the often confused notions of local/global and on-/o�-board. The
terms on- and o�-board are easy to distinguish, general properties. They refer
to a piece of hardware or software, which is physically or logically present on the
player (on-board) or not (o�-board). The notions of local and global in contrast
only refer to sensors, i.e., particular types of hardware, or to perception, i.e.,
particular types of software dealing with sensor-data. Global sensors and per-
ception tell a player absolute information about the world, typically information
about its position and maybe the positions of other objects on the play�eld. Lo-
cal sensors and perception in contrast tell a player information about the world,
which is relative to its own position in the world. Unlike in the case of on- and
o�-board, the distinction between local and global is fuzzy and often debatable.
Nevertheless, it is quite clear that the important issue of local vision can only
be investigated if the related feature is present on-board of the player.

Hand in hand with an increased use of sensor and motor systems on a player,
the amount of on-board computation power must increase. Otherwise, the scarce
resource of communication bandwidth will be used up very quickly. Note, that
there are many systems using RF-communication at the same time during a
RoboCup tournament. Especially in the small robots league, were only few and
very limited o�-the-shelf products suited for communication exist, transmission
of large amount of data is impossible. It is for example quite infeasible to transmit
high-resolution local camera images from every player to a host for processing.

3 Towards a Robot Construction-Kit

3.1 The Motivation

Existing commercial construction-kits with some computational power like Lego
MindstormsTM [Min] or Fischertechnik ComputingTM [Fis] are still much too
limited to be used for serious robotics education or even research. Therefore, we
decided to develop our own so-to-say robot construction-kit.
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3.2 RoboCube V2.0

For RoboCup'98, the VUB AI-lab team focused on the development of a suited
hardware architecture, which allows to implement a wide range of di�erent
robots. The basic features of this so-called RoboCube-system are described in
[BKW98]. For RoboCup'99, the system was further improved and extended. A
more detailed description is given in [BKW00].

The most recent version of the RoboCube boots out of a 1 MByte Flash-
EPROM which holds a basic input/output operating system (BIOS) and o�ers
space for a small �le system. A huge part of the BIOS is dedicated to the e�cient
handling of di�erent actuators and sensors. In the basic con�guration the main
memory consists of a 1 MByte low power SRAM, which can be extended by
additional 12 MByte.

In its basic version, one I/O subsystem board of the RoboCube features

{ 24 analog input

{ 6 analog output
{ 16 binary Input/Output (binI/O)

{ 4 timer channels (TPC)

{ 4 DC-motor controller with quadrature-encoding

The number of ports can simply be doubled by stacking a second I/O subsys-
tem board on top of the �rst one. All sensor-motor-interfaces come with proper
software support allowing an easy high-level usage.

Extension
Busmaster

Vision

Subsystem

I/O
Subsystem

SPI ext

I/O
Bin

TP ext

Motors

UHFtrcv

IR send

IR recv

ADC/DAC

DRAM
CPU
Flash
SRAM

FPU

Data, Adr, /CS, /IRQ, TP, SPI, 2xI2C, 3xRS232

Fig. 2. A picture of the RoboCube (left) and the layout of its internal bus structure
(right).

The RoboCube-system is constantly further improved, on the software as
well as on the hardware side. At the moment for example, several options for
inexpensive high-resolution color-vision are investigated.
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visionI/O extension

Ext Busmaster

CPU + MEM

Fig. 3. Physical layout of the complete RoboCube

3.3 Mechanical Components for RoboCup

Fig. 4. The drive unit as a mechanical building-block, which can be mounted on dif-

ferently shaped bottom-plates, forming the mechanical basis for diverse body-forms.

Di�erent ratios for the planetary gears in the motor-units are available, such that

several trade-o�s for speed versus torque are possible.

In some of our education and research activities, the RoboCube-system is
combined with LegoTM or FischertechnikTM components on the mechanical side.
For RoboCup competitions, we developed a solid but still exible solution based
on metal components.

Keeping the basic philosophy of construction-kits, a \universal" building
block is used for the drive (�gure 4) of the robots. The drive can be easily
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Fig. 5. A forward- (left) and a defender-type (right) robot. The mechanical set-up of
the robot-players is based on a piled-stack approach such that di�erent components,
such as shooting-mechanisms and the RoboCube, can easily be added.

mounted onto di�erently shaped metal bottom-plates, forming the basis for dif-
ferent body-forms like the ones shown in �gure 5. The motor-units in the drive
exist with di�erent ratios for the planetary gears, such that several trade-o�s for
speed versus torque are possible.

Other components, like e.g. shooting-mechanisms and the RoboCube, are
added to the bottom-plate in a piled-stack-approach, i.e., four threaded rods
allow to attach several layers of supporting plates.

4 Powerful On-Board Control

4.1 Operating System and Programming Languages

For the RoboCube, an embedded operating system has been developed, CubeOS.
It provides the usual features like threads, semaphores, realtime clock, commu-
nication and I/O drivers in a small core of about 30 Kbytes. Additionally, it
provides functionality that set it apart from other OS kernels and make it espe-
cially useful for robotics and autonomous systems in general:

{ Drivers that handle access to the various sensor and actuator devices of the
RoboCube

{ Support for hardware-assisted realtime processing through the MC68332's
onboard TPU

{ A low-latency communication protocol engine for radio communication
{ hardware-independent data encoding as de�ned in the External Data Rep-

resentation Standard [SM]
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CubeOS is written in C and makes use of the Free Software Foundation's Gnu
C-Cross-Compiler. The host system for development is a Unix or Linux Worksta-
tion, the code is downloaded into the target via a wireless serial communication
link.

On top of the CubeOS API, a simple software framework has been imple-
mented to provide easy access within normal C-programs. In additional, there is
highlevel language support suited even for novice programmers. This framework,
named NPDL (for New Process Description Language) provides several simple
constructs to create control programs for robots. Within education projects,
NPDL has already been mastered by students studying economics, philosophy
and architecture.

4.2 Using the RoboCube for Highlevel Control

Though the RoboCube has quite some computation power for its size, its capa-
bilities are nevertheless far from those of desktop machines. So, it is not obvious
that interesting behaviors in addition to controlling the drive-motors and shoot-
ing can actually be implemented on the RoboCube, i.e., on board of the robots.
Therefore, we demonstrate in this section that for example path-planning with
obstacle avoidance is feasible.

24 23 22 21 20 19 18 17 16 15 14 15 16 17 18
23 22 21 20 19 18 17 16 15 14 13 14 15 16 17
22 21 20 19 18 17 16 15 14 13 12 13 14 15 16
21 20 19 18 17 16 15 14 13 12 11 12 13 14 15
20 19 18 17 16 15 14 13 12 11 10 11 12 13 14
19 18 17 16 15 14 13 12 11 10 9 10 11 12 13
18 17 16 15 14 13 12 11 10 9 8 9 10 11 12
19 18 17 16 [X] [X] [X] [X] [X] 8 7 8 9 10 11
18 17 16 17 [X] [X] [X] [X] [X] 7 6 7 8 9 10
17 16 15 16 [X] [X] [X] [X] [X] 6 5 6 7 8 9
16 15 14 15 [X] [X] [X] [X] [X] 5 4 5 6 7 8
15 14 13 14 [X] [X] [X] [X] [X] 4 3 4 5 6 7
14 13 12 [X] [X] [X] 6 5 4 3 2 3 4 [X] [X]
13 12 11 [X] [X] [X] 5 4 3 2 1 2 3 [X] [X]
12 11 10 [X] [X] [X] 4 3 2 1 0 1 2 [X] [X]
11 10 9 8 7 6 5 4 3 2 1 2 3 4 5
12 11 10 9 8 7 6 5 4 3 2 3 4 5 6
13 12 11 10 9 8 7 6 5 4 3 4 5 6 7
14 13 12 11 10 9 8 7 6 5 4 5 6 7 8
15 14 13 12 11 10 9 8 7 6 5 6 7 8 9

Fig. 6. A potential �eld for motion-control based on Manhattan distances. Each cell in
the grid shows the shortest distance to a destination (marked with Zero) while avoiding
obstacles, which are marked with `[X]'.
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x-pos x-dest
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x0

yy
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Fig. 7. The potential �eld (grey area) is not computed for the whole soccer-�eld.
Instead, it is limited in the x-direction to save computation time.

Path planning is with most common approaches rather computationally ex-
pensive. Therefore, we developed a fast potential �eld algorithm based onManhattan-
distances. Please note that this algorithm is presented here only to demonstrate
the computing capabilities of the RoboCube. A detailed description and discus-
sion of the algorithm is given in [Bir99].

Given a destination and a set of arbitrary obstacles, the algorithm computes
for each cell of a grid the shortest distance to the destination while avoiding the
obstacles (�gure 6). Thus, the cells can be used as gradients to guide the robot.
The algorithm is very fast, namely linear in the number of cells. The algorithm is
inspired by [Bir96], where shortest Manhattan distances between identical pixels
in two pictures are used to estimate the similarity of images.

The basic principle of the algorithm is region-growing based on a FIFO queue.
At the start, the grid-value of the destination is set to Zero and it is added to
the queue. While the queue is not empty, a position is dequeued and its four
neighbors are handled, i.e., if their grid-value is not known yet, it is updated to
the current distance plus One, and they are added to the queue.

For the experiments done so far, the resolution of the motion-grid is set
to 1cm. As illustrated in �gure 7, the potential-�eld is not computed for the
whole soccer-�eld to save computation time. Given a robot position pos and a
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Fig. 8. Twenty-four so-called virtual sensors read the potential values around the robot

position on the motion grid. The sensor values can be used to compute a gradient for the

shortest path to the destination, which can be easily used in a reactive motion-control.

destination dest, the �eld is restricted in the x-direction to the di�erence of pos
and dest plus two safety-margins which allow to move around obstacles to reach
the destination.

The motion-grid is used as follows for our soccer-robots. The global vision de-
tects all players, including opponents and the ball, and broadcasts this informa-
tion to the robots. Each robot computes a destination depending on its strategies,
which are also running on-board. Then, each robot computes its motion-grid. In
doing so, all other robots are placed on the grid as obstacles.

Robots have so-called virtual sensors to sample a motion-grid as illustrated
in �gure 8. The sensor values are used to calculate a gradient for a shortest path
to the destination, which is ideal for a reactive motion control of the robot. In
doing so, dead-reckoning keeps track of the robot's position on the motion-grid.

Of course, the reactive control-loop can only be used for a limited amount
of time for two main reasons. First, obstacles move, so the motion-grid has to
be updated. Second, dead-reckoning su�ers from cumulative errors. Therefore,
this loop is aborted as soon as new vision information reaches the robot, which
happens several times per second, and a new reactive controller based on a new
motion-grid is started.

Figure 9 shows performs-results of the path-planning algorithm running on
a RoboCube as part of the control-program of the robot-players. The di�erent
tasks of the control-program proceed in cycles. The execution time refers to
a single execution of each task on its own (including the overhead from the
operating system). The frequency refers to the frequency with which each tasks
is executed as part of the player-control, i.e., together with all other tasks.
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strategies

path-planning
[obstacle-avoidance, short paths]

[coordination, communication]

motion-control
[vectors, curves, dead-reckoning]

operating system
[drivers, tasks, control-support]

motor-control
[PID-speed controller]

17 - 19 Hz

17 - 68 Hz

100 Hz

100 Hz

continuous

frequency execution time

4 - 13 msec

79 msec

0.2 msec

0.1 msec

Fig. 9. The path-planning is part of a four-level software architecture which controls

the robots players. It runs, together with the CubeOS operating system, completely

on board of the RoboCube.

The control-program consists of four levels which run together with the

CubeOS completely on-board of the RoboCube. The two lowest levels of motor-

and motion-control run at a �xed frequency of 100 Hz. Single iterations of them

are extremely fast as the TPU of the MC68332 can take over substantial parts

of the processing. The strategy and path-planning level run in an \as fast as

possible"-mode, i.e., they proceed in event-driven cycles with varying frequen-

cies.

The execution of the pure strategy-code, i.e., the action-selection itself, takes

up only a few milliseconds. Its frequency is mainly determined by whether the

robot is surrounded by obstacles or not, i.e., whether path-planning is necessary

or not. The computation of the motion-grid takes most of the 79 msec needed

for path-planning. As two grids are used, one still determines the motion of the

robot while the next one is computed, the cycle-frequency is at least 17 Hz. So,

in a worst case scenario where the player is constantly surrounded by obstacles,

the action-selection cycle can still run at 17 Hz.

4.3 Heterogeneity and Team Coordination with On-Board Control

Heterogeneity is an important feature for soccer with human players as much

as with robot players. It is the main basis for adaptability of a team, either to

di�erent opponent teams within a tournament, or to the general progress of a

particular game, or to very momentary situations. Heterogeneity within soccer

can range from high-level roles of players in a team like forward or defender,

down to di�erent body features covering a wide-range of physical trade-o�s like

e.g. speed versus torque.
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Fig. 10. A \pares inter pares" coach, residing on the same level as the players
in the coordination hierarchy. This coach can be used for facilitating the coor-
dination of heterogeneous team approaches while keeping as much as possible
on-board control. The basic idea is that most of the time, the robot players decide
completely on their own what to do based on their on-board control-program.
Only occasionally the coach interferes as he has additional information about
the capabilities of the players.

Straightforward approaches to team coordination with the expressive power
of �nite state automata are doomed to fail under such wide ranges of hetero-
geneity due to the combinatorial explosion of states. Therefore, we investigate
coordination schemes based on operational semantics, which allow an extremely
compact and modular way of specifying team behaviors. One step in this direc-
tion is the Protocol Operational Semantics (POS), an interaction protocol based
on abstract data-types and pattern matching capabilities. So far, it has only been
tested in simulations, but the results are very promising. A detailed description
can be found in [OBK99].

Here, we focus on the question how this approach can be integrated with a
substantial exploitation of on-board control. The problem is that the expressive
power of operational semantics is bought at the price of computational power.
POS for example is implemented in Pizza [OW97], a super-set of Java.
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A solution for this problem is a kind of additional player in form of a \pares
inter pares" coach. This coach resides not above the other players in a coordina-
tion hierarchy, but resides on the same level (�gure 10). The position information
from the global vision is broadcasted to all players and the coach. Most of the
time, all robot players individually decide what to do, based on their on-board
computations. Only on rare occasions, the coach interferes as he has more back-
ground information available than the players.

To illustrate this idea, let us assume there are two heterogeneous robots of
type A and A0, with rather limited di�erences and which can be substituted
against each other in the team. Both can simply run the same on-board control
program, deciding most of the time the actions of the player. Only in situations
when the di�erence plays a role, the coach interferes and provides additional
information, recommending alternative actions to the player.

5 Conclusion

We claim that for serious AI and robotics research, it is necessary to work with
\real" systems, i.e., heterogeneous devices with on-board control. As our contri-
bution towards a suited infrastructure for this type of research, we develop the
CubeSystem, a kind of advanced construction-kit for mobile robots and other
autonomous systems. The CubeSystem consists of a special embedded hardware,
the RoboCube, a set of sensors and actuators, and software support in form of
a special operating system, the CubeOS, and highlevel languages.

The \string-puppet" approach of simple radio-controlled toy-cars also has
its validation. It can for example serve as a rather easy and inexpensive way to
enter RoboCup, it can be useful for educational purposes; shortly, it can be good
for a start and to get acquainted with the basic issues of RoboCup.

But in the long run, we hope that participants in the small robots league of
RoboCup cooperate to improve the options of on-board features. Only through
a joint e�ort, it will be possible to overcome the pitfalls and to mutually bene�t
from the positive potential of the limited size requirements in this league.

Acknowledgments

The VUB AI-Lab team thanks Sanders Birnie BV as supplier and Maxon Motors
as manufacturer for sponsoring our motor-units. Andreas Birk is a research fellow
of the Flemish Institute for Applied Science (IWT); research on RoboCup is
partially �nanced within this framework (OZM980252).

References

[Bir96] Andreas Birk. Learning geometric concepts with an evolutionary algorithm.
In Proc. of The Fifth Annual Conference on Evolutionary Programming.
The MIT Press, Cambridge, 1996.

208 A. Birk and H. Kenn



www.manaraa.com

[Bir99] Andreas Birk. A fast pathplanning algorithm for mobile robots. Technical
report, Vrije Universiteit Brussel, AI-Laboratory, 1999.

[BKW98] Andreas Birk, Holger Kenn, and Thomas Walle. Robocube: an \univer-
sal" \special-purpose" hardware for the robocup small robots league. In
4th International Symposium on Distributed Autonomous Robotic Systems.
Springer, 1998.

[BKW00] Andreas Birk, Holger Kenn, and Thomas Walle. On-board control in the
robocup small robots league. Advanced Robotics Journal, 2000.

[Fis] The �schertechnikTM website. http://www.�schertechnik.de/.
[FK97] Masahiro Fujita and Koji Kageyama. An open architecture for robot enter-

tainment. In Proceedings of Autonomous Agents 97. ACM Press, 1997.
[KAK+97] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Eiichi

Osawa. Robocup: The robot world cup initiative. In Proc. of The First
International Conference on Autonomous Agents (Agents-97). The ACM
Press, 1997.

[KTS+97] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, Silvia Corade-
schi, Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and Minoru Asada. The
robocup synthetic agent challenge 97. In Proceedings of IJCAI-97, 1997.

[Min] The lego mindstormsTM website. http://www.legomindstorms.com/.
[Mir] The micro-robot world cup soccer tournament (mirosot).

http://www.mirosit.org.
[OBK99] Pierre-Yves Oudeyer, Andreas Birk, and Jean-Luc Koning. Interaction pro-

tocols with operational semantics and the coordination of heterogeneous
soccer-robots. Technical report, Vrije Universiteit Brussel, AI-Laboratory,
1999.

[OW97] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory
into practice. In Proc. 24th ACM Symposium on Principles of Programming
Languages, 1997.

[SM] Inc. Sun Microsystems. Xdr: External data representation standard. Re-
quest for Comments.

This article was processed using the LATEX macro package with LLNCS style

209Heterogeneity and On-Board Control in the Small Robots League



www.manaraa.com

The Body, the Mind or the Eye, �rst??

Andrea Bonarini

AI and Robotics Project, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milano, Italy

bonarini@elet.polimi.it

Abstract. We present an approach to shape robots on their sensorial
ability. We argue that the interface with the external world may strongly
condition the design of a robot, from the mechanical aspects to reasoning
and learning. We show the implementation of this philosophy in the
RoboCup middle-size player Rullit, shaped on its omnidirectional vision
sensor.

1 Introduction

We argue that the way a robot perceives the environment should strongly a�ect
the design of each component of the robot. As it happens for animals, and human
beings, the modality of interaction with the external world is strongly related to
the survival behaviors, neural structures, actuators and reasoning. For instance,
all the most evolved predators in natural life have eyes pointing forward, since
this makes easier to follow a prey; all the preys have lateral eyes, since this is
e�ective to be aware of the presence of predators. In some special cases (e.g.,
the chameleon) predators have highly movable eyes that enable cost-e�ective
chasing strategies. We share the opinion that in a systemic perspective all the
components of an agent are inter-related. However, in designing an arti�cial
autonomous agent we should start from somewhere; here, we propose to start
by considering the component that provides input, since this is the most critical
to achieve the desired behavior. In the F-2000 Robocup [3] [14] environment, for
instance, a black and white camera or a sonar belt, could hardly be enough to
play e�ectively, whereas they may provide enough information to achieve many
other tasks.

We have followed this approach of "shaping an agent on its sensor"(SAS)
in many projects, designing both real [5] [1], and simulated [4] [8] robots by
starting from the de�nition of the sensors the agent can exploit to operate in
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M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 210−221, 2000.
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its environment. We have implemented Rullit, our F-2000 Robocup player (see
�gure 1), following this philosophy, after the �rst experience in Robocup98 [2].
In Rullit, the importance of a sensor adequate to the soccer playing task in the
Robocup environment becomes evident, and we take it as a running example to
discuss the SAS approach. In this paper, we �rst motivate the need for accurate

Fig. 1. Rullit, our Robocup F-2000 player.

design of the sensorial apparatus able to extract the needed information from
the environment; we discuss the general issues exempli�ed in the Robocup en-
vironment. Then, we will describe our sensor. Finally, we discuss how a sensor
may condition the design of a robot, considering the kinematics and mechanical
aspects, low level control, behaviors, and learning mechanisms. This also gives
us the possibility to describe the main features of our robotic agent.

2 Designing the sensor

An agent needs information to perform a task. It obtains such information by
elaborating sensor data. Reasoning may somehow ful�ll lacks of information by
completing the available data by inference, possibly increasing uncertainty and
approximation. An accurate design of the sensorial apparatus may reduce such
undesired factors. We �rst discuss general properties that should be considered,
exemplifying them in the Robocup context.
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2.1 What kind of information?

The �rst question we have to ask ourselves is: "What kind of information will
my agent need?" From the answer to this question we may decide the kind of
sensor we need to acquire data, and how to extract the information from raw
data. Here below, we mention some relevant aspects.

Information contents What the agent has to know? For instance, in the
Robocup context, we may decide that it is interesting to know the position
of the agent and the relative positions of ball, goals, and other agents, maybe
discriminating between teammates and opponents, or maybe identifying each
single robot. Moreover it may be interesting to know this information for any
object on the �eld: the more the agent can perceive, the less it has to rely on
inference, presuppositions, expectations, and information explicitly coming from
teammates.

Information quality Should the agent be certain about the facts it is inferring
from data? Can it work also with uncertain facts? Should it explicitly represent
uncertainty? What kind of precision is needed? In Robocup it may be interesting
to have a good precision in the neighborhood of the agent, for instance to control
the ball, and to interact with close players. What happens at a great distance
may be considered qualitatively, since the environment is rapidly changing, and
whatever happens far from the agent do not require precise intervention before
than signi�cant changes may occur.

Information acquisition rate How frequently should the information be up-
dated? The acquisition rate should allow to build an e�ective model of the events
that characterize the task. The fastest event on a Robocup F-2000 �eld is the
movement of the ball, which may run at more than 1 m/sec. The information
acquisition and management should be fast enough to allow enough time to act
(or react), but, at the same time, it should not be too fast since this would pro-
duce a large amount of data that has to be interpreted with the computational
resources available (on board).

Information abstraction level Which kind of abstraction from raw data do
we expect to need, in order to obtain the required information? Can we reason
on raw data or on abstractions, and which kind of abstractions? In Robocup,
we are interested in the above mentioned information, which requires a good
abstraction and classi�cation activity on raw data.

Acquisition robustness and adaptation Is the environment known, stable
and static? If it is not so, data acquisition should be robust and possibly able
to adapt to changing conditions. Although the Robocup rules seem to de�ne a
highly structured environment, it is not so on the real �eld. Illumination is never
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as expected, and the presence of objects in the visual �eld may make it changing
a lot during a match.

2.2 Why omnidirectional vision?

At Robocup98, most of the robots relied on vision sensors, since the organizers
seem strongly oriented to give colors a primary role in the �eld setting. Most
of the players (included those in our team, ART { Azzurra Robocup Team [12])
had a �xed, color camera, that could hardly match some of the speci�cations
mentioned above. For instance, it gives information only about a small number
of objects on the �eld, so that, in many situations, it is hard to self-localize the
agent, to know where is the ball (which runs really fast), or to understand what
is happening. Our team, as others, implemented strategies to patch this lack of
information, based on information exchanging, which partially failed because of
transmission problems. Other teams had mobile cameras (or high mobility of
the body), but most of them still seemed too slow and imprecise to keep track
of the fast events on the �eld. The '98 winner [10] had a sensor system matching
perfectly all the design requirements mentioned above, and it was one of the few
teams showing really interesting behaviors. It is also to be noticed that their
sensor did not follow the organizers' implicit suggestion to rely on color vision,
thus avoiding most of the problems related with this type of sensor on the Paris
Robocup �eld.

We have decided to answer to the above introduced "�rst question" with an
omnidirectional vision sensor, which is described in details elsewhere [7]. It con-
sists of a camera pointed upwards beneath a coaxial, revolution mirror obtained
by the intersection of a truncated cone and a sphere (see �gure 2). A single im-
age contains all the objects around the agent. The data acquisition system can
give with suÆcient precision distance and direction from all the objects around
the agent. We have designed it to exploit the camera resolution and to improve
radial resolution in the peripheral areas of the circular image, containing far
objects. It is thus possible to reliably detect objects such as the ball, up to 6
meters from the agent. The precision about the distance from the objects is in-
versely proportional to the distance itself. Uncertainty about data classi�cation
is very low, due to the image analysis system we have implemented. This is also
optimized to provide all the information once every 30 ms, giving an informa-
tion acquisition rate very close to the limit of the PAL European standard for
video frame acquisition, which is 25 frames/sec. Since an omnidirectional image
contains at the same time a large portion of the �eld, the average brightness
is quite stable, and adaptation to light intensity is limited to the �rst frames,
to become acquainted with a new �eld. In case of a standard camera pointing
towards the environment, the image may contain objects with di�erent colors
(e.g., black robots, or white walls), and this requires some compensation on the
average brightness, which can be obtained either by mechanical adjustment of
the camera iris (slow), or electronically, requiring the analysis of at least two im-
ages unavailable for object recognition. In the next section, we give some details
about the speci�c choices we have done in the implementation of our sensor.
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2.3 Our omnidirectional vision sensor for Robocup

The sensor we are proposing is represented in �gure 2. You can see that the

Fig. 2. The mirrror, the camera pointing upwards, the plexiglass cylinder supporting

the mirror and the visual angle of the camera.

central part of the mirror consists of a truncated sphere, making it possible to see
objects very close to the robot (15 cm). Tangent to this is a truncated, reversed
cone, giving enhanced radial resolution from 2 m to 6 m. This design does not
require adjustment of the focal length of the camera, as proposed by [17], thus
avoiding the time loss due to mechanical movements. The camera with which
we took the image shown in �gure 3 is a low cost card camera, having 512x582
sensible elements, and a view angle of about 600. We are now mounting a Sony
XC-999P. In �gure 3, in black, on the center of the image the body of the robot,
on the right the yellow goal and the goalie, on the top a ball and, at a distance,
another robot and the blue goal. To implement a fast image recognition system
we took hints from biology, basing it on the idea of receptor. The generic term
"receptor" is used for any biological unit able to perceive speci�c stimuli from
the outside world and to transform them in nervous signals, then transmitted to
the central nervous system. In computer vision, image pixels are often considered
as receptors. To improve computational speed, we consider specialized receptors,
each consisting of a 3 by 3 pixel matrix, and characterized by the averagedHSV
value. Our receptors are distributed in a pattern designed to detect the smallest
object on the �eld (the ball) in any position of the image. Thus, we analyze only
a grid of receptors on the image, thus reducing the amount of information to be
considered by more than two orders of magnitude.

The vision system we have designed �rstly estimates on the image the likely
position of the possibly interesting objects, by classifying the receptors, and
aggregating them in clusters (called target) by color similarity and adjacency. A
target is a part of the image where it could be present an interesting objects.
Once identi�ed the targets, it is possible to operate on the part of image de�ned
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Fig. 3. A typical image taken by our sensor.

by each of them by adopting classical image processing (such as blob growing) on
single pixels, object recognition and localizazion techniques. The application of
these techniques signi�cantly reduces the amount of information to handle and
increases the processing speed. The image acquisition and processing requires
less than 30 ms, on the on board PC, a 266 MHz AMD K6 CPU, with 32 Mb
of RAM, a Matrox Meteor frame grabber, Linux RedHat 5.2 (Kernel version
2.0.36), and real-time kernel ETHNOS [13].

3 Sensors and behaviors

Now, let us discuss the impact of the type of available, sensorial information
on the behaviors that can be implemented on the agent. We �rst consider the
low-level control aspects, and then the higher level behaviors and strategies

3.1 Low-level control

In our viewpoint about robot architecture, a low-level control system may be
present on an agent to provide the higher levels with reliable actions. If the
higher level behavior activation cycle is long, low-level control should ensure
that the desired actions are actually done as expected. For instance, if the high
level control states that the agent should turn 30 degrees on the left at a speed of
0.2 m/sec, it expects that this happens; if, as usual, the actuation is imperfect,
the actual action may be di�erent. We may either have a low level control sys-
tem trying to realize what the higher-level control states, or have a higher-level
control designed to cope with low level problems such as imperfect actuators,
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and running fast enough. The information for such a kind of low-level control is
di�erent from that discussed above. Here, we need precise information about the
movement of the robot wheels. We have to cover this need with other sensors,
appropriate for this component of the control system, namely encoders on the
wheels or on the engine axis.

Rullit, our Robocup agent, has two independent traction wheels, and we
decided to attach encoders to each wheel. The precision of each measure is less
than 0.1 mm, enough to implement a good, speed and jog control. We have
implemented it as a fuzzy controller, so that it is also quite robust with respect
to noise [11]. Notice that this same sensor (encoder) is known to be inappropriate
for position control [9], and that we did not implement such a kind of controller.
This is another example of the relevance to select the proper sensor to achieve
a task.

3.2 Behaviors

The Robocup environment changes so rapidly that we have decided to leave to
the behavioral control the decision about where to go: a plan to reach a position
should be probably continuously re�ned, since situations change rapidly, so a
controller able to bring the agent at a given position would be restarted too
often.

Information provided by the omnidirectional sensor is appropriate for high
level control, and inuences the design of behavioral modules. We may notice
that the same behavior (for instance, Go To Ball, that brings the agent on the
ball) may be implemented in di�erent ways according to the available informa-
tion. If we had reliable information only about objects that are in the range of
a camera pointed forward, probably the behavior can reliably trigger only when
the ball is in the range of the camera, and another behavior will make the agent
searching for the ball. Moreover, probably, Go to Ball will bring the agent on
the ball, only while keeping it in sight; this may bring the agent in undesired
situations, such as bumping the ball against the wall. Another implementation
of Go to Ball with the same sensor may infer the position of the ball from past
information and from information coming from other players. This may help,
but may also lead to clumsy behaviors, such as that happened in the challenge
during the ART-Freiburg semi-�nal at Robocup99, where the player didn't check
often enough the ball position and originated a situation hard to manage.

By contrast, having reliable information about the ball in any position with
respect to the agent from a suitable sensor, such as omnidirectional vision, a dif-
ferent Go to Ball may decide how to approach the ball, while keeping it in sight.
In �gure 4 you may see some of the ball approaching behaviors we have imple-
mented relying on the available omnidirectional information; these include going
on the ball by moving backwards (tracks 3 and 4 in �gure 4), or tracking the ball
by the side (track 2 in �gure 4). We have implemented the behavioral control
by fuzzy behaviors [15] [8], that is control modules that trigger on conditions
consisting of fuzzy predicates. We consider two sets of such fuzzy preconditions:
the cando preconditions enable the behavior, and the want preconditions give the
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Fig. 4. Three possible trajectories (1', 3' and 4') to reach a position behind the ball
(respectively in positions 1, 3, 4), and one (2') to track a moving ball(2).

amount of motivation for it. For instance, if we have the ball we can kick it, but
we want to do it only if this makes sense, e.g., we are aligned with a free portion
of the opponent's goal. Fuzzy predicates make it possible to classify the informa-
tion coming from the sensor into higher level classes, which give it a meaning.
Thus, it is possible to perform reasoning at a high level of abstraction, on a rel-
atively small set of concepts [6], thus achieving high speed and robustness [11].
Moreover, a fuzzy interpretation gives the possibility to reason on overlapping
classi�cations, which seems to be exactly what human beings, and some animals,
do in most situations. For instance, in �gure 5 we show the membership functions
de�ning three fuzzy sets (close, medium, far) used to implement fuzzy predicates
that classify the distance from objects. In the example, the measured distance
(1 m) is classi�ed as close with truth value 0.4 and medium with truth value 0.6.
In real life, usually we adopt classi�cations which can be naturally represented
by fuzzy predicates [11] whose de�nitions overlap, such as those presented in
�gure 5.

We associate to behaviors other two parameters: the static and the dynamic
relevance. The �rst implements an a priori, partial ordering among behaviors,
allowing to state, for instance, that avoiding crashes is always better than taking
the ball. The dynamic relevance also implements a partial ordering, but it can be
modi�ed according to the situation faced by the agent, and it is used to imple-
ment strategies and learning mechanisms, as discussed in the next sections. At
each high level control step we compute for each behavior instance whose cando
preconditions are true above a given threshold, its triggering level, by composing:
its two relevance values, the motivation coming from its want preconditions, and
the possibility coming from its cando preconditions. As done by most biological
beings, and in contrast with most of arti�cial fuzzy agents, the behavior with
the highest triggering level is activated, and its actions done. We have a winner-
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Fig. 5. An example of fuzzy classi�cation: the distance value 100 [cm] is classi�ed as
close with truth value 0.4, and as medium with truth value 0.6.

take-all activation, instead of a composition of proposed actions typical of fuzzy
systems, since this gives more coherence to behavior selection. If we decide that
it is better to go on the ball instead than towards the goal expecting a passage,
it does not make any sense to compose the two actions to obtain an hybrid
whose success possibilities are questionable: it is better to take a decision and
act coherently with it. If it was a wrong decision, it means that the activation
conditions of the behavior modules have to be tuned, and this can be done also
automatically, but only if it is clear which is responsible for the action taken [5].
This structure for behavioral modules is independent from the information we
have decided to be needed for the Robocup task, but it can support it e�ectively.
We adopt the same structure in other projects based on di�erent information
(and sensors). On the other side, the speci�c behaviors strongly depend on the
available information both for their existence (a behavior needing unavailable
information would have not been implemented), and for their speci�c implemen-
tation as discussed above for Go to Ball. The whole behavior system runs in
only 7 ms on the on board PC.

3.3 Strategy

We consider that basic skills for an agent are implemented by behavioral mod-
ules. A higher level decision module may inuence the behavior activation, acting
on the priorities among behaviors, by modifying their dynamic relevance values.
The strategic module we have implemented recognizes a situation by classifying
high level data interpretations, again implemented as fuzzy predicates. According
to this, it rearranges the dynamic relevance of the behaviors, to give the pref-
erence, in case of similarity of the other parameters, to a behavior or another.
For instance, if a teammate has the ball, we may either protect it by hindering
opponents, or follow its action expecting a passage. A deeper discussion of this
topic is beyond the scope of this paper.
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Also the instance of this module strongly relies on the available information.
For instance, an omnidirectional vision sensor gives the possibility to detect a rich
variety of situations without communicating with teammates. Probably, a �xed,
front camera would not give by itself enough information to justify the existence
of a strategic module, and also a mobile camera would be probably too slow to
catch enough from the environment to detect the relevant facts that could make
it possible to select strategies. For these reasons, most of the teams involved in
the F-2000 Robocup Championship in 1998 either relied on communication to
select strategies [10], or had simple, sel�sh strategies. In Robocup99, an increased
number of teams had robots equipped by omnidirectional vision.

4 Sensors and learning

Learning and adaptation are interesting approaches to implement, or improve,
control modules. We believe that, given that the present learning techniques,
learning behaviors from scratch on the �eld is not cost-e�ective: a designer may
develop by hand nice behaviors in less time and using less resources. The goal-
keeper task [17] is simple enough to be either learnt or programmed, whereas the
behaviors of the other players have to be developed on a large number of really
complex situations, and have to be adapted to the behaviors of the speci�c
opponents. Some researchers have proposed to learn more complex behaviors
in the F-2000 league (such as ball passing [18]). The behaviors were learned
in simulation, but hand-coded behaviors were preferred on the �eld. In these
conditions, we consider that it is more e�ective to program simple behaviors
and strategy modules, and then adapt them on line.

The role of sensors in learning in simulated environments is questionable.
Having worked since long time on learning behaviors for simulated robots [4],
we have come to the conclusion that in most cases the problems with simu-
lation are far di�erent from those in real world, apart from the cases where
enough resources are devoted to produce sophisticated simulation environments.
In particular, sensor models, and the quality of the information they provide,
are usually oversimpli�ed. Therefore, we would not like to discuss about the role
of sensors in learning in simulated environments.

Adaptation is even more important than learning in applications such as a
Robocup match among real robots, where the opponent's strategy is usually
unknown. The quality of the incoming information is relevant for the quality of
adaptation: the more and nicer information we have, the more the adaptation
algorithms can exploit it to �nd regularities. On the other side, it would be hard
to manage in real time a large amount of data.

Given the topics introduced above, we can easily imagine an adaptation
mechanism it could be implemented to improve strategies to face speci�c op-
ponents. For instance, an agent with the ball has to take di�erent behaviors to
contrast opponents that tend to rush on the ball, or opponents that tend to
block actively any possible way to their goal. Moreover, this can only be decided
on line, in real time, while playing against a speci�c team a speci�c match. We
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have implemented an adaptation system based on reinforcement. At present,
it works only on one-to-one strategies. The strategic module classi�es the sit-
uation by evaluating fuzzy predicates that interpret the incoming information,
compared with information previously acquired. Then, it selects one among some
prede�ned strategies (each corresponding to a set of relevance values for the be-
haviors), and provides a value of dynamic relevance for the involved behaviors.
This is repeated at each high level control step, always considering the same
strategy, for coherence reasons, until the situation changes. At this time, a rein-
forcement is computed by evaluating the new situation, and it is used to update
the value Q(s) of the selected strategy s according to the standard formula:

Qt(s) = Qt�1(s) + �
�
r �Qt�1(s)

�

We share the motivation for using this formula, and the general background
with other researchers who studied learning in the Robocup framework in other
leagues [16], but we consider di�erent models to learn, more appropriate for
adaptation in the F-2000 league.

5 Conclusions

While in nature we assisted to the co-evolution of sensor, motor and neurological
apparati, we claim that in robotic agent design we need to design �rst the appro-
priate sensors to get the quantity and quality of information we need to achieve
a task; then, we may try to shape the other components of the robot architec-
ture on this. We have discussed in details how we have applied this approach in
the development of Rullit, our Robocup F-2000 player. We argue that most of
the other components of a robot architecture could be designed in many di�er-
ent ways, but that the information provided by our sensor is appropriate and
essential to e�ectively face the Robocup task. We have also shown how many
problems may be solved at the sensor level, thus reducing the computational
e�ort.

Rullit is built on our Mo2Ro (Modular Mobile Robot) base, which also pro-
vides the mechanical and electronic basic modules for other robots, built around
other sensors, namely: Pop-eye, which has a camera mounted on top of a 5 DOF
ultra-light arm on board, and RoboCOPIS, which adopts a standard black and
white COPIS sensor [19].
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Abstract. All mobile robots require some form of motion control in or-

der to exhibit interesting autonomous behaviors. This is even more essen-

tial for multi-robot, highly-dynamic environments, such as robotic soccer.

This paper presents the motion control system used by CMUnited-98,

the small-size league champion at RoboCup-98. The team consists of

�ve robots that aim at achieving speci�c goals while navigating in a

limited space shared with the �ve other opponent robots. We introduce

our motion control algorithm, which allows a general di�erential-driven

robot to accurately reach a target point with a desired orientation in

an environment with multiple moving obstacles. We describe how the

features of our motion controller help to build interesting and robust

behaviors. We also briey compare our system to other motion control

techniques and include descriptions and illustrations of the performance

of our fully-implemented motion control algorithm.

1 Introduction

For any robotic system motion control is essential to building robust and inter-
esting behavior. This is even more important for multi-robot systems that need
to build team behaviors on top of individual behaviors. An example of such a
system is robotic soccer. Here, a team of robots must coordinate their actions
to push the ball into their opponents' goal. This is complicated by not only the
opponent agents trying to prevent this from occurring, but also by the highly dy-
namic environment. This highly dynamic environment makes many traditional
motion planning algorithms impractical since the environment changes before
the planner can even �nish its path.

This paper examines the motion control algorithm used in CMUnited-98 [6].
This team competed in RoboCup '98 in Paris in the small-size robot league.
The team won four of its �ve games and was the league champion for the second
straight year. A great deal of the success of the team can be attributed to the
motion control algorithms. It not only made direct contributions by providing
smooth and robust motion, but its features allowed us to build powerful individ-
ual and team behaviors. In section 2, we give a brief overview of the architecture
of our team. It will describe the percepts and actuators available to the motion
controller. In section 3, we describe the details of the motion control algorithm.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 222−230, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000



www.manaraa.com

In section 4, we describe how the high-level attacking behaviors e�ectively made
use of our algorithm. Finally, in section 5 we will discuss related work in this
area.

2 Team Architecture

The CMUnited-98 small-size robot team is a complete, autonomous architecture
composed of the physical robots, a global video camera over-looking the playing
�eld, and several clients as the minds of the small-size robot players. Fig. 1
sketches the building blocks of the architecture. The motion controller resides
in the individual client modules and bridges the gap between the output of the
vision processing system and the robots' motors.

Coaching/

Perceiving/

Transmitting

Interface

Client

Module

Client

Module

Client

Module

Client

Module

Client

Module

Raw Vision

Data

Action

Code

Robot-specific

Action code

Object

Positions

Fig. 1. The CMUnited architecture with global perception and distributed reaction.

The vision system provides the input to the motion controller. Since it over-
looks the entire �eld, it can provide a complete view of the world. Our image
processing algorithm reliably detects and tracks the position and orientation
of our �ve robots, the position of the �ve opponents, and the position of the
ball. Additionally it uses a Kalman-Bucy �lter to provide a reasonably accurate
prediction of the ball's velocity, both speed and direction. This information is
computed and passed to the client modules approximately every thirtieth of a
second.

The output is the motion parameters for the physical robot. The robots
have two motors and use di�erential drive for movement. The client modules,
speci�cally the motion controller, sends the desired wheel velocities to its phys-
ical robot using radio communication. The radio communication supports �ve
robots each receiving over twenty commands every second. Additionally, there is
no local feedback mechanism on the robots. All control is done using only visual
feedback through the motion controller.

A summary of the issues the motion controller must address are given below.

{ Ten moving robots (� 12cm diameters) on a small walled �eld (152.5cm by
274cm). Robots are moving at speeds close to one meter per second.
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{ Vision system providing 30 frames per second. Radio communication able to
support approximately 20 commands per second for each of the �ve robots.

{ Must be able to push the ball towards a particular point, speci�cally towards
a goal (50cm wide). It must also be able to intercept a moving ball and avoid
fast moving obstacles.

3 Motion Control Algorithm

The goal of our motion control algorithm is to be as fast as possible while
remaining accurate and reliable. This is challenging due to the lack of feedback
from the motors, forcing all control to be done using only visual feedback. Our
motion control algorithm is robust. It addresses stationary and moving targets
with integrated obstacle avoidance. The algorithm makes e�ective use of the
prediction of the ball's trajectory provided by the Kalman-Bucy �lter.

We achieve this motion control functionality by a reactive control mechanism
that directs a di�erential drive robot to a target con�guration. The mechanism
is based on CMUnited-97's motion control [7,1], but includes a number of major
improvements. The target con�guration for the motion planner has been ex-
tended. The target con�guration includes: (i) the Cartesian position; and (ii)
the direction that the robot is required to be facing when arriving at the target
position. Obstacle avoidance is integrated into this controller. Also, the target
con�guration can be given as a function of time to allow for the controller to
reason about intercepting the trajectory of a moving target.

3.1 Di�erential Drive Control for Position and Direction

We begin with some basic control rules. The rules are a set of reactive equations
for deriving the left and right wheel velocities, vl and vr, in order to reach a
target position, (x�; y�):

� = � � � (1)

(t; r) = (cos2� � sgn(cos�); sin2� � sgn(sin�))

vl = v(t � r)

vr = v(t + r);

where � is the direction to the target point (x�; y�), � is the robot's orientation,
and v is the desired speed (see Fig. 2(a))1. A few aspects of these equations
deserve explanation. The use of sin2 and cos2 restricts the values (t� r) to the
interval [0; 1], which bounds the magnitude of the computed wheel velocities
by v. These equations also do not necessarily drive the robot forward, possibly
driving the robot backwards towards the target.

We extend these equations for target con�gurations of the form (x�; y�; ��),
where the goal is for the robot to reach the speci�ed target point (x�; y�) while
facing the direction ��. This is achieved with the following adjustment:

�0 = � +min
�
�; tan�1

� c
d

��
;

1 All angles are measured with respect to a �xed coordinate system.
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Fig. 2. (a) The parameters used to reach a target con�guration (x�; y�), without a
speci�ed target orientation. (b) The adjustment of � to �0 to reach a target con�guration
of the form (x�; y�; ��).

where �0 is the new target direction, � is the di�erence between our angle to the
target point and ��, d is the distance to the target point, and c is a clearance
parameter (see Fig. 2(b).) This will keep the robot a distance c from the target
point while it is circling to line up with the target direction, ��. This new target
direction, �0, is now substituted into equation 1 to derive wheel velocities. An
example trajectory using these equations is shown in Figure 3 (a).

In addition to our motion controller computing the desired wheel veloci-
ties, it also returns an estimate of the time to reach the target con�guration,
T̂ (x�; y�; ��). This estimate is a crucial component in our robot's strategy. It is
used both in high-level decision making, and for low-level ball interception, which
is described later in this section. For CMUnited-98, T̂ (x�; y�; ��) is computed
using a very simple linear function of d, �, and �:

T̂ (x�; y�; ��) = wdd+ w��+w��:

The weights were set by simple empirical measurements. wd is the inverse of the
robot's translational speed; w� is the inverse of the robot's rotational speed; and
w� is the inverse of the speed of the robot when traversing a circle of radius, c. It
is interesting to note that even this crude time estimate can be incredibly useful
for building more complex behaviors, which are discussed later in this paper.

3.2 Obstacle Avoidance

Obstacle avoidance was also integrated into the motion control. This is done by
adjusting the target direction of the robot based on any immediate obstacles in
its path. This adjustment can be seen in Fig. 4.

If a target direction passes too close to an obstacle, the direction is adjusted
to run tangent to a preset allowed clearance for obstacles. Since the motion
control mechanism is running continuously, the obstacle analysis is constantly
replanning obstacle-free paths. This continuous replanning allows for the robot
to handle the highly dynamic environment and immediately take advantage of
short lived opportunities. Figure 3 (b) shows an example trajectory.
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(a)

(b)

Fig. 3. Example trajectories. (a) This illustrates reaching a point with a speci�c ori-
entation. The target point is the position of the ball, and the speci�ed orientation is
to the right. (b) An example trajectory illustrating obstacle avoidance.

This technique can be viewed as a path planner using only a one-step looka-
head. Hence, it sacri�ces completeness for the performance needed to handle
the dynamic environment. Section 5 will briey compare this technique with
traditional path planning.

3.3 Moving Targets

One of the real challenges in robotic soccer is to be able to control the robots to
intercept a moving ball. This capability is essential for a high-level ball passing
behavior. CMUnited-98's robots successfully intercept a moving ball and several
of their goals in RoboCup-98 were scored using this capability.

This interception capability is achieved as an extension of the control al-
gorithm to aim at a stationary target. Fig. 5(a) illustrates the control path to

q’’

q’

Fig. 4. The adjustment of �0 to �
00 to avoid immediate obstacles.
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reach a stationary target with a speci�c direction, using the control mechanism
described above. Our extension allows for the target con�guration to be given
as a function of time, where t = 0 corresponds to the present,

f(t) = (x�; y�; ��):

At some point in the future, t0, we can compute the target con�guration, f(t0).
We can also use our control rules for a stationary point to �nd the wheel velocities
and estimated time to reach this hypothetical target as if it were stationary. The
time estimate to reach the target then informs us whether it is possible to reach
it within the allotted time. Our goal is to �nd the nearest point in the future
where the target can be reached. Formally, we want to �nd,

t� = minft > 0 : T̂ (f(t)) � tg:

After �nding t�, we can use our stationary control rules to reach f(t�). In addition
we scale the robot speed so to cross the target point at exactly t�.

Unfortunately, t�, cannot be easily computed within a reasonable time-frame.
We approximate this value, t�, by discretizing time with a small time-step. We
then �nd the smallest of these discretized time points that satis�es our estimate
constraint. An example of this is shown in Fig. 5(b), where the goal is to hit the
moving ball.

t=0

t*
t=0

(a) (b)

Fig. 5. (a) Control for a stationary target. (b) Control for a moving target.

The target con�guration as a function of time is computed using the ball's
predicted trajectory. Our control algorithm for stationary points is then used to
�nd a path and time estimate for each discretized point along this trajectory,
and the appropriate target point is selected.

4 Using Motion Control

We have described how our motion controller computes the wheel velocities
to reach a target con�guration, (x�; y�; ��), which may even be a function of
time, f(t). It is the responsibility of individual and team behaviors to select
the appropriate target con�gurations for each of the robots. The features of
our motion controller often simplify this problem. We will examine how these
features help build two attacking behaviors, shooting and passing. Also, we will
show how it contributes to our team attacking behavior, which involves a decision
theoretic action selection.
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4.1 Individual Behaviors: Shooting and Passing

We �rst developed individual behaviors for passing and shooting. For both be-
haviors the positional portion of the target position is the ball's position, since
the goal is to push the ball. Additionally, we can use the ball's predicted trajec-
tory to make the position a function of time, according to the trajectory.

The directional portion of the target con�guration determines where the ball
is pushed. The passing behavior speci�es a direction that is a small amount in
front of the designated receiver. For shooting, a more complex target direction
is computed. Simply pushing the ball towards the center of the goal will do
nothing to avoid pushing the ball into the goalie. Instead, we want to push the
ball towards the largest unblocked portion of the opponent's goal. This is done
by selecting the largest unblocked angular section of the goal and aiming for
the angle that bisects it. Figure 6 illustrates the selected target con�guration to
achieve passing and shooting.
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(a) (b)

Fig. 6. An example of possible aiming positions given the position of the ball and two
opponents. The largest angle is chosen and �� is the bisection of the angle.

4.2 Team Behavior: Decision Theoretic Action Selection

Given the individual behaviors, we must select an active agent, the agent that
will go to the ball, and an appropriate behavior, passing or shooting. This is
done by a decision theoretic analysis that uses a single step look-ahead. With
n agents there are n2 choices of actions involving shooting or a pass to another
agent followed by that agent shooting. An estimated probability of success for
each pass and shot is computed along with the time estimate to complete the
action, which is provided by the motion controller. With these estimates, a value
for each action is computed,

Valuepass =
PrpassPrshoot

T̂ (fpass)
Valueshoot =

Prshoot
T̂ (fshoot)
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The action with the largest value is selected, which determines both the active
agent and its behavior. Table 1 illustrates an example of the values for the
selection considering two attackers, 1 and 2. CMUnited- 98 uses a heuristic
function to estimate the success probabilities of passing and shooting.

Probability of Success
Attacker Action Pass Shoot Time(s) Value

1 Shoot { 60% 2.0 0.30
1� Pass to 2 60% 90% 1.0 0.54
2 Shoot { 80% 1.5 0.53
2 Pass to 1 50% 40% 0.8 0.25

Table 1. Action choices and computed values are based on the probability of success
and estimate of time. The largest-valued action (marked with the �) is selected.

It is important to note that this action selection is occurring on each iteration
of control, approximately 30 times per second. The probabilities of success, es-
timates of time, and values of actions, are being continuously recomputed. This
allows for quick changes of actions if shooting opportunities become available or
collaboration with another agent appears more useful.

5 Related Work

An alternative to our purely reactive algorithm is to use a complex motion plan-
ning algorithm. A number of these algorithms are summarized by Latombe [3].
These techniques �nd complete obstacle free paths, but yet have di�culties in
the robotic soccer domain. Since the environment is highly dynamic with the
obstacles constantly moving, planned paths would need to be constantly reeval-
uated. Also, path planning often needs to be done for a large number of proposed
trajectories before the high-level action can even be selected. These traditional
algorithms are simply too slow for the continuous real-time execution that is
demanded in robot soccer.

Another approach to motion control [4] uses a reactive mechanism with fast
hardware-supported feedback, via motor encoders and on-board sensors. This
makes use of a slower decision loop to provide high-level commands, and a fast
control loop to perform these commands. The control loop uses the motor en-
coders to perform accurate movements and on-board sensing for immediate ob-
stacle avoidance and ball manipulation. This was successfully used by CURF
(Cambridge University Robot Football) in RoboCup '98. One drawback to this
technique is that the fast control loop does not have access to the complete sen-
sors (i.e. the global view of the �eld), and short lived opportunities, which may
not be recognized by the local sensors, often cannot be exploited . ISpace [2],
another team that competed in RoboCup '98, used a similar technique, but due
to onboard vision could possibly overcome this drawback.

Additionally, there are also other reactive control systems for remotely con-
trolled robots [5].
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6 Conclusion

We've described the motion control algorithm used in CMUnited-98. The algo-

rithm incorporates obstacle avoidance, and has an extended target con�guration

that includes orientation and can be given as a function of time. In addition to

the details of the algorithm, we also described how its features simpli�es the

building of individual and team behaviors. The system was integral part of the

team's success.
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Abstract

Dual Dynamics (DD) is a mathematical model of a behavior control
system for mobile autonomous robots. Behaviors are specified through
differential equations, forming a global dynamical system made of behav-
ior subsystems which interact in a number of ways. DD models can be
directly compiled into executable code. The article (i) explains the model,
(ii) sketches the Dual Dynamics Designer (DDD) environment that we use
for the design, simulation, implementation and documentation, and (iii)
illustrates our approach with the example of kicking a moving ball into a
goal.

1 Introduction

In the RoboCup mid-size league, robots have to kick a ball into the right di-
rection. For many reasons, this is a hard task, which calls for robotic methods
from many fields:

1. The situation on the field changes rapidly and drastically. This suggests
a reactive, behavior-based approach to robot control [Brooks1991].

2. Kicking a moving ball is a continuous and dynamic task. Methods from
continuous-time robust control (like in [Aicardi et al.1995]) are required.

3. The meaning of “. . . into the right direction” also varies dynamically.
A self-organising, dynamical-system realization of goals and motivations
seems appropriate here [van Gelder1998].

4. Playing football involves many different kinds of actions, with complex
relations and interactions between them. A hierarchical representation of
actions and action selection control is a natural approach to handle this
complexity [Tyrrell1993].
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5. Developing complex robots is done in many iterated design-redesign cy-
cles, often with substantial modifications both on the hardware, low-level
software, and control program level. State-of-the-art co-design tools can
become critically beneficial [de Micheli and Gupta1997].

This list is certainly incomplete, but it demonstrates that designing football-
playing robots is a complex, interdisciplinary challenge. From a traditional
engineering perspective, this cries out for a modularized, hybrid approach, where
different specialized subsystems are designed by different specialists, with well-
defined interfaces between them.

However, there are indications that the classical divide-and-conquer ap-
proach is not fully appropriate for football-playing robots. A fast, autonomous
robot in a continuously dynamic environment must continuously construct a
stream of action from a stream of sensor information. This is connected to, but
transcends, the well-known action selection problem [Maes1990]: construction
is harder than selection. The imperative of continuously “doing the right thing”
can only be met by an agent that acts “holistically”, or to use a more modest
term, in an integrated fashion. It is difficult to conceive how a classical mod-
ular system can rise to this task, at least when it consists of subsystems that
communicate with each other over relatively narrow channels according to strict
protocols, hiding from each other most of what is going on inside them. Unfor-
tunately, the notion, “to act in an integrated fashion”, is as vague as the term
“modular”. Practical examples of robotic systems that more or less successfully
construct a stream of action will help us to advance our understanding.

Building such a robotic system can only be achieved by a team of engineers
that also behaves in an integrated way. At the very least, this means that
there is a close, mutually informed collaboration – information hiding of any
sort stands in opposition to the goal of building a system that can act in an
integrated fashion.

Thus, a fundamental challenge for mobile robotics is to reconcile, (i) the need
for some sort of modular design, which results from the necessity of bringing
together diverse techniques and human specialists, with (ii) integratedness both
in the robot and in the developing process.

At the Behavior Engineering (BE) research group in the GMD Institute of
Autonomous Intelligent Systems (AiS, http://ais.gmd.de) we explicitly address
this challenge. Our approach rests on two pillars. On the one hand, we de-
velop a mathematical model of a behavior control system, which to a certain
degree integrates the points 1 – 4 mentioned in the beginning: a behavior-based
approach, robust control, a dynamical systems representation of actions and
goals, and a hierarchical architecture. This is the Dual Dynamics (DD) model
[Jaeger and Christaller1998]. On the other hand, we develop and utilize a design
tool that fosters a close collaboration of engineers, by providing everyone with
a unified access to the entire robot control system under construction. This is
the Dual Dynamics Designer (DDD) tool [Bredenfeld1999].

In this article, we give a quick introduction to the DD model (Section 2),
describe the DDD tool (Section 3), and demonstrate its application with the
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2 The Dual Dynamics model of behavior control

The Dual Dynamics scheme is a mathematical model of a behavior control
system for autonomous mobile robots. It has grown from three roots: the
behavior-based approach to robotics, the dynamical systems approach to cogni-
tion, and the mathematical theory of self-organizing dynamical systems. Discus-
sions of these foundational topics can be found in [Jaeger and Christaller1998]
[Jaeger1998] [Jaeger1997]. In the present article we concentrate on the mathe-
matical and technical aspects of DD.

Behaviors are formalized as dynamical systems, using ordinary differential
equations (ODEs). These dynamical systems interact through shared vari-
ables and certain control relations, yielding an complex control system, which
in its entirety again is a dynamical system. The DD model specifies cer-
tain structural and dynamical constraints on admissible interactions and con-
trol relations between the various dynamical subsystems, which will be infor-
mally explained in this section. The formalism is mathematically specified in
[Jaeger and Christaller1998].

The basic assumption on which DD rests is that a situated agent can work in
different modes. Modes are coherent, relatively stable “frames of mind”, which
enable the agent to tune into different situations and tasks. Specifically, agents
respond to sensory signal differently in different modes. In defend mode, a
football robot would react to a ball quite differently than when it is in attack
mode. The DD approach rests on the assumption that transitions between
modes can be formally captured by bifurcations of dynamical systems. A direct
implication of casting mode changes as bifurcations is that such changes are
qualitative, discontinuous changes, not gradual ones. Our football robots do not
gradually change from defend to attack mode, they either defend or attack.
However, since these transitions are regulated by dynamical systems (in contrast
to finite state machines), the decision point is dynamically and continuously
tuned by the full wealth of incoming sensor information.

In the remainder of this section, we explain how this basic idea becomes the
ordering principle for a dynamical systems engineering approach to behavior
control.

The main building blocks of a DD robot architecture are behaviors. They
are ordered in levels (fig. 1a). At the bottom level, one finds elementary behav-
iors: sensomotoric coordinations with direct access to external sensor data and
actuators. Typical examples are kick or fixateBall. At higher levels, there
are increasingly comprehensive behaviors. They also have access to sensoric
information but cannot directly activate actuators. Their task is to regulate
modes. As a first approximation, higher-level behaviors can be seen as instan-
tiations of modes. An example of a first-level behavior in our football robots is
challenge1, which corresponds to the first video qualification task of finding a
ball and scoring a goal without opponents. Second-level higher behaviors would
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be even more comprehensive. For instance, attack would be a second-level
behavior which coincides with the attack mode.

Elementary behaviors are different from higher-level behaviors in that they
are made from two subsystems (fig. 1a), which serve quite different purposes.
This has given the approach its name, “dual dynamics”.

The first of these subsystems is called the target dynamics. It calculates tar-
get trajectories for all actuators which are relevant for the particular behavior.
For this calculation, the target dynamics has access to every relevant sensor
information, and typically includes specific sensor preprocessing. The output of
the target dynamics consists of as many variables as there are motoric degrees
of freedom to be controlled.

A requirement for the target dynamics is that this system should not undergo
bifurcations. This is what makes elementary behaviors elementary, and provides
a very helpful criterium for deciding which behaviors are, in fact, elementary.
For instance, the target trajectories of kick in our simple wheeled football
robots are likely to remain qualitatively unchanged in different instances of the
maneuver. Thus, kick would be a good candidate for an elementary behavior.
By contrast, in an anthropomorphic football robot it is likely that there will be
qualitatively different kicking maneuvers different circumstances. Each of them
would thus yield a separate elementary behavior.

From an engineering perspective, the target dynamics is just a motor con-
troller for a specific task. DD is not committed to a particular type of controller
– any controller which promises success is welcome. The “no bifurcation” re-
quirement, in this perspective, means that one has a uniform control law.

The other subsystem of an elementary behavior is its activation dynamics.
It regulates a single variable, the behavior’s activation. The equation ruling this
variable should be written in a way that the variable displays a dynamic range
between 0 and 1. Intuitively, a value of 1 means that the behavior is fully active,
whereas 0 means that it is completely inhibited. High values of the activation
mean that the target trajectories computed in the target dynamics are passed
through to the actuators (cf. 1b).

The activation dynamics is allowed to undergo bifurcations. The control
parameters which induce these bifurcations are the activation variables of higher-
level behaviors. This is the core idea behind DD.

To illustrate this central point, consider the level-1 behaviors charge (quick
advance with ball) and freeBall (liberate ball which has got stuck at wall
or between robots). Consider an elementary behavior bumpRetract, a protec-
tive reflex which generally means: retract when the robot bumps into things.
Standardly, the activation of bumpRetract jumps to 1 when the front bumper
sensors are hit. However, this dynamical response changes qualitatively in dif-
ferent modes. Assume that the robot is charging and pushes the ball in front of
itself. The bumper will be frequently hit by the ball. However, the activation
of bumpRetract should not be triggered in this circumstance. Technically, the
high activation of the level-1 behavior charge works on the activation dynamics
of bumpRetract as a control parameter, pushing this dynamical system into a
regime where it does not respond to bumper signals if the ball is seen directly
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Figure 1: (a) Global structure of a DD behavior control system. At any time,
every behavior has an activation. Activations of higher-level behaviors (de-
picted in shaded boxes) act as control parameters for the activation dynamics
of lower levels. The dynamical system which maintains a behavior’s activation
can undergo bifurcations; this in indicated by depicting these systems as styl-
ized “phase diagrams” (boxes with irregular partitions). A mode of the entire
system is thus determined by the activations of all higher-level behaviors. (b)
The target and activation subsystems of an elementary behavior.
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in front. Now assume, by contrast, that the robot is trying to get the ball
unstuck. Its level-1 behavior freeBall should have an activation of about 1.
This value is again passed to the activation dynamics of bumpRetract as a con-
trol parameter, changing the response characteristics of this dynamical system.
It should now indeed retract even when hitting the ball, since it makes little
sense to try getting a ball unstuck by pushing it further into where it’s been got
stuck. In technical terms, the activation dynamics of bumpRetract undergoes
a bifurcation when the activations of charge and freeBall change in a certain
way.

These bifurcations are mathematically designed in the simplest possible way.
For each relevant higher-level behavior, the activation equation is equipped with
a particular additive term, which is multiplied with the concerned higher-level
activation. For instance, the equation for the activation αbumpRetract would be
controlled by the activations αcharge and αfreeBall in the following way:

α̇bumpRetract = αchargeT1 + αfreeBallT2 + . . . + decay, (1)

where T1, T2 are hand-designed dynamical laws which yield an appropriate
activation characteristics in the charge and freeBall modes. The decay term
and other details are explained in [Jaeger and Christaller1998].

To reiterate, only the activation dynamics subsystem undergoes bifurcations
in a properly designed DD scheme. The fact that bifurcations (which are in-
herently difficult to master from a designer’s perspective) are confined to these
single-variable subsystems is critical for the transparency of DD behavior control
systems.

Higher-level activation variables yield control parameters for lower-level ac-
tivation dynamics. Now, in the theory of dynamical systems it is assumed that
control parameters change on a (much) slower timescale than the systems they
control. This implies that behaviors on different levels in a DD architecture must
have different timescales, with higher-level behaviors being long-term and lower-
level behaviors become active/inactive on a short-term scale. This provides the
designer with a formal criterium for level organization: order higher-level be-
haviors according to time scales.

We emphasize that an elementary behavior is not “called to execute” from
higher levels. The level of elementary behaviors is fully operative on its own and
would continue to work even if the higher levels were cut off. The effect of higher
levels is not to “select actions”, but to change the overall, integrated dynamics of
the entire elementary level, by inducing bifurcations in the activation dynamics
on that level.

3 The dual dynamics design tool

Programming a football playing robot is a group activity, where different re-
searchers are occupied with designing different branches and levels of the overall
robot control system. In order to achieve an “integrated” behavior, the design
process must be maximally transparent for all group members. Essentially,
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everybody must be able to understand and use, what everybody else designs.
Therefore, we have developed a unified software developing environment, the
“Dual Dynamics Designer” (DDD). Specifically, DDD provides automated edit-
ing, documentation, simulation and code generation facilities.

Figure 2: The primary DDD user interface. The example shows a basic roam
behavior with bumper-based obstacle avoidance. Sensor filters and intermediate
representations are on the left, higher-level behaviors (only roam in this case)
are on the right upper part, and elementary behaviors on the right lower part
of the screen.

The primary graphical user interface for designing a DD model is shown in
Fig. 2. It includes icons of sensors, sensor filters and intermediate sensor rep-
resentations, elementary and higher-level behaviors. Important global variables
and constants (time constants, especially) appear highlighted besides the con-
cerned icons. By clicking on the icons, context-sensitive editor windows pop up
in which equations and/or ODEs can be specified in an intuitive syntax.

After designing the network of behaviors and preprocessing filters, a syntax
check, global and local variable detection and checking for cyclic dependencies
between equations is performed in a compilation step. Cyclic dependencies
(which are unavoidable in coupled dynamical systems) are highlighted in the
graphical representation on the screen. It is left to the designer to schedule a
processing order for cyclically connected variables, which s/he can do by simply
rearranging the icons from left to right.

By hitting the C, Java, and Robot buttons, executable standard C code,
Java code, and robot C++ code is generated. The Java code can be fed into
a simulation engine, which currently simulates the interaction of a single robot
and a ball in an empty arena. The simulator provides a number of diagnostic
traces of activations and target variables, as well as a graphical rendering of
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the robot’s doings in the arena. We find the simulation of inestimable value
in detecting “dynamo-logical” misconceptions in the designed activation and
target dynamics.

The DDD tool is based on a proprietary object-oriented behavior represen-
tation, which is taken as common source for all target code generators (C, C++,
Java, HTML). Therefore, the C++ code generated for our robots’ onboard PCs,
exactly mirrors the Java code used in the simulation. The generated documen-
tation is common for all targets and hides language dependent implementation
and syntactical details from the behavior designer. The documentation of the
sensor preprocessing and DD control program allows a convenient inspection of
all parts of the robot control system, ordered by various aspects.

The DDD tool itself is constructed with the Rapid Prototyping Environment
APICES [Bredenfeld1998]. Readers interested in software engineering aspects
can find more details on the software architecture and development process of
the DDD tool in [Bredenfeld1999].

An exemplary control program (sketched in the next section), the simulator,
and the documentation are available on our web server at http://ais.gmd.de/
BE/ddd/, and can be run on Web browsers that support Java (tested on Netscape).

4 Kick a moving ball: a case study

In this section we sketch a DD behavior control system for achieving the first
RoboCup-99 video qualification task. This task for a single robot consists in
finding a stationary ball and scoring a goal without opponents. We made this
task a bit more difficult by using a ball that rolls about while the robot tries to
find and kick it.

We employ a team of custom-built 2 degree of freedom, 1-PC-3-microcontroller
equipped robots that rely on the well-known Newton Lab’s Cognachrome sys-
tem for ball and goal detection, infrared-based distant obstacle avoidance and
otherwise standard bumper ring sensors and odometry. The robots do not have
concavities to guide the ball. Instead, they hit the ball with their straight front
portion and rely on billiard-like ball reflection. A more detailed description of
our robots is given in [Kuth et al.1998].

The difficult part of this task is kicking the moving ball into the right direc-
tion after it has been spotted. This implies hitting the ball with some appropri-
ate (underconstrained) combination of angle, velocity and position, grounded
on rather noisy estimates of ball state. This problem lies well beyond the powers
of classical approaches to motor control.

We approached the task by breaking it up into various elementary behaviors,
each of which comes with its own sensor-motor control strategy. The overall
goal is solved by an appropriate chaining, superposition, and inhibition of the
participating activation dynamics.

Fig. 3 lists the relevant behaviors (a) and depicts a typical search–intercept–
kick episode (b). The latter diagram was obtained from an simulation imple-
mented in Mathematica in the early stages of the DDD development. Initially
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Figure 3: (a) The behaviors involved in the first qualification video task (several
obstacle avoidance behaviors are omitted). (b) A successful (simulated) search –
intercept – kick episode. The diagram shows head view of arena, opponent’s goal
on the right side. Ball (thick black line) starts at lower left corner with velocity
95 cm/sec. Robot (narrow black line) starts at lower right corner. Dotted lines
connect equitemporal points on robot and ball trajectory every second. Shaded
lines indicate activation periods of elementary behaviors.
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the robot does not see the ball, having a vision field of only ± 33 degrees.
When ignorant of the ball position, the robot falls into search mode. Besides
some obstacle avoidance behaviors, this mode basically comprehends only the
elementary behavior whirl. The motor commands issued by whirl consist of
a simple alternation of straight move-forwards and circles. This pattern is ac-
tive until the ball is seen after a half left turn. Seeing the ball, the robot falls
into challenge1 mode. The elementary behaviors behindBall, turnToBall,
position, and kick can now potentially become activated. It depends on the
situation and history which behavior is triggered. In the example in Fig. 3(b),
behindBall is activated first. Its control law says: “move toward own goal at
max velocity until robot is well behind ball”. The next behavior is turnToBall
(“turn into direction where ball is expected”), followed by position (“move to
a position from which ball can be kicked into goal”) and finally, kick (“bump
into ball with velocity that makes it billiard-bounce toward goal”). During this
sequence, there are also two activation periods of fixateBall. This is a mode-
independent (technically: root-mode) elementary behavior, which tries to keep
the ball inside the vision cone for about 1 sec – the time needed for sampling
enough video frames for a useful estimate of the ball vector. Finally, there is
a brief activation of noSelfGoal (“if in danger of kicking ball into own goal,
avoid the ball”), which however in this case has no motor effects since the robot
quickly calculates that it avoids the ball anyway.

The sensor-motor control laws of these behaviors range from trivial to tricky.
For instance, the motor target trajectories generated by whirl are actually
entirely precoded and independent of sensor input. The target dynamics of
position, by contrast, includes mechanisms of ball prediction and a position
evaluation.

The powers (and difficulties) of the DD approach, however, lie in the activa-
tion dynamics rather than in the target dynamics. Several mechanisms, all of
which are locally coded into the activation dynamics laws of the behaviors, con-
trol the interaction and trigger pattern of these activations. The most important
mechanisms are:

Sensor conditions. Activate or inhibit a behavior when certain sensor input
conditions are satisfied. Example: kick gets active “opportunistically”
when ball is seen roughly in line with goal.

Chaining. Activate a behavior when certain other behaviors become deacti-
vated. Example: kick gets active when the activation of position goes
down.

Inhibition. Inhibit a behavior by the activation of others. Example: most
behaviors are inhibited by obstacle avoidance behaviors.

Furthermore, these activations can be gradual (e.g., fixateBall’s activation
grows with the uncertainty of ball estimates) or almost binary (standard case);
they can have a fast dynamics (typical example: protective reflexes) or a slow
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one (useful for behaviors whose motor trajectors blend into one another, for
example the transition from position to kick is relatively slow).

Interested readers can inspect all equations of the behavior system presented
here in the automatically generated DDD documentation at http://ais.gmd.de/
BE/ddd/chall1.html.

5 Conclusion

Identifying and coding appropriate dynamical activation schemes is decisive for
the performance of a DD control system. Specifically, a simple switch-on /
switch-off chaining of behaviors (like in classical action selection literature) is
insufficient for a motor control task as complex and dynamic as the one in
RoboCup. The phenomenology of dynamic onset, offset, and superposition of
behaviors is rich and only dimly understood. We also believe that the elusive
“integratedness” of situated motor control, which we mentioned in the intro-
duction, is somehow connected to the problem of shaping appropriate activa-
tion patterns. Currently the DD framework does not spell out how the terms
T in activation equations (cf. eqn. (1)) have to be written. However, certain
standard terms in the activation equations begin to evolve in the BE group’s ev-
eryday work. One of our major current research topics is to develop a systematic
repertoire of such activation schemes, and integrate them into the DDD tool.
Other robotics goups with whom we collaborate [Steinhage and Schöner1998]
have started to work along the same lines.

Acknowledgments We would like to thank Karl-Ludwig Paap and his
group for their generous assistance in designing and building the initial ver-
sion of our robot hardware and onboard CAN communication system.
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Abstract. An early stage in image understanding using colour involves

recognizing the colour of target objects by looking at individual pixels.

However, even when, to the human eye, the colours in the image are

distinct, it is a challenge for machine vision to reliably recognize the

whole object from colour alone, due to variations in lighting and other

environmental issues. In this paper, we investigate the use of decision

trees as a basis for recognizing colour. We also investigate the use of

colour space transforms as a way of eliminating variations due to lighting.

1 Introduction

In many domains arti�cial vision is the primary mechanism for a robot to sense
its environment. In the domain of robot soccer it is important that vision is fast,
relatively reliable in recognizing objects and is adequate for the robot to move
and act appropriately in the environment. We have been exploring mechanisms
to improve the reliable discrimination of objects based on colour.

In previous years we have used a vision system based on RGB (red, green
and blue) pixel classi�cation which has been manually tuned to the particular
variations of colour and lighting. This year we have experimented with alterna-
tives to RGB, such as HSL (Hue, Saturation, Luminescence) [6] and normalized
RGB and evaluated the use of a decision tree learning algorithm for training the
system to recognise objects from their colour in a variety of lighting conditions.
This has resulted in improved object recognition.

In the following sections we describe the operating environment and the
techniques explored in our e�orts to improve the quality of information obtained
from the vision system.

2 General and Speci�c Domain Information

Our work is focussed primarily on providing a vision system for use with an
autonomous, mobile, soccer-playing robot, participating in the middle size league
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of the Robot Soccer World Cup (RoboCup) [8]. In this scenario two teams of 4{5
robots1 play against each other on a green carpeted �eld, surrounded by white
walls with a blue goal at one end and a yellow goal at the other. The soccer ball is
bright orange.2 All the robots are required to be mostly black, with a light blue or
purple marker to indicate team membership. Robots may be up to 80kg in weight
and up to 80cm high. All sensing devices must be located on board the robots
| i.e. it is not possible to have stationary cameras perceiving the environment
and then transmitting information to the robots. However communication is
allowed, and an o�-board system may be used for computation if desired. Thus
information perceived by one robot may be communicated to other robots.

Our robots currently have vision as their only sensor, and although we plan
to add some additional sensors, vision will remain the primary mechanism for
object recognition and an important mechanism for self-localization. While some
level of self-localization is critical (e.g. to avoid kicking the ball towards the
wrong goal), we are not aiming to achieve a high level of accuracy of location
information. A human soccer player is able to play with only a rough knowledge
of their own location, and so we feel that a rough knowledge is all that is required
for a robotic soccer player.

Vision is also the only mechanism used for estimating distance from objects,
though we may add tactile sensors for detecting when objects are very close.

The robots are quite fast-moving, with a top speed of over 2ms�1. Informa-
tion from the vision system is the primary means used to detect an impending
collision. It is essential therefore that the vision system is able to process a large
number of frames per second. Consequently the speed of processing for each
frame of visual data is crucial. Our initial aim for the vision processing speed
was 15 frames per second. This means that the robot, when at top speed, will
move up to 13cm before it has completely processed visual information.

Our robots are using Logitech QuickCamTM VC cameras mounted in a �xed
position on the robot at a height of 325mm from the ground and with the camera
pointing at an angle of about 17 degrees downwards from the horizontal. The
�eld of view is 45 degrees wide and we do not currently use any distorting lenses
(such as a �sh eye lens). The camera has a maximum resolution of 320 � 240
pixels but we currently use the 160� 120 mode.

The main processing phases in the vision system are:

1. (grab) get frame from camera
2. (smooth) apply smoothing
3. (classify) classify each pixel according to colour as belonging to a particular

object
4. (segment) divide up image into segments of the same classi�cation
5. (�lter noise) discard small segments
6. (locate) estimate distance and angle to object associated with each segment

1 There were 5 robots per team in 1997 and 1998, but only 4 per team are planned

for 1999.
2 The ball is de�ned in the regulations as being red, but the actual colour of the ball

used is described by most people as bright orange.
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The work we are presenting in this paper is focussed on step 3 (classi�cation).

3 Classi�cation

Classi�cation has the aim of deciding which pixel belongs to which type of object.
Each pixel is 24 bits with 8 bits each for red, green and blue. This format is known
as True Colour. The red, green and blue (RGB) values for an object depend
mainly on the colour of the object, but also on the colour of the lighting and
level of illumination, reections from other objects, shadows and the accuracy
of the camera. For a moving robot, some of these factors will change from frame
to frame. Even for a single object of uniform colour, a wide variety of di�erent
RGB values will be detected.

In order to process the image as quickly as possible, and because classi�cation
has to be performed on every pixel, it is important that this step is very simple.
One approach is to compare each component of the pixel (i.e. red, green and
blue) to a set of minimum and maximum thresholds. Another approach is to use
a look-up table (LUT) with one element for each possible pixel value.

3.1 Threshold Classi�cation

When using thresholds [11], the threshold values can either be selected manually,
or by collecting pixel samples for each object type and using the mean and
variance of each pixel component to determine the thresholds. Our previous
system used the latter approach, and based the threshold values on the mean,
plus or minus twice the standard deviation.

The thresholds form a bounding box in the pixel feature space, aligned with
the axes. Every pixel colour inside the box is considered to belong to that object.
There are two main problems with this approach. The �rst is that it assumes
a distribution that �ts neatly into a box, and particularly, one aligned with the
axes. Second, the boxes (and thus the thresholds) sometimes overlap.

Most objects have both specular highlights and shadowed regions which, if
used in �nding the thresholds, tend to expand out the threshold box so that it
tends to �nd false positives. If they are excluded from the calibration of thresh-
olds, these parts of the object are not detected, or in other words, they will be
false negatives. We found that when using the threshold approach, the trainer
had to be careful to select that part of the object that was neither too dark nor
too bright as the basis for training. When this approach was used, about half
the object was recognized, which was typically just enough to allow the object
to be tracked, as long as the lighting remained constant.

When more extensive training was performed, the thresholds tended to over-
lap. The previous system allowed for this by checking the thresholds in a set
order. Unfortunately, the order that was used put the ball �rst, which tended
to result in a lot of false positives for the ball. A better approach might be to
adjust the thresholds to avoid overlap.
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3.2 Look-Up Table Classi�cation

Another way to train a system to recognize a particular colour, is to use a
look-up table (LUT) [5, 7], with one element for each possible colour (224 bytes
are required for a 24 bit pixel feature space). LUTs are often implemented in
hardware and closely associated with the camera. Instead, we implemented the
LUT in software, which had the bene�t that the main memory was the only
limitation on the size of the LUT, and in fact we initially used a 16Mb table
size. (Later we dropped the least signi�cant bit from each component, reducing
the LUT size to 2Mb.) The LUT can be manually trained by collecting pixel
samples for each object. Unfortunately, this typically produces a sparsely �lled
array and subtle variations in lighting may prevent pixels from being classi�ed
because the training didn't include that combination of red, green and blue.

Therefore, a common augmentation of the LUT scheme is to �nd a gener-
alized representation of the colour associated with a particular object and then
to �ll the LUT based on generalized representation. Since populating the LUT
only needs to occur during training, the processing time per frame is still fast.

Given the variability of the data, what is needed is a colour generalization
from actual mapped data points. It is important that this generalization be at the
right level for the environment. As the RoboCup environment has very distinct
colours, it should be possible to have a fairly coarse grain generalization.

A common �rst step in generalising colour is to transform the raw RGB (red,
green and blue) components into a more appropriate colour space. The problem
with RGB data is that the components are highly correlated | for example, as
the lighting increases, there is a corresponding increase in all components. The
correlation between red and green can be seen in Figure 1. The aim of converting
to a di�erent colour coordinate space is to reduce the correlation between the
coordinates.

3.3 Alternative Colour Spaces

The approach used for our past RoboCup e�orts involved �nding �xed maximum
and minimum thresholds for each of the red, green and blue (RGB) colour com-
ponents based on the tristimulus model [9]. The thresholds were determined by
�rst establishing a training set which mapped colours (RGB triplets) to object
identi�ers. The variance and mean for the set of colours associated with any one
object where then found, and the maximum and minimum thresholds based on
this.

A number of past RoboCup teams have used variants of HSL (such as HSB
or HSV [3]) for colour discrimination since it separates apparent \colour" from
\brightness". The brightness values of these schemes generally do not corre-
spond well with human perception of brightness, however this is not necessarily
a problem when the aim is to discriminate colours rather than to reproduce them
accurately.

Even though it is useful to separate out the measure of brightness, this coe�-
cient cannot necessarily be discarded. In the case of RoboCup, one of the objects
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Fig. 1. Red versus Green in the RGB colour space, for sampled data for the green
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that needs to be recognized is largely black. This object becomes impossible to
di�erentiate from other objects if the brightness factor is ignored. To see this,
we projected sampled data onto a two dimensional plane. The particular pro-
jection that we tried has previously been used with some success by Batchelor
and Whelan [5] for colour discrimination of di�erent types of apples. They refer
to this projection as � (X) and it is de�ned by:

U =
R �B

p
2(R+G+B)

(1)

V =
2B �R�G
p
6(R+G+B)

(2)

where � (X) = (U; V )T . Unfortunately, in this colour space, samples from the
black object are widely spread over much of the space and are not di�erentiable
from the clusters of points for other objects. This yielded poor results when it
was used as a basis for colour generalization (see Table 1).

One problem we found in using HSL coordinate space was that the hue
component is measured as an angle around a colour circle and therefore wraps
around to zero. This can result in di�erent parts of the same object mapping
to opposite parts of the hue axis, e�ectively splitting in two the cluster of data
points for that object, as shown in Figure 2. Therefore, it is inappropriate to
summarize hue using statistical mean and variance. Changing the mapping of
the hue so that the split occurs at another point may solve the problem in some
cases but is just as likely to move the problem elsewhere.
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This problem is similar to that found in RGB space, where the cluster of data
points for the colour of an object may be of an odd shape. Changing coordinate
systems doesn't necessarily remove the unusual characteristics of the shape of
the cluster.

In early results, using HSL showed clear gains in robustness of object iden-
ti�cation and the issue of colours being wrapped around the hue axis could be
dealt with using a decision tree rather than a thresholding approach (described
below).

An alternative method for dealing with specular highlights and shadowed
areas (which cause wide variation in RGB coordinates under di�erent lighting
conditions), is to normalize the RGB coe�cients [7]:

r =
R

R+G+B
(3)

g =
G

R+G+B
(4)

b =
B

R+G+B
(5)

Since r+ g+ b = 1, one component can be dropped (usually b) as it provides no
information. One of the original components, such as G, can then be added in to
gain a measure of the brightness level. The transformed triplet is then (r; g;G).
We refer to this colour space informally as rgG.

This mechanism is quicker to compute than HSL, and it produced colour
classi�cation results which were almost as good.
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Another colour space which has been used previously to assist colour gener-
alization [7], is HSI. HSI can be calculated from RGB as follows:

I =
R+G+B

3
(6)

S =
1�min(R;G;B)

R+G+B
(7)

H = arctan

�
3(G�B)

2R�G�B

�
(8)

3.4 Using Decision Trees for Learning Colour

Whichever colour coordinates are used (RGB, HSL, rgG or HSI), there is a ten-
dency, especially where the training data is extensive, for the resulting thresholds
for di�erent objects to overlap. Thus, although thresholding is fast it can often
lead to conicts in object identi�cation.

An alternative approach is to use a decision tree structure which allows for
a more detailed partitioning of the feature space than that allowed by thresh-
olds. The added degrees of freedom give an e�ect analogous to having multiple
threshold cubes associated with any particular object.

If appropriate rules are known, decision trees can be designed manually. More
often they are created from training data, using a learning algorithm. We used
the C4.5 learning algorithm [10], which is an industrial strength, decision tree
based, machine learning algorithm. It is a batch mode learning algorithm, which
means that it prepares the decision tree on the basis of all the training examples,
rather than adaptively changing the tree as it receives more data.

Decision trees, when based on continuous values have the advantage that
they can always classify any data, unlike thresholding which may leave some data
unclassi�ed. Also no data is multiply classi�ed as can occur with thresholding.

Figure 3 shows an example of a pruned decision tree. Pruning is performed
automatically by the C4.5 algorithm, and is done by removing parts of the tree
which do not signi�cantly a�ect the error rate. The leaf nodes show two numbers
(N=E) after the classi�cation. The �rst (N) is the number of training cases which
ended up at that leaf node. The second (E) is the predicted error rate for that
node if N unseen cases were classi�ed by the tree.

3.5 Classi�cation Results

The results for the threshold and decision tree classi�ers are shown in Table 1.
The overall result is that the decision tree classi�er is generally better than the
threshold classi�er and generally classi�es 97% of data correctly. The HSL and
HSI colour spaces wrap around and so they were inappropriate for use with the
threshold classi�er. The RGB colour space defeated our expectations and gave
the best results. There is some margin for error in these results, but we were still
surprised to see the RGB colour space rate so well.

The result for the � (X) space shows that, for this type of data, three dimen-
sional colour data is required to discriminate between the di�erent classes.
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Table 1. Summary of results for di�erent colour models. All results were based on
tests on data not seen during training (using a 50/50 split between training and test
data).

Threshold classi�er
Colour Correct Incorrect Multiply Unclassi�ed
model classi�ed

rgG 80.0% 1.4% 8.8% 9.8%
RGB 84.9% 2.1% 6.0% 7.0%

Decision tree classi�er

� (X) 87.5% 12.5% | |
HSI 97.5% 2.5% | |
HSL 97.6% 2.4% | |
rgG 97.3% 2.7% | |
RGB 97.9% 2.1% | |

4 Related work

Several other papers presented at the workshop dealt with the issue of colour
recognition [1, 2, 4, 12]. Akita [1] focussed on the development of specialised
hardware. RGB data supplied by the hardware is transformed to HSV by a
look-up table before thresholds for each of the H, S, and V components are
used to distinguish the colours of di�erent objects. This classi�cation technique
appears to be the same as that described in Section 3.1.

Amoroso et al. [2] found that with the HSI transform, the di�erent objects on
the �eld could be discriminated using the hue component alone. Discrimination
is trained by examining the hue histogram for valleys. A feed-forward neural
network is used to learn the correspondence between hue \modes", extracted
from the histogram, and actual objects. They also deal with the problem of
having separate hue regions that correspond to a single object (as discussed in
Section 3.3).

Use of hue alone may not allow for recognition of black objects, which
we found hard to discriminate unless brightness was taken into account (Sec-
tion 3.3). Their results show a smaller percentage of misclassi�cations than we
were able to achieve but this may be related to our attempts at recognising black
objects.

Bandlow et al. [4] start with data in the YUV colour space. A classi�cation
look-up table is trained for the UV components. For the Y component, which
corresponds to the pixel brightness, minimum and maximum thresholds are de-
termined for each object.

Terada et al. [12] mention that they use Mehalanobis distance measures to
classify colours and train with samples of each colour.

One di�culty with comparing results is that the quality of the source data
is subject to error that is critically dependent on the type of camera. We found
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that it was quite di�cult to tune the QuickCam VC so that the colours looked
realistic. At the boundaries between light and dark objects, lines of bright red
sometimes appeared due to the way the colours are detected using a mask.

5 Evaluation and Discussion

Our goal in working with the vision system was to develop a sound perceptual
footing for a cognitive system that approaches human-like behaviour within this
domain. Our longer term goal is to explore issues in building, maintaining and
reasoning with approximate world models in a dynamic real-time domain. Our
main requirements for the vision system were therefore:

1. to achieve robust object identi�cation (this implies virtually no false positives
or negatives); when an object is present in the visual �eld it should be seen
and recognized, the system should not \see" anything that is not actually in
the visual �eld;

2. to process frames at a rate su�cient to judge direction of movement of target
objects with some rough idea of speed;

3. to coordinate vision with movement to avoid problems such as hitting objects
before it has registered that they are there, or not �nding the ball due to
having moved past it by the time the robot has processed that it was \seen".

The use of a decision tree colour classi�er has addressed problems due to
oddly shaped colour clusters, while the learning of this decision tree has ensured
the appropriate amount of generalization/specialization for the environment as
well as removing much of the tediousness previously associated with establishing
appropriate threshold values. These combined measures have resulted in robust
object identi�cation and we appear to have eliminated problems with both false
negatives and positives.

We are currently getting a frame rate of 16 frames per second, which we
believe will be su�cient for judging direction of movement and for coordinating
with the robot's own movement.

Our vision system does not address vision issues associated with such things
as reading text or recognizing speci�c shapes. Such things are certain to be useful
for self-localization if incorporated into the RoboCup environment as is being
discussed. However, based on human behaviour it does not seem that such abil-
ities should be necessary for this domain. We are interested rather in exploring
other approaches to the issue of adequate self-localization in the absence of de-
tailed, accurate positioning data obtained either from visual nuances or other
percepts.

Two aspects of vision that we expect to address in our continued work are
the use of a movable camera, and if possible, obtaining of a wider angle of vision.
Both these directions aim to address the problem of seeing too little at any one
time. For all players, but particularly for the goalie, it is important to have a
reasonably wide visual coverage.
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We are hopeful that the improvements made to date will give us adequate

perceptual information to make use of our action selection and coordination

mechanisms, as well as allowing us to explore dynamic teamwork.
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Abstract. This paper presents Saracinescu, the goalkeeper robot of the
Italian team that was used at the Robocup ’98 Paris championship. The
machine features an original omni-directional vision system whose per-
formance, enhanced by a simple but effective movement strategy, proved
to be very smart and led to good results during the tournament. The
paper describes the vision algorithms in detail, and discusses some is-
sues that are still being developed and/or refined. An overview of the
other components of the machine (mechanical structure and ball-kicking
mechanism, computing architecture, auxiliary software routines for ini-
tial positioning, etc.) is also included.

1 Introduction

The Robocup championship offers a simple and well-structured environment,
suitable for testing some innovative robot features like the visual guidance sys-
tem presented in this paper. One of the simplifications that this environment
introduces with respect to the real world is the small number of colors used in
the playground and the rigid coding of their meaning. However, even if each
game component has a unique color, problems for color matching still remain,
due to illumination changes, shadows, etc.

The robot we present is the goalkeeper of the Italian team (ART), which
exhibited a very good performance during the Robocup ’98 Paris championship.
Its main characteristics are an omni-directional vision system and a simple but
effective reactive strategy.

The visual guidance system is based on color information grabbed with an
omni-directional, quasi-spherical device. The intrinsic geometric complexity of
the image is simplified by the use of color. Neither shape nor other geometric
features are taken into account. Only the colors and the relative position of
the objects surrounding the robot influence its movement. Even if the idea of
using omni-directional visual devices had already been used in previous Robocup
events, the presented one allows measuring not only the direction, but also the
distance of relevant objects. The underlying idea has since then been adopted
by several other researchers involved in the Robocup competition.

In Par. 2 it is presented the overall structure of the robot, the details of the
vision subsystem are described in Par. 3, and in Par. 4 the strategy is introduced.
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2 An overall robot design description

The robot is based on a modified version of the widely used, commercial RWI
Pioneer 1 platform. An on-board PC, with the appropriate power supply, was
added to provide the necessary computing power. The PC (an Intel Pentium II)
runs LINUX operating system, and is equipped with all the necessary peripher-
als, that include an Intel Video Recorder frame grabber used to acquire camera
images, and a Wavelan wireless networking interface.

Given the task the goalie has to accomplish, the only possibility offered by
the mechanical structure was to use the robot sideways, in order to make it
able to quickly reach any point of the goal area. The original castor wheel that
supports the weight of the robot was replaced with a spherical device in order
to eliminate lateral skids when the robot reverses its movement.

A mechanical ball-kicking device has been mounted on the left side of the
robot, that always faces the playground (Fig. 1). When the ball touches the
lower edge of the kicker, it activates a mechanical switch that in turn triggers a
”kick and reload” mechanism. Kicking power is provided by a steel spring, while
reloading is accomplished by an electric motor. After each kick, it takes about
two seconds to reload the mechanism. The kicking reflex takes place locally, i.e.
with no computer intervention; the main computer can, however, disable and
re-enable the device.

Another significant change was the addition of a large plexiglas pipe (Fig. 1),
fixed on the upper part of the robot, that supports the mirror of the vision
system, as it will be described in the following paragraph.

Fig. 1. Saracinescu structure design
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3 The omni-directional visual device

Several kinds of omni-directional visual sensors, with different geometrical char-
acteristics [2,3,4] and different optical pre-processing capabilities [1] have been
investigated so far. They have been used for various robot navigation and self-
localization tasks.

The omni-directional device developed for Saracinescu uses a mirror with a
spherical sector shape and an optical grade reflecting surface, that allows a clear
vision of what is happening around the robot. The spherical shape of the mirror
allows the perception of a larger amount of details in the area surrounding the
robot and only rough visual information of the area away from the robot. The
mirror axis is vertical, and the device (actually, a 20 cm diameter stainless steel
pan lid was used) is supported by a clear Plexiglas pipe, that also houses the
camera. The idea is to mimic the behavior of a real goalkeeper that does not
care much about what is going on in the opposite half of the field, but pays great
attention when the ball comes close him.

Fig. 2, besides giving an idea of the structure of the device, shows its most
interesting feature: using a quasi-spherical mirror allows measuring not only the
bearing of the bjects with respect to the robot axis, but also their horizontal
elevation. Since all objects in Robocup lay on the ground and have known di-
mensions, the system can compute objects distance as well.

Fig. 2. The omni-directional vision system

An upward pointing CCD color camera grabs images reflected by the mirror.
Its signals are processed in order to extract information about the goal posts
and the ball. This information is used to keep the robot between the ball and
the goal.

Fig. 3 shows an actual image grabbed from the camera. Grey scale rendering
makes it hard to distinguish details, but it is quite easy to recognize the ball
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(red), the field walls and lines (white) and the goal (black, in the lower part
of the image). The figure shows the results of processing superimposed to the
original image: the recognized portion of the ball is drawn in blue, while the goal
(originally yellow) is drawn in black. Careful analysis of the picture shows that
all the field is shown, including the opposite goal. Far objects are poorly detailed
but, as it was said, this is not important for the goalie.

Fig. 3. An example of segmented omni-directional image

Measuring the Euclidean distance of objects from the center of the image
allows estimating their distance from the robot. Since the exact shape of the
mirror is not known, it would have been hard to determine the equation that gives
actual distance as a function of the distance measured on the image. Instead,
a look-up table was experimentally built, that lists correspondences between 50
and 230 cm (the estimated useful range), with 10 cm increments. The system
uses linear interpolation for estimating intermediate values.

3.1 Color segmentation and object recognition

As it was said in the introduction, Robocup rules assign unique colors to all
the objects in the playground. For this reason, no shape information is used for
object recognition.

Two constraints influence the color segmentation process: the high computing
speed required to effectively track the ball and the heavy varying illumination
conditions. In fact, preliminary tests of the robot have been done on various
training playgrounds, and have shown that apparent colors of the objects vary
from field to field, due to the different light sources, materials used for build-
ing the field, etc. Additionally, our system has to deal with its very low-cost
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surveillance camera, whose color rendering and constancy are light-years far
from perfection. Shadows produced by objects make the task even more tough.

To solve the problem of widely varying light conditions, a calibration phase
has been introduced. During this calibration phase, usually performed once be-
fore each match, a supervisor has to select in the image a ball portion. The
mean chromatic value among all the selected pixels is computed. This triplet
is the center of the area in the RGB space that is clustered with a boundary
threshold value for each chromatic channel. These boundary values are initially
set equal to the relative chromatic variance of the selected pixels. This leads to
a quite robust automatic clustering, but some problems still occur in presence
of shadows and reflections.

Thus, a reinforcement of the color calibration phase has been introduced.
In this second phase the supervisor selects a small area into which the ball
is completely contained and the three RGB thresholds are incremented, thus
enlarging the color clustering subspace, until a pixel that surely does not belong
to the ball is selected.

After the calibration on the ball color, the same procedure is used to deter-
mine the color of the goal that can be alternatively yellow or blue. The whole
procedure could be automated, but due to the strict deadline of the tournament,
this has been deferred.

3.2 Ball and goal-posts recognition

During normal operation, the goal of the vision system is to recognize the ball
and the goal posts, and to measure their position with respect to the robot. The
speed requirements call for processing at least 10 frames per second, and some
optimization has to be done to reach this goal.

The central part of the image does not contain any useful information, and is
discarded. Only the external circular part of the image is considered for searching
the ball and the goal-posts. With the mounted low-cost commercial camera, 5
bits per pixel for each chromatic channel have been used.

The color segmentation is performed using a region-growing algorithm which
easily detects the ball. The goal posts are then detected selecting the boundary
pixels between the goal color and the white field walls. Due to the geometry of
the image, no confusion between the left and the right goal post can arise.

The ball is localized using the apparent center of gravity of the cluster of
red pixels. To avoid localizing errors, a threshold on the minimum number of
clustered pixels is used. The posts can be localized using the middle or the lower
point of the connected boundary line. In the first case perspective errors due
to the changing distance of the robot and the goal gate are introduced. In the
second case the shadow of the robot can cover the lower post pixels introducing
errors as well. The tests and the played matches proved that both methods work
correctly in most practical cases. Regardless of the chosen method, what is really
important for the robot movement, is not the goal-posts distance estimate, but
their relative angles.
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The computing speed requirements, and the restrictions of the Pioneer soft-
ware system, suggested that the ball and the goal recognition should be treated
as two separate activities. Moreover, since the ball moves much faster than the
robot, two ball searches are performed per each goal recognition.

4 Strategy and robot movement

All the strategies described in the following paragraphs have been implemented
in C using the activities functionality of the Saphira programming environment
which contains all the primitives for the robot movement. It was decided to
avoid using Saphira behaviors because, even if they can help solving some of the
problems, they add and unacceptable computing burden, making the robot too
slow for any practical use.

Using Saphira activities and micro-tasks concept, different processes can be
executed sequentially and cyclically within predefined time slices. In this way,
various programs can run together with a simulated parallelism.

The basic strategy obviously is to keep the robot between the ball and the
goal gate at all times. In order to do that, Saracinescu lays its right side toward
the goal gate and moves back and forth like in Fig. 4. In this position the kicking
mechanism faces the playground.

Fig. 4. Saracinescu basic strategy

Intercepting the ball only requires straight movements parallel to the goal:
however, wheel skidding, encoder tolerance and crashes with other robots can
result in involuntary robot rotations. To correct this problem, at regular time
intervals, a process to control and correct the robot horizontal parallelism is
executed.

Furthermore, since a constant angle between two reference points results in
an arc, measuring the bearing of the goal posts does not allow determining the
actual distance of the robot from the goal. Therefore, another task is started at
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regular time intervals. It controls the estimated distance of the goal posts and
consequently moves the robot towards to or away from the goal.

Summarizing, there are four main logical activities running concurrently dur-
ing normal robot operation:

1. grab the omni-directional image and extract distance and angle of the ball
and the goal-posts,

2. keep the robot between the ball and the goal,
3. keep the robot parallel to the goal gate,
4. keep the distance between the robot and the goal constant.

All the geometrically derivable data are directly extracted from the image
whenever is possible, introducing data redundancy. If, due to visual noise (oc-
clusion, shadows, etc.) some data are missing, estimates from the data series
support the robot for a limited time interval. After this period, if data are still
missing, the robot enters a stall state until a sufficient amount of data is available
again.

In order to obtain a not too ”nervous” robot behavior and thus not to over-
stress the motors, a low-pass filter that averages data in time has been applied.
It can be seen as an inertia increment that allows Saracinescu to keep a steady
position without high frequency oscillation.

4.1 The goalkeeping strategy

The goalkeeping strategy is to maintain the line from the robot to the ball
parallel to the bisecting line of the angle formed by the goal-posts and the robot
(Fig. 5). In order to accomplish this strategy, this activity moves the robot only
in the two directions parallel to the goal (Fig. 4).

Fig. 5. The goalkeeping strategy

The bisecting line has been chosen instead of the median because it better
protects the goal gate. The median would put the robot too close to the goal cen-
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ter. On the contrary, the bisecting line better protects the goal-post surroundings
(Fig. 5), stopping also most of the bouncing kicks.

Moreover, this activity keeps the robot inside the small goal area monitoring
the goal posts distance. Whenever the robot gets near a goal post, the main
positioning algorithm is excluded and the robot starts to decrease velocity, so to
stop at the goal-post point. Overtaking this point, in fact, is useless.

The parallelism keeping activity controls the angle between the robot heading
and the goal line. The smallest angle the Pioneer can rotate is 5 degrees, thus
angles below this value are not considered. Moreover, the Pioneer firmware has
its own accidental rotation automatic corrector, so it is important to insert a
delay before triggering this activity.

The goal distance control activity controls the robot distance from the goal.
If the distance exceeds a threshold value, all the activities are stopped and a
repositioning algorithm is executed. This algorithm drives the robot towards its
default starting position like shown in Fig 6.

Fig. 6. The repositioning algorithm

5 Conclusions and perspectives

The performance of Saracinescu, that has been the official goalkeeper of the Ital-
ian Azzurra Robot Team at the Robocup 1998 championship in Paris, has gone
beyond the most optimistic expectances. Its reactive behavior lacks any reason-
ing and forecast capability, but the machine was perfectly apt for the simple
task it had to accomplish. The robustness of the vision system was however a
determining factor for its success. It localized the ball during all the matches
with good precision and regardless of the illumination, of the shadows and of
reflections in the playground. This suggests that all the robots in a team, and
not only the goalkeeper, should use a similar system for visual data acquisition.

It can be expected, however, that the performance of other robots will in-
crease in future championships, and that several improvements should be made
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to the structure of our goalie. Besides the mechanical requirements, that suggest
completely rebuilding the machine in order to have a much lighter and faster
robot, it would be desirable to fully automate the color calibration procedure,
using an automatic ball and goal-post detection. Object recognition should be
performed using predictive algorithms, in order to speed up the process. Recog-
nition of robots should be introduced, in order to allow reasoning about where
the ball will be kicked by an opponent robot, and how it should be usefully
passed to a fellow.
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Abstract. The main ideas behind the implementation of the IALP 
RoboCup team are discussed: an agent architecture made of a hierarchy 
of behaviors, which can be combined to obtain different roles; a memory 
model which relies of the absolute positions of objects. The team is 
programmed using ECL, a Common Lisp implementation designed for 
being embeddable within C based applications. The research goal that we 
are pursuing with IALP is twofold: (1) we want to show the flexibility 
and effectiveness of our agent architecture in the RoboCup domain and 
(2) we want to test ECL in a real time application.  

1 Introduction 

IALP (Intelligent Agents Lisp Programmed) is a team for the simulation league of 
the RoboCup initiative [1, 2, 3]. The team is programmed using ECL, a public 
domain implementation of Common Lisp [4]. 
RoboCup is a real time domain task where players receive perceptions from the 
server and have to react within the allowed time. To make things more realistic, 
the environment is inaccessible (perceptions are restricted to the point of view of 
the player and are limited by the distance) and non deterministic (the effect of 
actions is not completely predictable). 
For the basic architecture of IALP we have adopted a reactive planning approach 
and developed an agent architecture where the global behavior of the planner is 
structured in layers. The requirements we had in mind for the architecture is that 
it must be open and offer different levels of abstraction coping with different 
problems in a modular way. Moreover the architecture is meant to be general and 
flexible enough to allow reuse of code built for the RoboCup initiative in other 
domains.  
The layered approach used in IALP has been inspired by agent architectures for 
robots, as proposed for example in [5, 6] and, in the context of multi agent 
applications such as RoboCup, by the idea that complex behaviors can be learned 
in layers of increasing complexity [7]. In our approach no learning is involved, 
but the complexity of behavior of the planner is obtained by defining suitable 
actions for each layer, by means of a language oriented to action definition built 
on top of Lisp.  
For coping with limited perceptions, we have developed a memory model that 
relies on the absolute positions of objects, and offers a set of predicates allowing 
players to reason about the game at different levels of abstraction. 
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We have implemented IALP using this memory model and the planner 
architecture. IALP uses a model of coordination without communication [8] and a 
concept of role for a player that is built on top of basic abilities, common to all 
the agents. The layered and modular structure of the planner allows an easy reuse 
of the basic capabilities of the players and specialization of roles at the higher 
levels. 
Using Common Lisp to implement IALP offers clear advantages from the AI 
programming point of view; in particular we have exploited the Lisp reader and 
the macro feature. Using the ECL implementation of Common Lisp, designed for 
being embeddable within C based applications, we wanted to see if such language 
can compete with C/C++ written teams in a real time domain such as RoboCup. 
In this paper we report about the main features of the IALP team. Section 2 and 3 
describe the planner architecture and the declarative language used for defining the 
behavior of layers; section 4 is an account of the memory model; section 5 explains 
how the planner and the KB have been used to program the players and the 
coordination model used. 

2 The architecture of the planner 

The core of IALP is a hierarchically structured reactive planner that computes and 
executes plans. There is an ordered chain of layers, with a base layer and a top 
layer. The base layer is devoted to the communication with the RoboCup server: 
thus the outputs are commands like (dash speed) or (turn moment). The 
top layer defines the overall strategy of a player; it contains the most abstract 
plans and fully determines the behavior of the agent. The intermediate layers 
define a hierarchy of actions: each layer decides upon the implementation of an 
action using the actions offered by lower layers. 
The overall architecture of the planner is shown in figure 1. 
A plan built in a layer is a list of actions defined in one of the layers below. A 
while action can be used to repeat a sequence of actions until a specified 

KB

Top-Layer

Layer n

Layer 1

Server

...

Base Layer

Fig. 1: The planner architecture 

264 A. Cisternino and M. Simi



www.manaraa.com

condition is verified. Actions are expressed using the classic functional notation 
of LISP. A simple example of plan is the following: 
 
((dash 100) (turn 90) (dash 100)) 
 
Another example, involving the *while* iteration construct is the following: 
 
((*while* (not (can-kick? Kb))((go-ball)))  
 (kick! (enemy-goal kb))) 
 
The plan executor sends to the inferior layer the request to repeatedly execute the 
action (go-ball) until the condition (can-kick? kb) is verified; at this 
point the action (kick! (enemy-goal kb)) will be executed. 
At each cycle, the interpreter of plans requests an action in executable form to the 
base layer; if this layer is executing a plan, the next action of the plan is executed. 
If the layer does not have a plan (has finished executing the previous one), it 
requests a new plan to the upper layer. This chain of requests may propagate to 
the top layer, which must always return an appropriate plan. 
Each intermediate layer receives a plan from the upper layer and must execute the 
actions contained in it. The way an intermediate layer executes an action is by 
computing a particular function that takes into account a number of parameters 
and returns a plan to be executed by the lower layer. If the action is unknown to 
that layer the task of computing the plan is delegated to the inferior layer. 
The execution of an action by a given layer may simply return a standard plan, 
good for any situation (in this case the system is an interpreter of plans) or 
involve a computation of a plan taking into account the knowledge contained in 
the KB. The top layer must necessarily compute a plan. Thus the planner as a 
whole implements a hierarchy of actions that are all available to the top layer to 
solve the task of writing a player for RoboCup in a suitable abstract language. 
Since the top level planner determines the behavior of the underlying planners, 
specific abilities implemented by lower levels may be reused for building 
different roles. In particular the layered approach is suitable for sharing low level 
abilities that all players should possess. 
Each layer can request to reset the executing plans to upper and/or lower layers. 
This feature is important to implement reactive behaviors; for example, in order 
to react promptly to referee messages. 
Another feature of the IALP planner is the possible non-determinism in the 
execution of actions. It is possible to define several alternative implementations 
for an action, all of them considered equivalent with respect to the outcome. In 
this case the interpreter chooses randomly the implementation to be used. With 
this feature, it is quite easy to introduce a richness of behavior. An advantage is 
that it may be difficult for an opponent team to guess the behavior of players.  
The planner executes a standard perception/action cycle but we have extended the 
base layer to allow it to return a list of basic actions, so that all the available slots for 
executing actions can be exploited. Thus the basic cycle of the planner is “read a 
perception from the server, compute the next sequence of actions and execute them”. 
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3 The language for defining the behavior of the planner 

We have developed a simple declarative language based on LISP to define the 
behavior of the various layers.  
Each layer contains the definition of an update function that, testing some conditions 
on the current environment, decides if some of the executing plans must be 
terminated. The function can return four different values: nil, UP, DOWN and ALL. 
When the value returned is nil the planner can continue its execution. UP means that 
the upper layers must abort the execution of the current plans; this capability is useful 
when the changes in the environment affect only the more abstract plans while lower 
layers can continue executing their tasks. DOWN is the dual of UP and aborts the 
executing plans of inferior layers; in this case it is deemed useful to continue with the 
overall strategy but some change in the environment make it necessary a re-planning 
at the lower layers. ALL is equivalent to returning both UP and DOWN and forces the 
planner to rebuild entirely his plans. 
The way to define an update function for a layer is as follows: 
 
(defupdate layer 
  "Optional documentation" 
  body) 
 
where body is the body of the function. In order to define an empty update 
function, that is an update function that always returns nil: 
 
(def-empty-update layer) 
 
The possibility of aborting executing plans instantaneously is important in real 
time domains such as RoboCup where the environment is highly dynamic. An 
example is the referee message that changes the state of the game: each player 
must suddenly change his behavior to adjust to the new state. The update method 
that deals with referee messages is located in the base layer and has the following 
definition: 
 
(defupdate basic-layer 
  "Handles referee messages" 
  (if (and  
        (eql  
          (last-percept-type kb)  
          'REFEREE) 
       (not (last-message-read kb))) 
      (progn 
        (message-read kb) 
      'UP) 
    nil)) 
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The update function aborts all executing plans if the last perception is of type 
referee message. In this case, because the base layer is the bottommost, UP is 
equivalent to ALL. 
In addition to the update function, a layer must define a set of actions. For each 
action at least one implementation must be provided. If there are multiple 
implementations of a given action the interpreter chooses among them with a 
given policy. For the moment the policy consists in choosing randomly among the 
implementations. In our language the list of actions defined in a layer is specified 
by means of the following construct: 
 
(defactions layer 
 (action-list action-name) 
 (action-list action-name imp1 ... impn) 
  ...) 
 
If the action-list statement is followed only by the action-name an 
implementation is assumed with the same name of the action. If imp1 ... impn 
are specified, the action definitions with these names are associated to action-
name. 
A definition of an action is similar to the definition of a function but uses the 
defaction keyword: 
 
(defaction name (params) 
  "Documentation." 
  body) 
 
The name of the action must be one of those declared within the defactions 
construct. The parameter list allows passing some parameter to the action, for 
example the go-ball action must receive as a parameter the speed that must be 
used. The defaction must return a plan. 
As an example of action definition we include a possible implementation for the 
run-with-ball action: 
 
(defaction run-with-ball (speed dir k) 
  "The power of kick is speed * k." 
  (if (can-kick? kb) 
      `((turn ,(ball-dir kb)) 
        (kick ,(* k speed) ,dir) 
        (turn ,dir) 
        (dash ,speed)) 
    '((sleep)))) 
 
This action checks if the player can kick (the ball is close enough) and, when this is 
the case, returns a plan that prescribes: “turn towards the ball, kick in the direction 
requested, turn and dash”. If the player cannot kick, the plan ((sleep))is returned 
and the player does not do anything because the action requested cannot be executed”. 
This plan causes the immediate termination of the action and the request for a new 
action. 
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4 The memory model 

A memory model is used in IALP to record basic properties of the environment 
used to decide which actions should be sent to the server. The memory of a 

player, or KB, keeps track of objects seen recently and is responsible for 
computing the absolute positions of any object and of the other players. The 
memory also stores the messages heard and the physical status of the player. 
The IALP player executes a standard cycle: receives a perception from the server, 
updates the memory, computes a new set of actions and sends them to the server. 
In deciding the next actions the planner uses higher level predicates implemented 
from the information contained in the memory. 
When the perception is received it is parsed using the read-from-string 
function provided by LISP. This is very convenient because the perceptions sent 
by the server are strings containing S-expressions and the LISP reader knows how 
to deal with them. 

Fig. 2: Absolute position 
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If the received perception is see the memory tries to update the absolute position 
of the player. The coordinates are the same used by the server: the (0, 0) position 
corresponds to the center of the field, the x direction is towards the enemy goal 
and the y direction is on the right of a player looking at the opponent’s goal. 
The absolute position of the player is computed using a borderline and a flag. 
When a borderline is visible the player can easily compute his distance from the 
line, and thus one coordinate, which is x or y depending on the line, and the 
direction in the coordinate system chosen. If a flag is also perceived the player 
can compute the second coordinate. Figure 2 shows how the absolute coordinates 
of the player are computed from the perception of a line (i.e. its distance d and its 
relative direction a) and a corner flag (i.e. its distance d’ and its relative direction 
g). 
This method has a good precision and is fast to compute. The basic assumption is 
that the player movements are continuous and if the player at a given time cannot 
compute one or both coordinates he can assume the previous ones without making 
a significant error. 
Once the position of the player has been computed, the absolute coordinates for 
each dynamic object present in the see perception (players and ball) are also 
computed using standard trigonometric calculus. 
Differently from what has been proposed by other researchers [9] we have 
decided to maintain absolute positions for the following reasons. The absolute 
positions kept for all moving objects can be exploited when an object is not in the 
current see perception. For example if the player sees the ball at simulation cycle 
t and another player covers the ball at time t + k, we can assume that the ball is 
near to the last position recorded into memory. This assumption is reasonable 
only if the elapsed time k is reasonably small. Moreover, if the player changes its 
direction, the information stored in the memory is not affected and it is not 
necessary to update object positions. Also the distance among objects can be 
easily computed from their absolute positions. 
The hear and sense body perceptions are treated similarly: they are parsed and all 
the information stored in appropriate structures in the memory of the agent. The 
referee messages are stored separately from other messages since they contain the 
status of the game and it is necessary to make sure that they are acted upon. 
Given this memory model, we have defined functions and predicates and derived 
more abstract properties of the environment useful for defining player behaviors. 
Some of these predicates are used to make qualitative statements about the 
environment: for example the predicate can-kick? is true when the ball is near 
enough to the player, which in terms of lower levels means within 2 meters. 
Two very important functions are distance and dir-x-y. The function 
distance computes the distance between the player and another point (x, y) and 
is fundamental for evaluating distances from objects during the game. This 
function is used instead of the relative distance provided in the perceptions, 
because, by referring to its memory, an agent is able to estimate the distance of an 
object even when the object is not currently perceived. This function is also 
exploited to evaluate the distance from a given point situated in a zone of the 
pitch; this is useful to implement a zone-based strategy. 
The function dir-x-y allows a player to know the moment of which to turn to 
see a point (x, y). This function also exploits the fact that the player can estimate 
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the absolute coordinates of every object. Together with the distance function, 
dir-x-y is very useful to implement a goto-x-y action. 
As an example of the flexibility of our memory model we show the 
implementation of the outside predicate: 
 
(defun outside? (kb) 
 (dolist p (enemies kb) 
   (when (and   
          (not (is-goalie? p)) 
          (> (pos-x kb) 
             (obj-info-x p kb))) 
      (return nil))) 
    T)) 

5 The implementation of IALP 

The Embeddable Common Lisp is an implementation of Common Lisp designed 
for being embeddable within C based applications [4]. ECL uses standard C 
calling conventions for Lisp compiled functions, which allows C programs to 
easily call Lisp functions and vice versa. No foreign function interface is 
required: data can be exchanged between C and Lisp with no need for conversion. 
ECL is based on a Common Runtime Support (CRS) which provides basic 
facilities for memory management, dynamic loading and dumping of binary 
images, support for multiple threads of execution. The CRS is built into a library 
that can be linked with the code of the application. ECL is modular: main 
modules are the program development tools (top level, debugger, trace, stepper), 
the compiler, and CLOS. A native implementation of CLOS is available in ECL: 
one can configure ECL with or without CLOS. A runtime version of ECL can be 
built with just the modules required by the application.  
Using ECL has been our bet. RoboCup is a real-time domain task where system 
level languages like C/C++ seem to be much more effective than traditional AI 
languages like LISP or PROLOG. On the other hand, LISP provides a lot of 
advantages: no need for a parser of the messages sent by the server, automatic 
garbage collection, macros and closures and other high level language features 
traditional in AI programming were all available, so that we were able to 
concentrate on high level programming tasks since the beginning. Preliminary 
experiments have shown that LISP processes, implementing IALP players, are 
capable of maintaining the synchronization between server and clients. 
IALP is built on top of the architecture described in previous sections: we have 
implemented the functions and predicates required in the RoboCup domain and 
defined a number of layers describing the capabilities of the different players. So 
far we have defined a preliminary hierarchy of layers that we intend to evolve and 
adjust by gaining more feedback from actual matches. Figure 3 shows the 
structure of the layers for the team members of the current IALP implementation.  
Since most of the abilities are common to all the agents, players in different roles 
tend to have a great number of shared layers. In fact right now they share all the 
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layers but the topmost. The goalie has an additional layer to implement 
capabilities that are specific of this role. 
This homogeneity among players is justified by the definition of role that we have 

assumed: a role is a prevalence of a behavior. This definition of role implies that 
the basic capabilities of the various players must be the same and only the overall 
strategy of the team and the environment determine the effective behavior of a 
player. To understand why we have chosen this definition, consider a situation 
where a defender finds himself in an attack position for some reason: we want the 
defender to behave like an attacker for the period that he is involved in the action. 
An analogous situation is when all the team is forced in a situation of defence and 
the attackers must behave like defenders. In the real soccer it is impossible to find 
players able to perform top level in any role; players usually specialize in a set of 
tasks. Simulated soccer is different also in that it is not a problem to replicate 
abilities: why shouldn’t we give to all the players the best capabilities in kicking 
and controlling the ball that we were able to develop? The only exception is the 
goalie that must have capabilities of his own inapplicable to the other players. 
The basic layer is the bottom layer of the planner and its outputs are actions that 
are sent to the server. The actions defined at this level are basic actions such us 
turn, dash, kick, say, catch, move, and low level actions such as sleep, 
ndash and turn-ball. The sleep action is a no-action command telling the 
interpreter that no commands must be sent to the server until a new perception is 
received. The ndash action tells the interpreter that n dash commands must be 
sent to the server in sequence, without waiting for a new perception. The turn-
ball sends a sequence of actions to the server to turn the player and the ball of a 
given angle. 
A little preprocessing of the arguments may be done also for the basic actions: for 
example a turn action with a moment less than 1 is not sent to the server because 
it is not relevant. 

top-layer-1

individual

player-base

basic

top-layer-10

goalie-base

top-layer-goalie...

...

Fig. 3: Layers used in IALP 
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The player-base defines a first layer of abstraction. A subset of the actions 
defined in this layer is the following: go-ball, see-ball, pass-ball, 
run-with-ball and goto. The go-ball action causes the player to find and 
reach the ball. The see-ball action makes the player turn until he is able to see 
the ball. The pass-ball action passes the ball to a given player; in this case the 
assumption is made that an upper layer has checked that the player can receive the 
ball. Finally the run-with-ball allows the player to run with the ball using 
the kick, dash and turn actions required to produce this complex behavior. 
The individual layer defines individual behaviors of a player like stay-in-
zone that situates the player in a given zone of the field. Another action is 
handle-with-ball that manages the ball and tries to move the player with 
the ball towards the enemy goal. The free-kick action is devoted to the 
execution of a free kick. 
The three layers described above are shared by all the players because they 
correspond to abilities that all players should possess. Each member of the team 
has its specific top layer that distinguishes the behavior according to the role 
strategy. The top layer code for all players is similar and changes only in those 
aspects accounting for the prevalence of behavior. 
The bigger differences between the goalie and other players are reflected in an 
additional layer, the goalie-base. This layer defines actions like free-kick, 
used to follow a far away action or catch-ball used to catch the ball. 
The model of coordination used to pass the ball does not involve communication. 
The player possessing the ball evaluates the possible candidates for a pass and the 
risk of loosing the ball; if it decides to make a pass to a certain player he does so. 
The coordination is in the fact that a player near the action is typically interested 
in the ball and thus able to recognize the pass.  
The overall strategy of the team emerges from role definitions. A role is 
substantially defined by the zone of the field assigned to a player when he is not 
engaged in the current action. The player is responsible for the ball and opponents 
in his zone. When the player has the ball he checks whether he can pass the ball 
or shoot into the enemy goal; if he can’t, he tries to move in the direction of the 
opponent’s goal until a pass becomes possible or he can shoot. 
The flow of the ball from the defense zone to the attack zone is a consequence of 
the decision function used by the player to establish whether to pass the ball or 
proceed. For deciding whether to pass the ball or proceed, each player, depending 
on his role, has a number for each team mate, used for assigning a preference to 
the candidates for a pass.  Thus defenders prefer to pass the ball to middle players 
and are not happy to pass the ball to the goalie. 
The evaluation function also considers, for each possible target of the pass, the 
gain in case of success and the risk that the pass will be intercepted. The most 
promising target is thus chosen and its value compared with the gain and risk of 
advancing with the ball. 

6 Conclusions and future work 

In this paper we have described the basic ideas behind the implementation of the 
IALP team. We have adopted an agent architecture based on a layered reactive 
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planner. Experience gained in past competitions showed that the low level (the 
communication layer responsible for handling communication with the server) 
was too slow; moreover the memory model, implemented in LISP, proved to be 
too heavy. This suggested rewriting in C both the communication level and the 
memory model for better performance. 
For the future we want to experiment with different arrangements and 
implementations of layers and different means of coordination, besides testing the 
validity of the definition of role as a prevalence of behavior. 
We are also interested in investigating an emotional approach to define the 
behavior of players [10]. Finally we want to observe the emerging behavior due to 
the introduction of non-determinism. 

Acknowledgments 

We want to thank Silvia Coradeschi for getting us interested in RoboCup and all the 
students of the course “Artificial Intelligence: Laboratory” in Pisa, during the a.y. 
1997/98 and 1998/99, for taking up with so much enthusiasm the RoboCup challenge 
and for allowing us to learn and gain experience during the IAL-Cup 99. 

References 

1. Kitano, H. and Asada, M. and Kuniyoshi, Y. and Noda, I. and Osawa, E., “RoboCup: The 
Robot World Cup Initiative”, IJCAI-95 Workshop on Entertainment and AI/Alife, 1995 

2. Kitano, H., Asada, M., Osawa, E., Noda, I., Kuniyoshi, Y., Matsubara, H., “RoboCup: 
The Robot World Cup Initiative”, Proc. of the First International Conference on 
Autonomous Agent (Agent-97), 1997. 

3. Kitano, H., Asada, M., Osawa, E., Noda, I., Kuniyoshi, Y., Matsubara, H., “RoboCup: A 
Challenge Problem for AI”, AI Magazine, Vol. 18, No. 1, 1997. 

4. G. Attardi, The Embeddable Common Lisp, ACM Lisp Pointers, 8(1), 30-41, 1995.  
5. Brooks, R. A., “A Robust Layered Control System for a Mobile Robot, IEEE Journal of 

Robotics and Automation, RA-2(1), March 1986. 
6. Firby, R. J., “Task Networks for Controlling Continuous Processes”, Proceedings of the 

Second International Conference on AI Planning Systems,  Chicago IL, June 1994. 
7. Stone, P., Veloso, M., “A Layered Approach to Learning Client Behaviors in the 

RoboCup Soccer Server”, in Applied Artificial Intelligence, 12, 1998. 
8. Franklin, S., “Coordination without Communication”, 

http://www.msci.memphis.edu/~franklin/ coord.html 
9. Bowling, M., Stone, P., Veloso, M., “Predictive Memory for an Inaccessible 

Environment”, In Proceedings of the IROS-96 Workshop on RoboCup”, November 1996. 
10. Franklin, S., McCauley, T. L., “An Architecture for Emotion”, AAAI 1998 Fall 

Symposium “Emotional and Intelligent: The Tangled Knot of Cognition”. 
 

273Layered Reactive Planning in the IALP Team

mailto:http://www.msci.memphis.edu/~franklin/ coord.html


www.manaraa.com

From a Concurrent Architecture to a

Concurrent Autonomous Agents Architecture

Augusto Loureiro da Costa Guilherme Bittencourt
loureiro@lcmi.ufsc.br gb@lcmi.ufsc.br

Department of Automation and Systems

Federal University of Santa Catarina

CEP 88.040-900 - Brazil

Abstract. In this paper, the autonomous agent architecture used to im-

plement the RoboCup simulator league UFSC-Team is presented. This

architecture consists of three concurrent processes that encapsulate dif-

ferent inference engines. These take decisions in three di�erent levels,

called reactive, instinctive and cognitive. This architecture is an evolu-

tion of the concurrent architecture for cognitive multi-agents, used in

the implementation of the UFSC-Team'98 that has participated in the

RoboCup'98. The present implementation was designed to solve some

agent synchronization and real-time response problems presented by the

old architecture, due mainly to its centralized decision approach.

1 Introduction

In its �rst participation in the simulator league of the RoboCup'98, the UFSC-
Team presented a concurrent cognitive multi-agent architecture [12]. The idea
was to implement perception, action, communication, cooperation, planning and
decision making exploring the concurrent programming approach [1].

The �rst concurrent architecture was based on three processes: interface, co-
ordinator and expert. The interface was designed to handle perception and ac-
tion. The agent/environment interaction supported by the Soccerserver consists
of message exchange using a Inet Domain Socket channel. The perception infor-
mation is received and the action commands are sent through this same channel.
The function of the process interface was just to translate the perception and
communication information into the Parla language [10] (the Agent Communica-
tion Language used by the UFSC-Team agents) and expressions from the Parla
language to Soccerserver commands.

The process coordinator was responsible for the agent communication and
for starting and conducting the cooperation processes. According to the origi-
nal architecture proposed in the Expert-Coop environment [9], this process was
responsible for the inter-process communication management, i.e., it should re-
ceive directly the messages sent by other agents and handle them. But, according
to the RoboCup simulator league rules, all inter-agent communication must be
done only through the Soccerserver. Because of this, the inter-process commu-
nication and the perception information are all received through the same Inet
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Domain socket channel. Therefore, in this implementation, the process interface
also received the inter-agent messages and forwarded them to be handled by the
process coordinator, along with the perception information and referee messages.

Inet
Socket
Dommain

Soccer Server

Unix Socket Domain

Agent

Communication
Perception /
Action /CoordinatorExpert Interface

Mail Box Mail Box Mail Box

Fig. 1. The Concurrent Architecture

Finally the process expert was responsible by planing and decision making. It
had a knowledge-based system encapsulated where the perception information,
the messages from the referee and from other UFSC-Team agents were stored
and used to infer appropriate decisions, according to the knowledge-based system
rules. These three processes communicated among them by message exchange
using sockets into the Unix domain (see Figure 1).

This �rst concurrent implementation, with a centralized decision approach,
has presented some problems with agent/environment synchronization and the
response time was considered too high. In fact, the best real-time responses pre-
sented by the UFSC-Team'98 agent architecture were between 70 and 80 ms,
even using Case-Based Reasoning [2] to split the knowledge into di�erent pack-
ets. Beside this, the knowledge-based system responsible for the agent decision
making became very complex, because it had to include rules to treat informa-
tion from high level, like what kind of collective play should be chosen in a given
situation or what agents can be joined into a known play, to low level, like which
power dash value or which turn value should be chosen.

To solve these problems, the agent architecture used in UFSC-Team has
migrated from a concurrent approach with centralized decision making, to an
autonomous agents architecture, inspired by the architecture proposed in [4],
with three decision levels { reactive, instinctive and cognitive { implemented in
a concurrent way (see Figure 2). The concurrent model was kept with the same
three processes: interface, coordinator and expert. But now each one of these
processes encapsulates a di�erent inference engine and is responsible for one
of the three decision levels. Both the �rst implementation and the current one
were written in the C++ programming language and they integrate a partial
implementation of the environment to develop cognitive multi-agent systems
under real-time restrictions called Expert-Coop++.
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Fig. 2. The agent information ow

The reactive level inference engine is implemented in the interface process

and is responsible for the real-time response of the agent, i.e., for receiving

the perception information from the Soccerserver and for sending the adequate

action commands to it. It consists of a set of fuzzy controllers. At any given

moment, only one fuzzy controller is active and it decides which commands

should be sent to the Soccerserver, along with their respective values. This choice

is based on the information received from the Soccerserver and it is determined

by the active fuzzy controller rules. Each one of the fuzzy controllers available

in the agent represents a speci�c behavior and has some associated conditions

that specify the situations in which it is e�ective.

The instinctive level inference engine is implemented in the coordinator pro-

cess and it is responsible for updating the symbolic variables used by the cog-

nitive level and for chosing the adequate behaviors, i.e., the adequate fuzzy

controllers, that should be used in the reactive level in order to achieve a given

goal. A goal can be achieved by a sequence of reactive behaviors that leads the

agent to an intended situation. The choice of this behavior sequence is imple-

mented through a one cycle expert system that chooses, every time the game

state changes, the most adequate reactive behavior. Each state of the game is

de�ned by a set of conditions that are monitored by the instinctive level. These

conditions refer to perception and to the referee messages, and are used in the

condition part of the rules, analogously to the reactive level. But on the instinc-

tive level, the conclusion part of the rules are symbolic and are used either to

update the symbolic information used in the cognitive level, or to select a reac-

tive level behavior. At each moment, the chosen behavior should perform actions

in the direction of the intended goal and should have its associated conditions

satis�ed by the game state. Once a behavior is chosen, the instinctive level keeps

monitoring the conditions associated to this behavior and, if some of them are

no more satis�ed, it uses its rules to infer a new behavior. If this is impossi-

ble, the goal fails and a new goal should be speci�ed. The instinctive level also

handles the messages sent by the referee informing a change in the game status.
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These changes are treated analogously to the game state changes, they cause the
instinctive level to choose a new appropriate behavior.

Finally, the cognitive level inference engine is implemented in the expert
process, and it is responsible for determining the local and global goals of the
agent. The cognitive level does not have a direct e�ect over the reactive level, it
just chooses the present goal and passes it to the instinctive level. This has the
e�ect of changing the rules of the inference engine in the instinctive level, what
indirectly will cause di�erent behaviors to be selected. As long as a goal does not
fail or succeed, the cognitive level does not interfere in the game. This idle time
is used for strategic planning. This planning consists in the determination of
possible future local goals, according to the result of the present one, and in the
speci�cation of cooperation requests to achieve global goals. These requests will
be handled by the coordinator process and will result in other agents adopting
local goals compatible with the intended global goal. The cognitive level is also
implemented through an expert system, but this expert system can be much
more complex than the instinctive level one, because its response time is much
greater.

In the new implementation, the three processes are implemented using the
multi-thread programming approach [3]. This technology allows to split a process
into parts and to run these parts concurrently. In our case, each process consists
of two threads. The �rst one is responsible for handling the Unix interruption
SIGIO, used to inform that a new message has been received by the socket, and
by putting this message into the mail box. The other thread, the main thread, is
responsible by the process activities. The mutual exclusion between the threads
is achieved by using semaphores. This implementation is a concurrent approach
to the classical productor/customer problem. It avoids that the main process
spend some precious time checking if there is a new message in the socket or
not.

The paper is organized as follows. Section 2 describes the reactive level. The
instinctive level and cognitive level are presented in Sections 3 and 4. Section 5
presents an example where this new architecture allows the agent to concurrently
react to an environment stimulus in real-time and perform more sophisticated
tasks like make plan, to establish new goals, open or participate into a cooper-
ation processes, etc. Finally, in Section 6, the conclusions and future works are
presented.

2 The Reactive Level

The reactive level inference engine is implemented in the process interface. This
process consists of one mailbox, a set of fuzzy controllers, an input �lter and
an output �lter (see Figure 3). The mailbox is responsible for the process mes-
sage reception. All messages received by the process, including the perception
information sent by the Soccerserver, will be stored in the mailbox.

The fuzzy controllers are implemented using a C++ library. This library was
designed to aid implementation of fuzzy expert systems or fuzzy controllers im-
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plementation, it is called CNCL [13]. Each fuzzy controller is responsible by one
reactive agent skill, called behaviour. At �rst, the following set of behaviors was
chosen to be implemented into the UFSC-Team agents: Initialize-Player, Kick-
O�-Position, Move-to-Position, Move-to-Ball, Pass-Ball, Kick-to-goal, Dribble-

Opponent, Drive-Ball-Fwd, Get-Ball-Control, Tackle, Follow-Opponent, Rounding-

Opponent, Watch-Ball and Catch-Ball. The fuzzy controller set associated with
each agent depends on which agent group it belongs to: goalie, defensive players,
mid�elders or attack players. Of course, it does not make a lot of sense for an
attack or mid�elder player to have a fuzzy controller responsible by catching the
ball, or for a goalie to have a fuzzy controller responsible for shooting the ball
into the opponent goal.

Output FilterInput Filter

Active
Fuzzy Controler

Fuzzy Controler i

Mailbox

ActionPerception

Fig. 3. The interface process

The input �lter is responsible for extracting the linguistic variable values,
used by the active fuzzy controller, from the perception information sent from
the Soccerserver. The output �lter is responsible for checking the active fuzzy
controller outputs and combining them. The following criteria are observed by
the output �lter:

{ Null Output: if dash power output and/or turn moment output present
one null output, the respective command is not sent to Soccerserver.

{ Simultaneous turn and dash: if the fuzzy controller presents simulta-
neous turn moment output and dash power output, then at �rst the turn
command with turn moment value is sent to Soccerserver. After a 20 ms
delay, the dash command with the respective dash power value is sent to the
Soccerserver.

{ Kick direction and kick power: The Kick Direction output and Kick
Power output are always joined into the kick command.
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Most of the fuzzy controllers have four outputs: kick-direction, kick-power,
turn-moment and dash-power. The Pass-Ball, Kick-to-goal fuzzy controllers just
have the kick-direction and kick-power output and Move-to-Position fuzzy con-
troller just have turn-moment and dash-power outputs. The inputs are a set of
linguistic variables, depending on which behavior is active. Each fuzzy controller
has its own set of linguistic variables and the Input Filter is responsible for ex-
tracting from the perception information, the respective values that will be used
to set the linguistic variables.

Using fuzzy controllers to implement the reactive level has some advantages.
First of all, it is possible to synchronize the agent just adjusting the ratio between
input and output, or in other words, adjusting the controller gain. This gain
adjustment is made on the fuzzy set wich represent the controller input and the
controller output. It is also possible to �ne tune, or to get a smooth response
adjusting these fuzzy sets. Figure 4 shows the fuzzy set used by the turn-moment

output and the respective linguistic variable ball-direction. Note that in this case
the controller gain is 0:56 = 50

90
.

M Center
M Rigth 1M Left 1

5 10 25-10-25 -5

-10 10 20-20-45 45

Direction

Left 2 Rigth 2Rigth 1CenterLeft 1

M Rigth 2M Left 2

Turn Moment

0

0

Fig. 4. The Turn Moment Fuzzy Sets

The rules used in the fuzzy controllers can be built in an intuitive way,
avoiding the di�cult and time consuming task of building a model of the dynamic
environment (see Figure 5). It is also possible to use genetic algorithms [5] to
improve the fuzzy sets used in the controllers.

Another important advantage of implementing the reactive behavior using
fuzzy controllers is that it is possible to ensure that a given fuzzy controller will
always be able to satisfy the real-time requirements, because the fuzzy controller
is a deterministic system. Beside this, once the active fuzzy controller is the
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rule 200.add lhs(new CNFClause(ball direction, left 2));
rule 200.add rhs(new CNFClause(turn moment, m left 2));

rule 201.add lhs(new CNFClause(ball direction, left 1));
rule 201.add rhs(new CNFClause(turn moment, m left 1));

rule 202.add lhs(new CNFClause(ball direction, center));
rule 202.add rhs(new CNFClause(turn moment, m center));

rule 203.add lhs(new CNFClause(ball direction, right 1));
rule 203.add rhs(new CNFClause(turn moment, m right 1));

rule 204.add rhs(new CNFClause(turn moment, m right 2));
rule 204.add lhs(new CNFClause(ball direction, right 2));

Fig. 5. The Turn Moment Fuzzy Rules Sets

most appropriated behavior in a given situation, it releases the instinctive and
cognitive levels to spend more time into more sophisticated tasks like extracting
interesting symbolic features from the perception, making plans, establish goals
or participating into cooperation processes.

3 The Instinctive Level

The instinctive level inference engine is implemented in the process coordinator
and it is responsible for both the execution of the agent local goals and the
generation of symbolic information to update the cognitive level knowledge base.
It is implemented through a one cycle expert system that chooses, every time
the game state changes, the most adequate reactive behavior given the current
local goal. The current local goal is established by the cognitive level and it
determines the set of rules to be used in the inference engine. Each state of
the game is de�ned by a set of conditions on the perception information. These
conditions usually depend on some threshold values, that must be determined
experimentally.

The inputs to the instinctive level inference engine are the perception infor-
mation, received from the interface process, and the messages from the referee.
The perception information consists of the same synchronous perception infor-
mation received by the interface from the Soccerserver, but, di�erently from the
reactive level, the instinctive level presents a memory. This memory consists of
a bu�er, where perception information is stored, and whose initial size is a pa-
rameter of the implementation. It makes it possible to choose how many visual
information frames can be used in one inference cycle of the inference engine. For
example, assuming that the agent has been receiving visual information every
150 ms and that the bu�er size is 3, in a given time t, the cycle inference process
will take into account the visual information sent at times t, t-150, t-300.

The perception information is stored into the Sync bu�er and the messages
received from referee are stored in the Async bu�er (see Figure 6). Each time
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Contrac FrameLocal Goal

Coordinator Action

Mailbox

Sync Msg Assync Msg

Fig. 6. The coordinator process

one of these bu�ers is updated or when a new local goal has been received from
the cognitive level the expert system is executed. Given the input, the rules are
able to recognize changes in the game state. The result of executing the rules
can be either the updating of the cognitive level knowledge base or the selection
of the most appropriate reactive level fuzzy controller to drive the agent from
the current state to the local goal.

Suppose, for example, that the opponent team has the ball control, and our
team is performing a defensive play, where the goal is get-ball-control-back the
current behavior is Rounding-Opponent. Also suppose that the opponent player
who has the ball control makes a mistake and kicks the ball out of the �eld.
Then the game state is changed to kick in side and this change will be perceived
by a message received from the referee informing about this new game status.
In this case, a behavior can be directly selected to be performed by the reactive
level, i.e., Move-to-Ball, and it also means that the goal get-ball-control-back
was achieved. The cognitive level will be updated and will generate a new goal.
The point here is that in a situation like that, both the new planning and the
execution of the new behavior can happen concurrently.

The process coordinator is also responsible for the cooperation. A Contract

Frame Bu�er is provided to store the necessary information involved into a coop-
eration process that uses the Dynamic Social Knowledge Cooperation Strategy
[11]. The coordinator process also includes a real-time policy and some man-
agement algorithms for distributed system communication, like System Fault
Tolerance [6].

4 The Cognitive Level

The cognitive level inference engine is implemented in the expert process. It con-
sists of a symbolic object-oriented knowledge-based system that handles both the
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symbolic information received from the instinctive level, and the asynchronous
messages received from others UFSC-Team agents. It generates the local goals
and the global goals. This knowledge-based system has three knowledge bases:
Dynamic KB, Static KB and Export KB.

Rules Base

MI

Mailbox

Dynamic KB Export KB

Static KB

Fig. 7. The expert process

The Dynamic KB is used to store the symbolic information generated by
the instinctive level and the asynchronous messages sent by other UFSC-Team
agents. The Static KB stores the knowledge that has been inferred by the expert
process about the game, the team, the opponent, the agent plans, goals, etc.
Both, the Static KB and the Dynamic KB, are used by the inference engine to
generate the agent goals. The new facts about the game, the plans and goals are
stored into the Static KB. Export KB is used to store the expert process output.
Basically this output consists of local goals to be sent to the instinctive level,
information to be used in cooperation strategies, or messages to be sent to other
UFSC-Team Agents.

Suppose that some symbolic information and/or messages have been received
from the coordinator process, followed by a request. This causes the following
sequence of actions:

1. The information is stored in the Dynamic KB.
2. The inference engine evaluates both the information stored in the Dynamic

KB and the facts stored in the Static KB.
3. The generated new facts, plans and goals are stored into the Static KB.
4. If a new goal is chosen and/or there are some information to be sent to

another agent, it is stored into the Export KB.
5. If the Export KB is not empty, its contents are sent to the coordinator.
6. The Dynamic and Export KB are cleaned.
7. A reply to coordinator is sent.

An important feature of this new architecture is that the cognitive level can
spend more time planning, establishing goals, etc, once the reactive level and, in

282 A.L. da Costa and G. Bittencourt



www.manaraa.com

some situations, the instinctive level is responsible for real-time interaction with

the environment. The cognitive level also helps the coordinator in the evaluation

of the cooperation process to achieve global goals.

5 Example

1

3

7

9

11

2

5

4

10

6

8

Fig. 8. An example

An example where the proposed concurrent autonomous agent architecture

can be useful is presented in this section. Let's assume a situation where the

opponent team has the ball control and is performing an o�ensive play and

trying to pass the ball. In this situation the player close to the opponent player,

who has the ball control, will have get-ball-control-back as its local goal and will

be performing the behavior Rounding-Opponent into the reactive level. Suppose

that the opponent has tried to pass the ball, makes a mistake and the mid�elder,

player number 8, gets the ball control back. At this situation, shown in �gure

8, the agent number 8 instinctive level will recognize that the goal has been

achieved and will change the current behavior to Drive-Ball-Fwd and inform the

cognitive level of the new game state. Then the interface will perform the new

behavior and the cognitive level inference engine will choose one of the play-

patterns stored into the cognitive level to be performed involving the attack

player. This means to select a global goal to be achieved, broadcast this goal to

the involved agents and send a local goal, related with the selected global goal

to be performed by the instinctive level. Another possibility in this situation is,

just after the new behavior begins to be performed by the reactive level, to ask

the coordinator to start a cooperation process involving the attack players and

mid�elders to choose which one of the known global goals is more appropriate for

that situation. In the �rst possibility, the choice is done just taking into account

one agent information, i.e., its believes about the environment and about the
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other agents. It is not considered whether another player has stamina enough
to perform the selected play. In the second possibility, the agent will perform a
cooperation process and choose which global goal is more appropriate, taking into
account the perception information of all the agents involved in the cooperation
process.

6 Conclusions and Future Work

A concurrent autonomous agent architecture to a simulated robot soccer team
was presented in this paper. This new architecture explores the concurrent ap-
proach to implement an architecture with three levels of decision. It allows the
agent to react to an environment stimulus, to make plans, to establish goals and
to perform complex agent cooperation strategies concurrently and respecting
real-time constraints. It also provides a memory where the perception informa-
tion can be stored, allowing the agent not just to evaluate the current informa-
tion, but to evaluate the current and some early past information together. This
allows information about the object movement to be handled and the current
and past information to be used to make inferences about the environment.

Some real-time policy is also provided to ensure that the agent is handling
the newest information, like dedicated bu�er to perception information. If it is
assumed that the size of the bu�er is two, it is sure that the two last perceptual
information are stored in that bu�er. Also it is possible to choose what kind of
information will be handled �rst, perceptual or asynchronous message. Beside
this, some implementation e�ort was done to handle the received messages, like
multi-threads programming approach associated with the Unix SIGIO interrupt,
and represented a signi�cant improvement in the real-time response.

One further advantage of the proposed architecture is that the numerical
parameters of the implementation are partitioned into two subsets: the limits
of the fuzzy sets used in the reactive level controllers and the thresholds used
by the instinctive level to calculate the logical values of the symbolic variables
used in the cognitive level. In the future, we intend to use optimization methods,
such as Reinforcement Learning [8] and Genetic Algorithms [5], to independently
improve these two set of parameters. These parameters, because they refer only
to local behaviors, can be improved using simpli�ed situations, whith few players.

This architecture has been used to implement the UFSC-Team and it is al-
ready integrated to the partial implementation of the environment to build cog-
nitive multi-agent system under real-time restriction, called Expert-Coop++.
It will allow the UFSC-Team to employ complex cooperation strategies that
use both perception information and some communication among the agents in-
volved into the cooperation process. In a near future some cooperation strategies
will be implemented and evaluated in the UFSC-Team.
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Abstract - This paper describes the method employed to track and identify each
robot during a Robocup match. Also, the playing ball is tracked with almost no extra
processing effort. To track the robots it is necessary the use of adequate markers so
that not only the position is extracted but also the heading. We discuss the
difficulties associated with this problem, various possible approaches and justify our
solution. The identification is performed thanks to a minimalist bar code placed in
each robot. The bar code solves the problem of resolving some ambiguities that can
arise in certain configurations. The procedure described can be executed in real time
as it was shown in Paris in RoboCup-98.

1 Introduction

To be able to play consistently a team must, amongst other things, know its
kinetic state. More, it must know the other team and the playing ball kinetic states.
By kinetic state, we mean all the variables that must be known to uniquely
characterize the physical position of a body.

The main source of information, for a F-180 Team, is the global camera that is
typically placed above the playing field. Usually, that camera captures an image that
covers all the playing field. Having that image transferred to a computer enables us
to apply some kind of processing to extract the needed information. That task is very
time consuming and the required robustness is sometimes difficult to obtain. Light
variations in the illumination can be important disturbances the vision system and
the design must be prepared to cope with that kind of problem [2].

2 The Team State

We can see a player as a rigid body constrained to have one of its faces parallel to
the xy plane (the floor). With that restriction the full mechanical state of the robot
can be described by the vector (x, y, q , vx, vy, w), where x and y specify the robot’s

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 286−291, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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position, q  is the orientation, vx and vy are the robot’s velocity in the x an y axis and
finally w is the robot’s rotation speed. If the robot has some kind of extra constraint
in the possible trajectories then the state can be further reduced. For example, with
the usual differential drive type and if we assume that the robot will not slip
sideways then we can define the state only by (x, y, q , v, w). That happens because
assuming the no slippage condition the robot velocity has always the direction of its
orientation.

Fig. 1. Robot and state variables

From a still image it is not very easy to extract information about the velocity of
an object, especially if the speed is low and we do not have any noticeable motion
blur. On the other hand, that information can be obtained using information from
past frames so we can concentrate on the data that can be directly extracted from the
captured image.

The global kinetic state of the team it is the aggregation of all robot states [3] and
[5]. The first step to extract that state from a captured image of the playing field is
to get the position of all the available markers.

3 Required Markers

The Robocup Regulation enforce the presence of a Table Tennis ball placed on
the top of each robot. Furthermore it is advised that the ball should be placed on the
rotation center of the robot. But, using only this ball, we can only know the x, y
coordinates. It gives us no information about q . That problem can be solved using a
second marker placed on top of the robots. We used another tennis table ball of a
different color. That extra marker will give the robot’s heading with a precision that
increases as the distance between the two markers increases. That is why we placed
them a few centimeters apart. The distance was not further increased because it is
advantageous to have both balls surrounded by the top of the robot. The purpose is
to allow the camera to get an image where the border around the ball is always
black. This second ball is of the same color for all robots.

4 Image Processing

The main problem, posed in the process of extracting the required information, is
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the short time available and the amount of data involved: if we want to extract all
the items’ positions at 25 Hz we have only 40 ms to process each image. For an
RGB image with PAL resolution of 384 x 288 we can have 216 KBytes if we are
using 16 bits to hold the RGB values and 340 KBytes in the 24 bits case. That is a
lot of data and even the simplest filter can take too long to be applied to the image.
Clearly there is the need to perform some kind of data reduction in a
computationally cheap way.

We choose to process the entire field in an attempt to make the processing of
each frame independent from the previous ones. Another advantage is that the time
consumed is more predictable as it can be more or less stable from frame to frame.
We do not loose the information from previous frames. As mentioned before, the
speed of the robots and the ball can only be extracted from previous frames, but the
actual image processing can be done without that information.

The overall processing system and its main building blocks are shown in the next
figure:

RGB 15 bits Image
(384x288) @ 25 Hz

PAL
Colour
Image

Camera
Image

Aquisition
System

Core
Processing

Pair matching
and barcode
validation

Ordered lists
with candidate

positions

Robots postion
and

identification

Fig. 2. Overall Image Processing System

We can use the concepts of Fuzzy Logic base our approach [7]. The core of our
system relies in a function f that catalogues each pixel with its degree of
membership to the set of an ideal color c. Let us can consider that each color that we
want to identify is a fuzzy set Sc. Each element of this fuzzy set is a point in the
RGB space. In other words it is a three dimensional vector (r, g, b). To define this
set we must build a function m(r, g, b) that maps each point to its set membership.
To extract n colors we must define n of these sets and their respective membership
functions. The function f then applies each of the pi functions to each pixel and
selects the color with the highest degree of membership. Setting a lower bound for
the degree of membership we can rule out a lot of pixels that are not interesting.
Almost all the pixels related to the green of the table, the white of the lines or the
black of the robots cover can be dropped by this filter and we will retain only the
interesting pixels. In doing that we can lower the amount of data to be processed by
dropping the potentially uninteresting pixels. More, while doing that we can have
now an idea of the possible color that each interesting pixel represents.

This function is locally independent and does not use any information from
surrounding pixels. That is a big advantage because it can be evaluated only once
for each pixel and in any order. The information inherent to the locality of each
pixel will be used only in a later processing stage.

We now have a crisp set of interesting pixels and each pixel p can be represented
by a vector (x, y, c, m) where  x, y are the pixel coordinates, c is the color set in
which the pixel showed the highest degree of membership and m is the respective
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degree of membership. Then, we can aggregate the pixels by their positional
proximity and build a set of candidate positions for each ball in the image.

5 From Interesting Pixels to Ball Positions

We can label the n colors associated with ball markers as c1, c2, …, cn. After
processing the image we can get n ordered lists, cp1, cp2, …, cpn with the candidate
positions for each ball. In each list we can have more candidates than there are balls.
Each candidate is a vector (x, y, np, tf) where np and tf are figures of merit that are
related with this candidate’s proximity to the ideal image of a ball. More precisely,
np states the number of pixels in this candidate that matched the required color and
spatial proximity. The other component, tf, is the sum of each pixel fitness to the
ideal color. The coordinates x and y of the candidate position are found by an
weighted average of all the x, y coordinate of the points belonging to it.

The algorithm to perform the task is as follows (in pseudo code):

:Order the pixels
    Build a list lpc of pixels that possibly represent the same color c;
        Order each list by decreasing degree of membership to the Sc

:Cluster
    for each list lpc

        for each pixel p(x, y, c, m)
            if its distance to a existent candidate position of the same color is bellow

a certain threshold rb then add the pixel to that candidate position;
            else create a new candidate position and then add the pixel to that

candidate position;
:Order and filter the candidate positions
    for each set of candidate positions for balls of the same color
        npo := optimal number of pixels associated with a candidate position;
        for each candidate positions in the set
            np := number of pixels associated with the candidate position;
            if the np < npmin then discard the candidate position
            tf := sum of each pixel degree of membership m
            if the tf < tfmin then discard the candidate position
        order by increasing distance of np to npo.

The core processing system and its main building blocks are shown in the figure:

RGB 15 bits Image
(384x288) @ 25 Hz

(p1, …, pn)
=

F(r,g,b)

Gredy
Clustering

Filering
and

Ordering

Ordered lists
with candidate

positionsOrdering of
pixel lists

Fig. 3. Core processing system details
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6 Robots’ Positions and Their Identification

With best candidate positions for each ball we can pair then and extract the
robot’s new observed positions. A simpler procedure can be done to find the
position of the playing ball. The best candidate center for the color associated with
the ball is elected to give us the new playing ball position. Applying a Kalman filter
or similar techniques can produce further refinements. For more on this subject see
[6],[4] and [1].

This approach does not supply the identification of each robot. In earlier games
we used a locality assumption to identity each robot. By assuming that each robot
was the one closest to previous known location we could track each robot almost al
the time. The problem with this approach was that it required the initialization by
human intervention and in some cases the ambiguities could induce an error that
was not easily recoverable and led the mismatched robots to become useless. Also,
the pairing of the balls some times struggled with ambiguous cases that added
another potential error  source.

Fig. 4. Some ambiguous robot configurations

To overcome the problem we fitted each robot with a set of black and white
marks that can be seen as a bar code label. The size of the markers could not be too
small and in the available area on the top of the robot restricted us to use only three
markers. With three markers with two states: black and white, we can only have
eight different values represented. Restricting the use of all whites and all black we
have six possible configurations always with, at least, one black mark and one white
mark. That is enough for a five robots team.

Fig. 5. Bar code in action

Using the bar code to validate a pair of balls we can eliminate the ambiguities
shown in figure 4. That can be achieved by setting a luminance threshold to accept a
white mark and the same to a black mark. Only if the luminance of the white mark
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is above the threshold and the luminance of the black mark is bellow another
threshold,  we accept the code as a valid. That, coupled with the requirement that
the valid bar codes have both kinds of mark, can almost ensure that a false reading
is never accepted and gives us a very strong validation of the balls pair. Naturally
the bar code identifies each robot without any ambiguity and we do not need
anymore to rely in previous information to achieve that goal. Since we started
playing with this setup, the reliability of our control increased substantially.

7 Conclusions and Future Work

In this paper we described a vision system for a F-180 team. We used this system
in Paris in Robocup-98 with great success. The achieved frame rate of 25 Hz and the
robustness showed by this system are its greatest strengths. It was implemented in a
mix of C and C++ and the computer running it was a PC with a 266 MHz PentiumII
and 64 Mbytes of RAM. For the image acquisition we used a standard camcorder
and a PCI frame grabber based on the Bt848 chip.

The bar code technique solved one of the worst problems, the identification of
each robot and provided a tool to eliminate ambiguities and the dependence on past
information.

Using vision to recognize the overall system state, consisting in the ball position
and speed, our team’s robots’ state and the adversarial robots’ state, is still a very
difficult task. As the quality of the team behavior is very dependent from the
accuracy of that system any improvement in this area shows dramatic results in the
overall team performance.
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Abstract Reinforcement learning has proven to be a set of success-
ful techniques for finding optimal policies on uncertain and/or dynamic
domains, such as the RoboCup. One of the problems on using such tech-
niques appears with large state and action spaces, as it is the case of
input information coming from the Robosoccer simulator. In this paper,
we describe a new mechanism for solving the states generalization prob-
lem in reinforcement learning algorithms. This clustering mechanism is
based on the vector quantization technique for signal analog-to-digital
conversion and compression, and on the Generalized Lloyd Algorithm
for the design of vector quantizers. Furthermore, we present the VQQL
model, that integrates Q-Learning as reinforcement learning technique
and vector quantization as state generalization technique. We show some
results on applying this model to learning the interception task skill for
Robosoccer agents.

1 Introduction

Real world for autonomous robots is dynamic and unpredictable. Thus, for most
robotic tasks, having a perfect domain theory (model) of how the actions of
the robot affect the environment is usually an ideal. There are two ways of
providing such models to robotic controllers: by careful and painstaking “ad-
hoc” manual design of skills; or by automatically acquiring such skills. There
have been already many different approaches for learning skills in robotic tasks,
such as genetic algorithms [6], or neural networks and EBL [13].

Among them, reinforcement learning techniques have proven to be very
useful when modeling the robot worlds as MDP or POMDP problems [1, 12,
17]. However, when using reinforcement learning techniques with large state
and/or action spaces, two efficiency problems appear: the size of the state-action
tables and the correct use of the experience. Current solutions to this problem
rely on applying generalization techniques to the states and/or actions. Some
systems have used decision trees [3], neural networks [9], or variable resolution
dynamic programming [14].
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In this paper, we present an approach to solve the generalization problem
that uses a numerical clustering method: the generalized Lloyd algorithm for
the design of vector quantizers [10]. This technique is extensively employed for
signal analog-to-digital conversion and compression, which have common char-
acteristics to MDP problems. We have used Q-Learning [18] as reinforcement
learning algorithm, integrating it with vector quantization techniques in the
VQQL model.

We have applied this model for compacting the set of states that a Robosoc-
cer agent perceives, thus dramatically reducing the reinforcement table size. In
particular, we have used the combination of vector quantization and reinforce-
ment learning for acquiring the ball interception skill for agents playing in the
Robosoccer simulator [16].

We introduce the reinforcement learning and the Q-learning algorithm in
section 2. Then, the vector quantization technique and the generalized Lloyd
algorithm are described in section 3. Section 4 describes how vector quantization
is used to solve the generalization problem in the model VQQL, and in sections 5
and 6, the experiments performed to verify the utility of the model and the results
are shown. Finally, the related work and conclusions are discussed.

2 Reinforcement Learning

The main objective of reinforcement learning is to automatically acquire knowl-
edge to better decide what action an agent should perform at any moment to
optimally achieve a goal. Among many different reinforcement learning tech-
niques, Q-learning has been very widely used [18]. The Q-learning algorithm for
non deterministic Markov decision processes is described in table 1 (execution
of the same action from the same state by an agent arrives to different states, so
different rewards could be obtained). It needs a definition of the possible states,
S, the actions that the agent can perform in the environment,A, and the rewards
that it receives at any moment for the states it arrives to after applying each
action, r. It dynamically generates a reinforcement table Q(s, a) (using equa-
tion 1) that allows it to follow a potentially optimal policy. Parameter γ controls
the relative importance of future actions rewards with respect to immediate re-
wards. Parameter α refers to the probabilities involved, and it is computed using
equation 2.

Qn(s, a)← (1− αn)Qn−1(s, a) + αn{r + γ max
a′

Qn−1(s
′, a′)} (1)

αn ← 1

1 + visitsn(s, a)
(2)

where visitsn(s, a) is the total number of times that the state-action entry
has been visited.
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Q-learning algorithm (S,A)
For each pair (s ∈ S, a ∈ A), initialize the table entry Q(s, a) to 0.
Observe the current state s
Do forever
– Select an action a and execute it
– Receive immediate reward r
– Observe the new state s′

– Update the table entry for Q(s, a) using equation 1
– Set s to s′

Table1. Q-learning algorithm.

3 Vector Quantization (VQ)

Vector quantization appeared as an appropriate way of reducing the number of
bits needed to represent and transmit information [7]. In the case of large state
spaces in reinforcement learning, the problem is analogous: how can we compactly
represent a huge number of states with very few information? In order to apply
vector quantization to the reinforcement learning problem, we will provide first
some definitions.

3.1 Definitions

Since our goal is to reduce the size of the reinforcement table, we have to find out
a more compact representation of the states.1 If we have K attributes describing
the states, and each attribute ai can have values(ai) different values, where this
number is usually big (in most cases infinite, since they are represented with real
numbers), then the number of potential states can be computed as:

S =
K∏

i=1

values(ai) (3)

Since this can be a huge number, the goal is to reduce it to N � S new states.
These N states have to be able to approximately capture the same information
as the S states; that is, all similar states in the previous representation, belong
to the same new state in the new representation. The first definition takes this
into account.

Definition 1. A vector quantizer Q of dimension K and size N is a mapping
from a vector (or a “point”) in the K-dimensional Euclidean space, RK , into
a finite set C containing N output or reproduction points, called code vectors,
codewords, or codebook. Thus,

Q : RK −→ C

where C = (y1, y2, . . . , yN), yi ∈ RK .

1 We will refer indistinctly to vectors and states.

294 F. Fernández and D. Borrajo



www.manaraa.com

Given C (computed by the generalized Lloyd algorithm, explained below),
and a vector x ∈ RK , Q(x) assigns x to the closest state from C. In order to
define the closeness of one vector x to a state in C, we need to define a measure of
the quantization error, which needs a distortion measure (analog to the similarity
metric of clustering techniques).

Definition 2. A distortion measure d is an assignment of a nonnegative cost
d(x, q) associated with quantizing any input vector x ∈ RK with a reproduction
vector q = Q(x) ∈ C.

In digital communications, the most convenient and widely used measure
of distortion between an input vector x and a quantizer vector q = Q(x), is
the squared error or squared Euclidean distance between two vectors defined by
equation 4.

d(x, q) = ‖x, q‖2 =
K∑

i=1

(x[i]− q[i])2 (4)

However, sometimes differences in one attribute value are more important
than in another. In those cases, the weighted squared error measure is more
useful, because it allows a different emphasis to be given to different vector com-
ponents, as in equation 5. In other cases, the values x[i] and q[i] are normalized
by the range of values of the attribute. This is a special case of the equation 5
where weights would be computed as the inverse of the square of the range
(maximum possible value minus minimum possible value).

d(x, q) =
K∑

i=1

wi(x[i]− q[i])2 (5)

Once a distortion measure has been defined, we can define Q as in equation 6.

Q(x) = arg min
y∈C
{d(x, y)} (6)

In order to measure the average error produced by quantizing M training
vectors xj with Q, average distortion is defined as the expected distortion cal-
culated among any input vector and the quantizer Q:

D =
1

M

M∑

j=1

min
y∈C

d(xj , y) (7)

Finally, we define partition and centroid, concepts needed for presenting the
Lloyd algorithm for computing C from M input vectors.

Definition 3. A partition or cell Ri ⊆ RK is the set of input vectors (old states)
associated to the same (new) state in the codebook C.
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Definition 4. We define the centroid, cent(R), of any set R ⊆ RK as that
vector y ∈ RK that minimizes the distortion between any point x in R and y:

cent(R) = {y ∈ RK | E[d(x, y)] ≤ E[d(x, y′)], ∀x ∈ R, y′ ∈ RK} (8)

where E[z] is the expected value of z.

A common formula to calculate each component i of the centroid of a parti-
tion is given by equation 9.

cent(R)[i] =
1

‖R‖
‖R‖∑

j=1

xj [i] (9)

where xj ∈ R, xj [i] is the value of component (attribute) i of vector xj , and
‖R‖ is the cardinality of R.

3.2 Generalized Lloyd Algorithm (GLA)

The generalized Lloyd algorithm is a clustering technique, extension of the scalar
case [11]. It consists of a number of iterations, each one recomputing the set of
more appropriate partitions of the input states (vectors), and their centroids.
The algorithm is shown in table 2. It takes as input a set T of M input states,
and generates as output the set C of N new states (quantization levels).

Generalized Lloyd algorithm (T,N)
1. Begin with an initial codebook C1.
2. Repeat

(a) Given a codebook (set of clusters defined by their centroids) Cm =
{yi; i = 1, . . . , N}, redistribute each vector (state) x ∈ T into one of
the clusters in Cm by selecting the one whose centroid is closer to x.

(b) Recompute the centroids for each cluster just created, using the cen-
troid definition in equation 9 to obtain the new codebook Cm+1.

(c) If an empty cell (cluster) was generated in the previous step, an alter-
native code vector assignment is made (instead of the centroid com-
putation).

(d) Compute the average distortion for Cm+1, Dm+1

Until the distortion has only changed by a small enough amount since last
iteration.

Table2. The generalized Lloyd algorithm.

There are three design decisions to be made when using such technique:

Stopping criterion Usually, average distortion of codebook at cycle m, Dm,
is computed and compared to a threshold θ (0 ≤ θ ≤ 1) as in equation 10.
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(Dm −Dm+1)/Dm < θ (10)

Empty cells One of the most used mechanisms consists of splitting other par-
titions, and reassigning the new partition to the empty one. All empty cells
generated by the GLA are changed in each iteration by another cell. To de-
fine the new one, another non-empty cell with big average distortion y, is
splitted in two:

y1 = {y[1]− ε, . . . , y[K]− ε}, and

y2 = {y[1] + ε, . . . , y[K] + ε}
Initial codebook generation We have used a version of the GLA as explained

in table 3, that requires a partition split mechanism as the one described
above inserted into the GLA in table 2.

GLA with Splitting (T )
1. Begin with an initial codebook C1 with N (number of levels of the code-

book) set to 1. The only level of the codebook is the centroid of the input.
2. Repeat

(a) Set N to N ∗ 2
(b) Generate a new codebook Cm+1 with N levels that includes the code-

book Cm. The rest N undefined levels can be initialized to 0
(c) Execute the GLA algorithm in table 2 with the splitting mechanism

with parameters (T,N) over the codebook obtained in previous step
Until N is the desired level

Table3. A version of the generalized Lloyd algorithm that solves the initial codebook
and empty cell problems.

4 Application of VQ to Q-learning. VQQL

The use of vector quantization and the generalized Lloyd algorithm to solve
the generalization problem in reinforcement learning algorithms requires two
consecutive phases:

Learn the quantizer. Or to design the N -levels vector quantizer from input
data obtained from the environment.

Learn the Q function. Once the vector quantizer is designed (we have clus-
tered the environment in N different states), it is needed to learn the Q
function, generating the Q table, that will be composed of N rows, and a
column for each action (one could also use the same algorithm for quantizing
actions).

We have two ways of unifying both phases:
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Off-line mode. We could obtain the information required to learn the quan-
tizer and the Q function, and, later, learn both.

On-line mode. We could obtain data to generate only the vector quantizer,
and, later, the Q function is learned by the interaction of the agent with the
environment, using the previously designed quantizer.

The advantages of the first one are that it allows to use the same information
several times, and the quantizer and the Q table are learned with the same data.
The second one allows the agent to use greedy strategies in order to increase the
learning rate (exploration versus exploitation).

In both cases, the behavior of the agent, once the quantizer and the Q func-
tion are learned, is the same; a loop that:

– Receives the current state, s, from the environment.
– Obtains the quantization level, s′, or state to which the current state belongs.
– Obtains the action, a, from the Q table with bigger Q value for s′.
– Executes action a.

5 The Robosoccer domain

In order to verify the usefulness of the vector quantization technique to solve the
generalization problem in reinforcement learning algorithms, we have selected a
robotic soccer domain that presents us all the problems that we have defined in
previous sections. The RoboCup, and its Soccer Server Simulator, gives us the
needed support [16].

The Soccer Server provides an environment to confront two teams of players
(agents). Each agent perceives at any moment two types of information: visual
and auditorial [16]. Visual information describes a player what it sees in the field.
For example, an agent sees other agents, field marks such as the center of the
field or the goals, and the ball. Auditorial information describes a player what it
hears in the field. A player can hear messages from the referee, from its coach, or
from other players. Any agent (player) can execute actions such as run (dash),
turn (turn), send messages (say), kick the ball (kick), catch the ball (catch), etc.

One of the more basic skills a soccer player must have is ball interception. The
importance of this skill comes from the dependency that other basic skills, such
as kick or catch the ball, have with this one. Furthermore, ball interception is
presented as one of the more difficult tasks to solve in the Robosoccer simulator,
and it has been studied in depth by other authors [17]. In the case of Stone’s
work, neural networks were used to solve the ball interception problem posed as
a supervised learning task.

The essential difficulties of this skill come from the visual limitations of the
agent, as well as from the noise that the simulator includes in movements of
objects. In order to intercept the ball, our agents parse the visual information
that they receive from the simulator, and obtain the following information:2

2 The Robosoccer simulator protocol version 4.21 has been used for training. In other
versions of the simulator, other information could be obtained.
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– Relative Distance from the ball to the player.
– Relative Direction from the ball to the player.
– Distance Change, gives an idea of how Distance is changing.
– Direction Change, gives an idea of how Direction is changing.

In order to intercept the ball, after knowing the values of these parameters,
each player can execute several actions:

Turn changing the direction of the player according to a moment between -180
and 180 degrees.

Dash increasing the velocity of the player in the direction it is facing with a
power between -30 and 100.

To reduce the number of possible actions that an agent can perform (gener-
alization over actions problem), we have used macro-actions defined as follows.
Macro-actions are composed of two consecutive actions: turn(T ), and dash(D),
resulting in turn-dash(T,D). We have selected D = 100, and T is computed
according to A+∆A, where A is the angle between the agent and the ball, and
∆A can be: +45,+10,0,-10,-45. Therefore, we have reduced the set of actions to
five actions.

6 Results

In this section, the results of using the VQQL model for learning the ball inter-
ception skill in the Robosoccer domain are shown. In order to test the perfor-
mance of the Lloyd algorithm, we generated a training set of 94.852 states with
the following iterative process, similar to the one used in [17]:

– The goalie starts at a distance of four meters in front of the center of the
goal, facing directly away from the goal.

– The ball and the shooter are placed randomly at a distance between 15 and
25 from the defender.

– For each training example, the shooter kicks the ball towards the center of
the goal with a maximum power (100), and an angle in the range (−20, 20).

– The defender goal is to catch the ball. It waits until the ball is at a distance
less or equal than 14, and starts to execute actions defined in section 5,
while the goal is not in the catchable area [16]. Currently, we are only giving
positive rewards. Therefore, if the ball is in the catchable area, the goalie
tries to catch the ball, and if it succeeds, a positive reward is given to the
last decision. If the goalie does not catch the ball, it can execute new actions.
Finally, if the shooter goals, or the ball goes out of the field, it receives a
reward of 0.

Then, we used the algorithm described in Section 3 with different number
of quantization levels (new states). Figure 1 shows the evolution of the aver-
age distortion of the training sequence. The x-axis shows the logarithm of the
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number of quantization levels, i.e. the number of different states what will be
used afterwards by the reinforcement learning algorithm and the y-axis shows
the average distortion obtained by GLA. The distortion measure used has been
the quadratic error, as shown in equation 4. As it can be seen, when using 26 to
28 quantization levels, the distortion becomes practically 0.
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Figure1. Average distortion evolution depending on the number of states in the code-
book.

To solve the state generalization problem, a single mechanism could be used,
such as a typical scalar quantization on each parameter. In this case, the average
quantization error, following the error quadratic distortion measure defined in
equation 4, could be calculated as follows. The Distance parameter range is
usually in (0.9,17.3). Thus, if we allow 0.5 as the maximum quantization error,
we need around 17 levels. Direction is in the (-179,179) range, so, if we allow a
quantization error of 2, 90 levels will be needed. Distance Change parameter is
usually in (-1.9,1), so we need close to 15 levels, allowing an error of 0.1, and
Direction Change is usually in (-170,170), so we need 85 levels, allowing an error
of 2. Then, following equation 3 we need 17∗90∗15∗85 = 1, 950, 750 states!!! This
is a huge size for a reinforcement learning approach. Also, the average distortion
that is obtained according to equation 4 is:
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)2 = 2.7

given that the quantization error on each quantization is half of the maximum
possible error. Instead, using the generalized Lloyd algorithm, with many less
states, 2048, the average distortion goes under 2.0. So, it reduces both the number
of states to be represented, and the average quantization error.

Why is this reduction possible on the quantization error? The answer is given
by the statistical advantages that the vector quantization provides over the scalar
quantization. These advantages can be seen in Figure 2. In Figure 2(a), only
the pairs of Distance and Direction that appeared in the training vectors have
been plotted. As we can see, only some regions of the bidimensional space have
values, showing that not all combinations of the possible values of the Distance
and Direction parameters exist in the training set of input states. Therefore, the
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reinforcement tables do not have to consider all possible combinations of these
two parameters. Precisely, this is what vector quantization does. Figure 2(b)
shows the points considered by 1024 states quantization. As it can be seen, it
only generates states that represent minimally the states in the training set. The
fact that there are parts of the space that are not covered by the quantization
is due to the importance of the other two factors not considered in the figure
(change in distance and direction).
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Figure2. Distance and Direction parameters from (a) original data, and (b) a codebook
obtained by the GLA.

In order to test what the best number of quantization levels is, we have
varied that number, and learned a Q table per obtained quantizer. We measured
successful performance as the percentage of kicks of a new set of 100 testing
problems that go towards the goal, and are catched by the goalie. The results
of these experiments are shown in Figure 3. In that figure the performance of
the goalie is shown, depending of the size of the Q table. As a reference, a
random goalie would only achieve a 20% of success, and a goalie with the most
used heuristic of always go towards the ball achieves only a 25% of successful
behavior. As it can be seen, Q table sizes less than 128 obtain a quasi-random
behavior. From sizes of the Q table from 128 to 1024, the performance increases
until the maximum performance obtained, which is close to 60%. From 4096
states and up, the performance decreases. That might be the effect of obtaining
again a very large domain (huge number of state).

7 Related Work

Other models to solve the generalization problem in reinforcement learning use
decision trees as in the G-learning algorithm [3], and kd-trees (similar to a deci-
sion tree) in the VRDP algorithm [14]. Another solution is Moore’s PartiGame
algorithm [15] or neural networks [9]. One advantage of vector quantization is
that it allows to easily define control parameters for obtaining different behaviors
of the reinforcement learning technique. The main two parameters that have to
be defined are number of quantization levels, and average distortion (similarity
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Figure3. Learning performance depending on the number of states in the codebook.

metric). Other approaches to this problem were proposed in [5] and [2] where
bayesian networks are used. Similar ideas to our approach to Vector Quantiza-
tion have been used by other researchers, as in [4] where Q-Learning is used as
in this paper, using LVQ [8]. Again, it is easier for VQ to define its learning
parameters than it is for neural networks based systems.

8 Conclusions and Future Work

In this paper, we have shown that the use of vector quantization for the gen-
eralization problem of reinforcement learning techniques provides a solution to
how to partition a continuous environment into regions of states that can be
considered the same for the purposes of learning and generating actions. It also
solves the problem of knowing what granularity or placement of partitions is
more appropriate.

However, this mechanism introduces a set of open questions that we expect
to tackle next. As we explained above, the GL algorithm allows us to generate
codebooks or sets of states of different sizes, each of them giving us different
quantization errors. So, an important question is the relation between the num-
ber of quantization levels and the performance of the reinforcement learning
algorithm. Another important issue relates to whether this technique can be
applied not only to the state generalization problem, but also to actions gen-
eralization. We are also currently exploring the influence of providing negative
rewards to the reinforcement learning technique. Finally, in the short term we
intend to compare it against using decision trees and LVQ.
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Abstract. Self-localization is important in almost all robotic tasks. For

playing an aesthetic and e�ective game of robotic soccer, self-localization

is a necessary prerequisite. When we designed our robotic soccer team

for RoboCup'98, it turned out that all existing approaches did not meet

our requirements of being fast, accurate, and robust. For this reason,

we developed a new method, which is presented and analyzed in this

paper. We additionally present experimental evidence that our method

outperforms other methods in the RoboCup environment.

1 Introduction

Robotic soccer is an interesting scienti�c challenge [11] and an ideal domain for
testing new ideas and demonstrating existing techniques. One of our main inten-
tions in participating in last year's RoboCup'98 [1] was to demonstrate the use-
fulness of self-localization techniques that we have developed [9]. It turned out,
however, that all existing self-localization techniques were not e�cient enough
for a dynamic environment such as robotic soccer. Furthermore, most of the
techniques are not robust enough. For this reason, we developed a new tech-
nique that exploits one particular characteristic of the RoboCup environment,
namely, its purely polygonal structure. Based on that we were able to come
up with a very fast, accurate, and robust self-localization technique, which was
most probably one of the key factors for the victory of our team CS Freiburg in
RoboCup'98 [7,17].

Solving the self-localization problem|the problem of determining the posi-
tion and orientation of the robot|is necessary for almost all tasks. In robotic
soccer it seems even impossible to play an e�ective and aesthetic game if the
soccer agents do not know where they are and how they are oriented. As a matter
of fact, some of the problems displayed in the games of the middle size league
at RoboCup'97 [10] seemed to have to do with the fact that the soccer robots
had the wrong idea about their positions, which led to erratic movements and a
number of own goals.

The self-localization problem can be addressed using a wide range of sen-
sors (e.g. odometry, sonars, vision, compasses, laser range �nders, other sensors,

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 304−317, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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or combinations thereof) and a wide range of methods. In the sequel we will
only consider the combination of data from the odometry and from laser range
�nders (LRF), since the latter provide accurate and reliable data, which can be
interpreted with much less computational e�ort than, say, data from a vision
system.

Self-localization can be based on recognizing known landmarks or on dense

sensor matching. In the �rst approach, features are extracted from the sensor
inputs and matched with the features of the landmarks in order to determine
the locations of the landmarks. However, in the RoboCup environment, there
are only few natural landmarks that are always visible to the sensors and for
this reason we did not consider this approach. In the second approach, all sen-
sor inputs are matched against the expected sensor inputs for a given model.
Two competing methods for dense sensor matching are grid-based Markov lo-

calization [3,2] and Kalman �ltering using scan matching [5,9]. As it has been
demonstrated, Markov localization is more robust, because it always generates
some position hypotheses and because it can recover from catastrophic failures.
However, self-localization using Kalman �ltering based on scan matching is more
accurate [6], since it does not rely on grids.

For robotic soccer, we need robustness, accuracy, and e�ciency, whereby the
latter property means that we want to estimate the position and orientation in
a few milliseconds. Unfortunately, none of the approaches described above sat-
is�es all three requirements. For this reason, we designed a new scan-matching
approach that extracts features from the raw sensor inputs, namely, straight
lines, that are matched against an a priori model. Using the scan match, which
can be computed e�ciently, the new position estimation is then derived by com-
bining it with the odometry reading using Kalman �ltering.

The rest of the paper is structured as follows. The next section sketches scan
matching methods and how they can be used to estimate the position using
Kalman �ltering. Section 3 describes our own method and gives an analysis of
the run-time complexity. Based on that, we describe in Section 4 experiments
that we have made in order to compare di�erent scan matching methods in the
RoboCup environment. Finally, in Section 5 we conclude and sketch future work.

2 Scan Matching

Scan matching is the process of translating and rotating a range scan (obtained
from a range device such as a laser range �nder) in such a way that a maximum
overlap between sensor readings and an a priori map emerges. Most of the scan
matching methods presume an initial pose estimation that must be close to the
true pose in order to limit the search space.

The robot pose and its update from scan matching are modeled as single
Gaussian distributions. This has the advantage that robot poses can be calcu-
lated with high precision, and that an e�cient method for computing the update
step can be used, namely, Kalman �ltering.
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The extended Kalman �lter method has the following form. The probability
of a robot pose is modeled as a Gaussian distribution l(t) � N(�l; �l), where
�l = (x; y; �)T is the mean value and �l its 3� 3 covariance matrix.

On robot motion a � N((�; �)T ; �a) where the robot moves forward a certain
distance � and then rotates by �, the pose is updated according to:

�l := E(F (l; a)) =

0
@
x+ � cos(�)
y + � sin(�)

�+ �

1
A

�l := rFl�lrF
T

l
+rFa�arF

T

a

Here E denotes the expected value of the function F and rFl and rFa are its
Jacobians with respect to l and a.

From scan matching a pose update s � N(�s; �s) is obtained and the robot
pose is updated using standard Kalman �lter equations [14]:

�l := (��1

l
+��1

s )�1
� (�0�1

l
�l +��1

s �s)

�l := (��1

l
+��1

s
)�1

The success of the Kalman �lter depends heavily on the ability of scan match-
ing to correct the robot pose. There are a number of methods for matching scans:

Cox [5] matches sensor readings with the line segments of a hand-crafted
CAD map of the environment. He assigns scan points to line segments based
on closest neighborhood and then searches for a translation and rotation that
minimizes the total squared distance between scan points and their target lines.

Weiss et. al. [18] use histograms for matching a pair of scans. They �rst com-
pute a so-called angle histogram for determining the rotation of the two scans
and then use x and y histograms for computing the translation. Although this
method seems to be well suited for the RoboCup environment it is computation-
ally expensive and the precision of the algorithm depends on the discretization
size of the histograms.

Lu and Milios [12] match pairs of scans by assigning points in one scan to
points in the other scan. For �nding a corresponding scan point two heuristics
called closest-point-rule and matching-range-rule are applied and a combination
is used for computing the rotation and translation of the two scans. This IDC al-
gorithm (iterative dual correspondence) is well suited for any type of environment
including non-polygonal ones.

Gutmann and Schlegel [9] use a combination of the Cox matching approach
and the IDC method for combining the e�ciency and robustness of the line
matching method with the universal capabilities of the IDC algorithm. They
call their algorithm the combined scan matcher (CSM).

Unfortunately all those matching algorithms possess a high computational
complexity, e.g. O(n2) where n are the number of scan points, and their robust-
ness is limited due to the small search space.

Therefore we developed a new algorithm LineMatch that makes use of the
simple polygonal structure of the RoboCup environment and trades o� generality
for speed and the ability to globally localize the robot on the soccer �eld.

306 J.-S. Gutmann, T. Weigel, and B. Nebel



www.manaraa.com

3 The LineMatch Algorithm

The LineMatch algorithm extracts line segments from a scan and matches
them with an a priori map of line segments similar to the methods of [16,4].
We expected that this algorithm has better run-time performance and is more
robust than the other scan matchers while retaining the same accuracy as the
other matchers. In how far these expectations are realistic will be shown in
Section 4.

In order to guarantee that extracted lines really correspond to �eld-border
lines, only scan lines signi�cantly longer than the extent of soccer robots are
considered. The following algorithm shows how a matching between model lines
and scan lines is computed by recursively trying all pairings between scan lines
and model lines:

Algorithm 1. LineMatch(M, S, P)

Input: model lines M , scan lines S, pairs P
Output: set of positions hypotheses H
if jP j = jSj then
H := P

else

H := ;
s := SelectScanline(S; P )
for all m 2M do

if VerifyMatch(M;S; P [ f(m; s)g) then
H := H [ fLineMatch(M;S; P [ f(m; s)g)g

return H

SelectScanline selects the next scan line that should be matched and Verify-
Match veri�es that the new (m; s) pairing is compatible with the set of pairings
P already accepted by computing a common rotation and translation. The algo-
rithm returns position hypotheses in the form of sets of pairs which can be easily
transformed into possible locations where the scan could have been taken. For
the RoboCup �eld the algorithm is capable of determining the global position of
the robot modulo the symmetry of the �eld. This means that we get two position
hypotheses if three �eld borders are visible (see Figure 1) and four hypotheses
if two borders are visible.

This scan matching method is similar to the methods described by Castel-
lanos et al. [4] and Sha�er et al. [16]. In contrast to these approaches, however,
we only verify that the global constraints concerning translation and rotation as
well as the length restrictions of scan lines are satis�ed. This is su�cient for
determining the position hypothesis and more e�cient. Further, we do not need
any initial estimation of the pose, which means that even if the robot has an
extreme error in its position estimation, it may still be able to recover from that.

After matching a range scan, the most plausible position is used in the
Kalman �lter step for updating the robot position (see Figure 2). We use the
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Position
hypotheses

RoboCup field model

Robot

Scan with extracted
line segments

Fig. 1. The LineMatch algorithm returns two hypotheses for the robot position.

position information from odometry to determine the most plausible position
based on a combination of closest neighborhood and similarity in heading.

For initializing the self-localization system the robot is placed at any position
in the RoboCup �eld but roughly oriented towards the opponent goal and the
mean and error covariance of the robot position are set to:

�l := (0; 0; 0)T

�l :=

0
@
1 0 0
0 1 0
0 0 1

1
A

This ensures global self-localization on the �rst scan match.

Scan

Matching

Check
Plausibility

Kalman
Filter

Most plausible
position

Set of position
hypotheses

scan
Laser

Odometry position

Self-Localization Module

RoboCup field model

Robot

Fig. 2. Self-localization: The most plausible hypothesis is used for updating the robot

position.
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While it turns out that the implemented algorithm is extremely fast in the
RoboCup environment (see Section 4.2), one may wonder how well it scales with
the size of the setM . A �rst rough analysis suggests that the worst-case runtime
of the algorithm is O(jM jjSj), because the depth of the recursion is jSj and in
each recursive call of LineMatch jM j di�erent pairings are tried.

As it turns out, however, it is possible to come up with a much better run-
time estimation. After the second level of recursion, when two pairings have
been made, all degrees of freedom for rotation and translation have been removed
(SelectScanline is implemented in such a way that it chooses non-parallel lines in
the �rst two levels of recursion). This means that on deeper levels of the recursion
only one pairing can be consistent, which leads to invoking another recursive
call of LineMatch. This means that we may get jM j2 possible pairings on the
�rst two levels of recursion which are veri�ed by further recursive calls trying
jM jjSj di�erent pairings. Finally, since VerifyMatch needs O(jSj) time, we get an
overall bound of O(jM j3jSj2). In the general case, one has to live with the cubic
upper bound. Nevertheless, for realistic environments where not all walls are
simultaneously visible|such as is the case in o�ce environments|preprocessing
can be used to guarantee runtime almost linear in jM j. Such a preprocessing
phase would store for each line all other lines that are simultaneously visible.
Using such a data structure, the amount of lines that must be tested can be
dramatically reduced and assuming a constant upper bound of simultaneously
visible walls, we would get a linear complexity of the algorithm.

4 Comparison with other Scan Matchers

In order to show the advantages of the LineMatch algorithm we compared the
Cox, CSM and LineMatch techniques with each other. We did not include the
IDC and histogram matching methods as the properties of these algorithms are
covered by the CSM algorithm [9].

Since the CSM algorithm needs a set of reference scans as its a priori map,
we collected a small set of scans, corrected the accumulated odometry error by
applying the registration method from [13], and used them as reference scans.
This approach has proven to be a successful and easy way for enabling mobile
robot navigation in an indoor environment without modifying the environment
or creating hand-crafted maps [8].

For comparing the di�erent methods we recorded real data with one of our
mobile robotic soccer players. Each of our soccer robots is a Pioneer I mobile
robot equipped with a SICK laser range �nder, a Cognachrome vision system
for ball tracking, a Libretto 70CT laptop with wireless ethernet connection and
a custom kicking device. The laser range �nder covers a 180� �eld of view with
an angular resolution of 1� and a range resolution of 5cm.

In order to record data of a realistic game scenario we ran the soccer robot in
our RoboCup environment with several stationary and moving obstacles. From
these data we computed the average run-time of the di�erent algorithms and
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added di�erent kinds of noise to the data for determining the accuracy and
robustness of the methods.

Similar work has been reported by Sha�er et al. [15], who compared two
scan matching methods that are similar to the Cox and LineMatch algorithm
in this paper. However, they used only single scan matches for their experiments
whereas in our experiments all data recorded during a whole robot run is taken
into account. Also they only ran their algorithms in an almost static environ-
ment whereas we recorded our data in a realistic dynamic scenario with many
stationary and moving obstacles that can block the robot's sensors. Therefore
the results presented in this paper should give a better picture of how good the
methods actually are in a dynamic environment like RoboCup.

4.1 Noise Models

There are several kinds of noise typically observed when robots operate in real-
world environments. On one hand there is a typical Gaussian noise in the odom-
etry and proximity sensors coming from the inherent inaccuracy of the sensors.
On the other hand there are non-Gaussian errors arising from robot colliding
with obstacles, e.g. other robot players, or from interference with the sensors.

In this paper, odometry errors coming from wheel-slippage, uneven oors, or
di�erent payloads are characterized according to the following three parameters
(see left part of Figure 3).

+��(�)

�+��(�)

�

x

y
� +��(�)

Fig. 3. E�ect of adding noise h��(�); ��(�); ��(�)i (left) and bump noise hx; y; �i
(right) to the odometry.

Range noise: the error��(�) in range when the robot moves a certain distance
�.

Rotation noise: the error ��(�) +��(�) in rotation when the robot turns a
certain angle � or moves a certain distance �.

There is another source of less frequent but much larger odometry error com-
ing from situations in which the robot collides with obstacles. These abrupt errors
can be characterized by the following parameters (see right part of Figure 3).

Error of the odometry: The error x, y, and � is added to the odometry in-
formation.

Frequency: Probability that a bump occurs if the robot travels one meter.
Throughout the experiments described below, this probability was set to 0:2
per meter traveled.
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4.2 Run-Time Performance

For computing the run-time performance of the scan matching techniques we
measured the average time a method needed for computing the pose update
before it is fused with the odometry estimate. In order to receive measurements
that show the performance under real game conditions we setup a realistic game
scenario in our RoboCup environment with stationary and moving objects (see
Figure 4) and used our soccer robot as a right defender where it moved over
the entire �eld a couple of times. In this run the robot moved a total distance
of approximately 41 meters, turned about a total of 11000 degrees (about 30
revolutions) and collected over 3200 scans.

Fig. 4. Experimental setup: several boxes were placed in the RoboCup �eld to give a

realistic game scenario. Noisy sensor readings are caused by moving obstacles.

Figure 5 shows run-time results performed on the robots on-board computer,
a Pentium 120 MHz laptop running the Linux operating system. As expected
the LineMatch algorithm outperforms the other competing techniques. It is 8
times faster than the Cox algorithm and about 20 times faster than the CSM
method. The very low average run-time of only 2ms per scan match allows the
processing of all incoming range �nder data in real time.

Cox CSM LineMatch

16ms 39ms 2ms

Fig. 5. Run-time results on a Pentium 120MHz laptop.
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4.3 Performance in a Game Scenario

For showing the accuracy and robustness of the LineMatch algorithm we used
the data collected in the above run and added di�erent kinds of noise to the
odometry information. In order to measure the accuracy of the position estimates
generated by the di�erent matching methods, a set of reference positions are
needed. To ease the determination of the reference positions we ran the Cox
method with the recorded data and used this output as the set of reference
positions.

For each set of noise values, 26 runs with di�erent seed values for initializing
a random noise generator were performed. Figure 6 shows the trajectory mea-
sured by the robots wheel encoders and a typical trajectory when adding the

-8000

-6000

-4000

-2000

0

2000

-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

noisy data
odometry information

Fig. 6. Trajectory measured by the robot and typical trajectory obtained by adding

large Gaussian noise with standard deviations h400; 100; 40i to these data.

maximum Gaussian noise h400; 100; 40i. The values correspond to the standard
deviation of the Gaussian noise h��(�); ��(�); ��(�)i with the units

p
mm2=m,p

deg2=360�, and
p
deg2=m.

For each scan matching method we computed the number of times the robot
position was lost and the distance and heading error to the reference pose in case
the position was not lost. We used a threshold of 0:5m for the distance and 30�

for the heading error for determining whether or not the position of the robot
was lost.

Figure 7 shows the average distance and Figure 8 the average heading error
to the reference positions for �ve di�erent levels of Gaussian noise. The value
triples on the x-axis correspond to the standard deviation of the Gaussian noise
h��(�); ��(�); ��(�)i. In these and all following �gures the error bars indicate
the 95% con�dence interval of the average mean.
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Fig. 7. Distance error to reference positions in typical game scenario for di�erent levels

of Gaussian noise.
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Fig. 8. Heading error to reference positions in typical game scenario for di�erent levels

of Gaussian noise.

From both �gures it can be seen that all three methods have a similar ac-

curacy usually better than 5cm and 2�. Only the Cox method has a signi�cant

higher accuracy than the others when only little Gaussian noise is present but

this is due to the fact that the reference positions also have been generated by

the Cox method.

However, the LineMatch method is much more robust than the other

matching algorithms. Figure 9 shows the number of times where the robot po-

sition was lost for the same levels of Gaussian noise as in the previous �gures.

Here the LineMatch algorithm shows a very good performance and keeps the
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Fig. 9. Number of times where position error was above 0:5m or above 30� in typical

game scenario for di�erent levels of Gaussian noise.

robot localized even under high odometry noise. Only for the maximum level

of noise, LineMatch also starts losing the position. We believe that the higher

robustness of LineMatch is due to the larger search space it uses for �nding

matches.

In the same manner, we investigated how the methods compare given simu-

lated bump noise. For accuracy the results were similar to the case of Gaussian

noise. All three methods had a similar accuracy for the distance and heading er-

ror than in the Gaussian case. Figure 10 shows the average number of positions

where the robot was lost when bump noise was added to the odometry informa-

tion. The triples at the x-axis correspond to the bump noise values hx; y; �i used
in this experiment. The scale of these values is mm for x and y, and degrees

for �. In addition to these bumps occurring with probability 0.2 per meter, we

applied a small Gaussian odometry error using the parameters h100; 5; 2i. As can
be seen in Figure 10 all scan matching approaches have problems when bump

noise is present. This is due to the fact that the Gaussian distribution assump-

tion when fusing the observations with odometry in the Kalman �lter does not

model bump noise well. However the LineMatch method shows less failures

than the other methods and is thus again more robust than the other ones.

In a �nal set of experiments, which can not be covered in this paper due

to lack of space, we compared the scan matching methods in \confusing game

scenarios" where a long wall was placed inside the RoboCup �eld. We expected

that under these conditions the LineMatch algorithm gets irritated since the

long wall is not �ltered out in its preprocessing step and thus LineMatch pro-

duces wrong matches or relies on dead-reckoning only for the position estimation.

Luckily the LineMatch algorithm did not su�er too much from these condi-

tions. We suspect that this is due to the fact that there are a lot of situations

where the irritating wall is not present in the range scans.
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Fig. 10. Number of times where position error was above 0:5m or above 30� in typical

game scenario for di�erent levels of bump noise.

5 Conclusion and Future Work

In this paper we presented a new method for matching range scans to an a

priori model of line segments which is well suited for localizing a mobile robot in
a polygonal-shaped, dynamic environment like RoboCup. Experimental results
con�rm that the new method is much faster and much more robust than other
existing scan matchers while retaining the accuracy of the competing methods.

The proposed method has been developed as one of the key components of
the CS Freiburg robotic soccer team and has been proven to be fast, reliable,
precise and robust. It never failed in any o�cial or in-o�cial game and led the
team to its success at RoboCup'98 where CS Freiburg won the competition in
the middle size league [1].

Although the method has been utilized for RoboCup so far only, it is an obvi-
ous step to use it in other polygonal-shaped environments, e.g. as a localization
method in our navigation system for o�ce environments [8]. Therefore we will
extend the algorithm in various ways, e.g. to allow for partial matches where not
all lines of a range scan are matched to model lines and to explore several ways
to optimize the algorithm in order to deal with larger environments.

Finally we are going to explore the problem of cooperative self-localization
in the RoboCup environment for allowing the reorientation of disoriented group
members.

Acknowledgment

This work has been partially supported by Deutsche Forschungsgemeinschaft

(DFG) as part of the graduate school on Human and Machine Intelligence, by

315Fast, Accurate, and Robust Self-Localization in the RoboCup Environment



www.manaraa.com

Medien- und Filmgesellschaft Baden-W�urttemberg mbH (MFG), and by SICK

AG, who donated a set of new generation laser range �nders.

References

1. M. Asada and H. Kitano, editors. RoboCup-98: Robot Soccer World Cup II.
Springer-Verlag, Berlin, Heidelberg, New York, 1999.

2. W. Burgard, A. Derr, D. Fox, and A. Cremers. Integrating global position esti-
mation and position tracking for mobile robots: The dynamic markov localization
approach. In Proc. of the International Conference on Intelligent Robots and Sys-
tems (IROS 98), 1998.

3. W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position
of a mobile robot using position probability grids. In Proceedings of the 13th
National Conference of the American Association for Arti�cial Intelligence (AAAI-
96), pages 896{901. MIT Press, July 1996.

4. J. A. Castellanos, J. D. Tard�os, and J. Neira. Constraint-based mobile robot local-
ization. In International Workshop on Advanced Robotics and Intelligent Machines,
Manchester, U.K., 2{3 April 1996. University of Salford.

5. I. J. Cox. Blanche|an experiment in guidance and navigation of an autonomous
robot vehicle. IEEE Transactions on Robotics and Automation, 7(2):193{204, 1991.

6. J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental compar-
ison of localization methods. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS'98), pages 736{743. IEEE/RSJ, 1998.

7. J.-S. Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor,
T. Weigel, and B. Welsch. The CS Freiburg robotic soccer team: Reliable self-
localization, multirobot sensor integration, and basic soccer skills. In Asada and
Kitano [1], pages 93{108.

8. J.-S. Gutmann and B. Nebel. Navigation mobiler Roboter mit Laserscans. In
P. Levi, T. Br�aunl, and N. Oswald, editors, Autonome Mobile System 1997, Infor-
matik aktuell, pages 36{47, Stuttgart, Germany, 1997. Springer-Verlag.

9. J.-S. Gutmann and C. Schlegel. Amos: Comparison of scan matching approaches
for self-localization in indoor environments. In Proceedings of the 1st Euromicro
Workshop on Advanced Mobile Robots, pages 61{67. IEEE, 1996.

10. H. Kitano, editor. RoboCup-97: Robot Soccer World Cup I, volume 1395 of Lecture
Notes in Arti�cial Intelligence. Springer-Verlag, Berlin, Heidelberg, New York,
1998.

11. H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara.
RoboCup: A challenge problem for AI. The AI Magazine, 18(1):73{85, 1997.

12. F. Lu and E. Milios. Robot pose estimation in unknown environments by matching
2D range scans. Journal of Intelligent and Robotic Systems, 18:249{275, 1997.

13. F. Lu and E. E. Milios. Globally consistent range scan alignment for environment
mapping. Autonomous Robots, 4:333{349, 1997.

14. P. S. Maybeck. The Kalman �lter: An introduction to concepts. In I. J. Cox
and G. T. Wilfong, editors, Autonomous Robot Vehicles. Springer-Verlag, Berlin,
Heidelberg, New York, 1990.

15. G. Sha�er, J. Gonzalez, and A. Stentz. Comparison of two range-based estimators
for a mobile robot. In SPIE Conf. on Mobile Robots VII, volume 1831, pages
661{667, 1992.

316 J.-S. Gutmann, T. Weigel, and B. Nebel



www.manaraa.com

16. G. Sha�er et al. Position estimator for underground mine equipment. In IEEE
Transactions on Industry Applications, volume 28, September 1992.

17. T. Weigel. Roboter-Fu�ball: Selbstlokalisierung, Weltmodellierung, Pfadplanung
und verhaltensbasierte Kontrolle (in German). Diplomarbeit, Albert-Ludwigs-
Universit�at Freiburg, Institut f�ur Informatik, 1999.

18. G. Wei� and E. von Puttkamer. A map based on laserscans without geometric
interpretation. In U. Rembold, R. Dillmann, L. Hertzberger, and T. Kanade,
editors, Intelligent Autonomous Systems (IAS-4), pages 403{407. IOS Press, 1995.

317Fast, Accurate, and Robust Self-Localization in the RoboCup Environment



www.manaraa.com

Self-Localization in the RoboCup Environment

Luca Iocchi and Daniele Nardi

Dipartimento di Informatica e Sistemistica
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Abstract. Knowing the position and orientation of a mobile robot situ-
ated in an environment is a critical element for effectively accomplishing
complex tasks requiring autonomous navigation. Techniques for robot
self-localization have been extensively studied in the past, but an effec-
tive general solution does not exist, and it is often necessary to integrate
different methods in order to improve the overall result.

In this paper we present a self-localization method that is based on the
Hough Transform for matching a geometric reference map with a rep-
resentation of range information acquired by the robot’s sensors. The
technique is adequate for indoor office-like environments, and specifical-
ly for those environments that can be represented by a set of segments.

We have implemented and successfully tested this method in the Robo-
Cup environment and we consider this a good benchmark for its use in
office-like environments populated with unknown and moving obstacles
(e.g. persons moving around).

1 Introduction

A general problem in mobile robot navigation is knowing the robot’s pose (posi-
tion and orientation) in the environment. This is a crucial feature for autonomous
robots performing complex tasks over long periods of time and it is thus a main
requirement for mobile robots involved in the RoboCup environment [2].

Techniques for robot self-localization (see [3] for a survey) can be distin-
guished according to the use of relative or absolute positioning methods. Each of
these techniques provides good results as long as some assumptions are verified.
For example, dead reckoning approaches are accurate only over short runs of
the robot, since error in positioning constantly increases over time. Moreover,
global positioning systems and artificial landmark recognition are effective as
long as the environment can be appropriately structured. Since none of these
techniques provides for a global solution to the self-localization problem, it is
often necessary to integrate different localization methods in order to improve
both the reliability and the precision of the overall result. A typical solution is to
rely on dead reckoning methods (such as odometry) for a short period of time,
and then to apply an absolute positioning method (e.g. map matching).

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 318−330, 2000.
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In the RoboCup context, and in particular in the F-2000 league, self-lo-
calization is one of the main problem to be addressed for robots since global
positioning sensors are not allowed.

In this paper we present a self-localization method that is based on map
matching by means of the Hough Transform [6] and we discuss the integration
of this technique with other classical positioning approaches.

The method applies to any robot equipped with any kind of sensor that can
give range information about the environment (ultrasonic sonars, laser range
finders, vision and stereo vision systems, etc.), and it is quite adequate for in-
door office-like environments, and specifically for those environments that can
be represented by a set of segments, and has been successfully tested in the
RoboCup environment. We have used this method in RoboCup-99 within the
ART team [13] by making use of vision based line extraction procedures per-
forming as a range data sensor.

The technique turned out to be sufficiently fast and accurate and the use
of a vision based range sensor allows the application of the method even if
current boards in the field are replaced by lines on the ground (that will be
eventually adopted in the RoboCup competitions). Furthermore, we believe that
the RoboCup environment is a good benchmark for the use of the method in real
office-like environments, since several features are in common with the RoboCup
environment: segment-based representation of the map, the possibility of using
any kind of range sensor, the presence of unknown obstacles occluding part of
the reference lines.

2 Self-Localization in the RoboCup Environment

The RoboCup competition consists of soccer matches between robotic teams [2].
In the F-2000 context, each soccer player is equipped with on-board acting and
sensing devices.

The RoboCup environment assumes the following characteristics that must
be considered for the choice of localization methods:

1. the geometry of the walls delimiting the field and of the lines drawn on the
field is known,

2. the environment is highly dynamic (there are many robots and the ball
moving in the field),

3. the task must be performed continuously for a “long” time (the length of
each period is 10 minutes),

4. the environment cannot be modified,
5. crashes among robots are possible.

All these factors determine a difficult scenario for localization methods. Indeed,
dead reckoning methods are not effective for localization, since they accumu-
late errors over time and they cannot deal with crashes among players. On the
other hand, absolute positioning methods must consider the high noise in ac-
quiring information from the environment due to varying conditions during data
acquisition (e.g. other robots moving around).
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One of the most common class of methods for absolute positioning is model
matching, that is the process of determining the pose of the robot by a matching
between a given model of the environment (a map) and the information acquired
by the robot’s sensors. Observe that these methods require an a priori knowledge
of the environment (a map), but they do not require ad hoc modifications in the
environment.

In the following sections we present a self-localization method that is based
on matching a geometric reference map with a representation of range informa-
tion acquired by the robot’s sensors. We exploit the properties of the Hough
Transform for recognizing lines from a sets of points, as well as for calculating
the displacement between the estimated and the actual pose of the robot.

3 Hough Transform based Localization

The self-localization method we are going to describe (see also [10] for a more
detailed description) is based on a matching between a known map of the envi-
ronment and a local map built by the robot’s sensors. The matching is performed
between the Hough representation of both the reference map and the local map.

3.1 The Hough Transform

The Hough Transform is a robust and effective method for finding lines fitting
a set of 2D points [6]. It is based on a transformation from the (x, y) plane (a
Cartesian plane) to the (θ, ρ) plane (the Hough domain).

The transformation from (x, y) to (θ, ρ) is achieved by associating every point
P (x, y) in the Cartesian plane with the following curve in the Hough domain
ρ = x cosθ+y sinθ. At the same time, a point in the Hough domain corresponds
to a line in (x, y). Notice that this is a unique and complete representation for
lines in (x, y) as long as 0 ≤ θ < π.

A graphical representation of the Hough Transform can be obtained by gen-
erating a discrete grid of the (θ, ρ) plane (let δθ and δρ be the step units), and by
defining HT (θ, ρ) as the number of points in (x, y) plane whose corresponding
curve lies within the interval (θ ± δθ, ρ± δρ).

Observe that it is possible to consider a Hough grid as a voting space for
points in (x, y). In other words, every point in (x, y) “votes” for a set of lines
(represented as points in (θ, ρ)), that are all the lines passing through that point.
Notice that, in the case of a set of aligned points in (x, y), the point in the Hough
domain that “receives” the highest number of votes is the one corresponding to
the line passing through these points.

The Hough Transform has a number of interesting properties:

1. Given a set of input points, a local maximum of HT (θ, ρ) corresponds to
the best fitting line of these points. Given a set of input points originally
belonging to several lines, local maxima of HT (θ, ρ) correspond to the best
fitting lines for each subset of points relative to a single line.
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2. With respect to other techniques for extracting segments from a set of points,
the Hough Transform is very robust to noise produced by isolated points
(since their votes do not affect the local maxima) and to occlusions of the
lines (since point distances are not relevant).

3. Measuring displacement of lines in the Cartesian plane corresponds to mea-
suring distance of points in the Hough domain. Indeed, the distance between
parallel lines and the angular difference between lines is given respectively
by a ∆ρ and a ∆θ between the corresponding points in the Hough domain.

3.2 Self-Localization in the Hough Domain

For applying the self-localization method in the Hough domain, we consider
any sensor which returns a set of points, in the local coordinates of the robot,
corresponding to a surface of an object. Observe that, in general, these sensors
do not allow for simple implementation of object recognition techniques and
thus they often retrieve range data from objects in the map (e.g. walls in the
environment) as well as from unpredicted obstacles (such as persons moving in
the world).

Given this set of points acquired by the robot’s sensors and a model of the
environment, we want to calculate the displacement between the estimated and
the actual pose of the robot.

Under the assumption that the environment can be represented by a set of
segments, and in order to exploit the properties of the Hough Transform, we
address the localization problem in the Hough domain. In this way the model of
the environment is represented by a set of points in the Hough domain and the
range data points acquired through the sensors are transformed in the Hough
plane as described in the previous section. The map matching process is thus
performed over points in the Hough domain and the displacement needed for a
correct re-positioning of the robot is easily calculated in the Hough plane.

Summarizing, the Hough Transform based localization method consists in
the following steps:

1. extracting range information from the environment in the form of a set of
points in the (x, y) plane,

2. applying the Hough Transform to the set of points generating a discrete
Hough grid HT (θ, ρ),

3. determining the local maxima by a threshold,
4. finding correspondences between local maxima and reference points,
5. measuring the displacement between local maxima and the corresponding

reference points in the Hough domain.

One of the most important issues that must be considered in the applica-
tion of the method is that finding correspondences between local maxima and
reference points (the fourth step) can lead to incorrect matching and thus to a
large error in repositioning. We adopt two different strategies for dealing with
this problem:
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1. assuming that odometry provides for an almost correct position over a short
time, (small positioning error assumption), the matching is performed be-
tween a local maximum and the nearest reference point;

2. in case of ambiguities, we apply a more general procedure that acquires
a greater amount of data about the environment (by integrating different
sensor data) and performs an overall match between the set of local maxima
and the set of reference points.

It is important to notice that in some cases it is possible to detect ambiguities
and thus to avoid large errors, while in other cases this is not possible. Therefore
external information are required for avoiding the application of the method in
those situations in which it is not accurate. We will discuss in section 5 the
integration of the Hough based method with other localization method.
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Fig. 1. Map matching in the Hough domain

Consider the example shown in Fig. 1, where the robot faces a corner. The
solid segments a, b represent the map model and the set of points a’, b’ represent
data coming from sensor devices. The four segments are also displayed in the
Hough domain: a, b (indicated by a circle) are the reference points, while a’,
b’ (indicated by a cross) represent the local maxima of the Hough Transform
applied to the set of input points. In the Hough domain it is easy to calcu-
late the displacement between the estimated and the actual pose of the robot
(∆x,∆y,∆θ).

In the example, ∆θ is the difference a′θ−aθ or b′θ−bθ. In ideal conditions these
differences should be the same; if not, an average between these values allows
for a good approximation. After the correction ∆θ is applied to the robot’s
representation of the map, it is possible to calculate the other two elements
∆x = a′ρ − aρ and ∆y = b′ρ − bρ, that are actually used for re-positioning the
robot.

The accuracy of a localization method usually depends on the accuracy of
the range sensor. If we consider an ideal range sensor, the noise introduced by
the Hough method is due to the discretizazion of the Hough grid. Therefore the
grid intervals δθ and δρ provide an upper bound on the accuracy of the Hough
localization method itself.

322 L. Iocchi and D. Nardi



www.manaraa.com

Finally, the complexity of this method is O(n+m), where n is the number of
points returned by the range sensor and m is the dimension of the Hough grid,
and it is thus adequate for real-time implementation.

4 Vision based range sensor

In order to apply the method described in the previous section to the RoboCup
environment it is necessary to design a range sensor. The choice of a range sensor
depends on the characteristics of the environment and not on the localization
method.

Among other possible range sensors (ultrasonic sonars, laser range finders,
and stereo-vision systems), we decided to implement a vision based range sensor
that makes use of a single CCD color camera put on-board to the robot. The
advantages of using a color camera with respect to other sensors are:

1. the use of colors to detect lines and boards;
2. it is possible to extract range information from the boards of the field as well

as from the lines on the ground;
3. vision is a passive sensor and there are no interferences with other sensors

mounted on other robots.

On the other hand the use of a vision system requires an additional effort for
the calibration of the system.

We describe in the next sections the calibration techniques that have been
used for tuning the system and then the range data extraction procedure.

4.1 Camera Calibration

In order to extract accurate range information from the environment it is nec-
essary to accurately calibrate the vision system. This calibration consists in: (i)
finding some critical parameters that are used for world reconstruction, that can
be divided into internal and external parameters; (ii) tuning the color filter that
is necessary to compensate for luminosity variability.

The method we are using (unlike many others) allows the calibration of
internal and external parameters separately. This is very useful since internal
calibration (that is related to the actual device) is usually performed the very
first time we use a new camera, while external calibration (that depends on the
position of the camera on the robot) is necessary almost before any match.

Internal Calibration. The internal parameters of the camera are mainly neces-
sary for removing lens distortion and for computing the geometry of the camera.
In other words these parameters are used to relate the ideal model of the camera
(pinhole model ) with the actual device by the following equations1:

x = (i− Cx)Px (1 + k1r
2
d)

y = (j − Cy)Py (1 + k1r
2
d)

1 We make use of a simplified model of distortion that is usually quite effective with
several common cameras.
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Fig. 2. Internal calibration

The above equations relate each point (i, j) in the image frame with a
point (x, y) in the pinhole model of the camera. The parameters Px and Py

are usually provided with the technical specifications of the camera, and r2d =
((i − Cx)Px )2 + ((j − Cy)Py )2. Therefore the parameters that must be found
are the first coefficient of radial distortion k1 and the center of the distortion
(Cx, Cy).

In order to calculate these parameters we make use of an easy calibration
procedure that consists in putting a camera in front of a drawing containing only
straight lines and starting an automatic calibration procedure that minimizes the
overall distortion of the image over the three parameters k1, Cx, and Cy (see
[11] Sect. 7.3 for further details).

In Fig. 2 the original image is shown in the left side, and the undistort image
computed with the internal parameters found by the calibration procedure is
shown in the right side. It is important to notice that this method does not
require the knowledge of the position of the lines in the world, and thus can be
applied without knowing any external parameter.

External Calibration. External calibration is the task of calculating the parame-
ters that are necessary for world reconstruction. Performing this calibration after
the computation of the internal parameters, allows the use of the equations of
prospective geometry referred to the pinhole model of the camera.

x = f
Xc

Zc
y = f

Yc

Zc
(1)

These equations relate a point (x, y) in the pinhole camera model to a point
(Xc, Yc, Zc) in a 3D reference system relative to the camera, with f being the
focal length of the lens that is usually provided by the camera technical specifi-
cations.

Since we want to express data in a reference system relative to the robot
(X,Y, Z), and not to the camera, we need to compute the translation and the
rotation of the camera reference system to a robot reference system. External
parameters are thus the six parameters necessary for determining the rotation
and the translation of the camera reference system with respect to the robot
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reference system. In this way we can compute the position of a point (X,Y, Z)
in the robot reference system from the point (Xc, Yc, Zc) in the camera reference
system.

Notice that equations (1) are not sufficient for determining a point (Xc, Yc, Zc)
(and hence a point (X,Y, Z)) in the world given a point (x, y) in the image. As
described in Sect. 4.2, we add a third equation (actually Z = 0) since we are
interested in points that are on the ground.

Color Calibration. Color calibration is necessary for compensating the variance
of lumonisity in different parts of the field. We make use of a simple color filter on
a HSV representation of the image that transforms the color of every pixel into
one predefined color. Specifically, given a set of predefined colors (Hi, Si, Vi), i =
1..n, each pixel (h, s, v) is transformed into (Hi, Si, Vi) iff

|h−Hi| < ∆Hi |s− Si| < ∆Si |v − Vi| < ∆Vi

The filter parameters Hi, Si, Vi, ∆Hi, ∆Si, ∆Vi for i = 1..n, must be accu-
rately tuned. Many techniques can be used for finding these values (from manual
search to neural network approaches [1]), in any case we found out that the ef-
fort necessary for finding a set of parameters that are adequate in many different
brightness situations is deeply related with the quality of the camera.

4.2 Range data extraction

The calibration procedure described above allows for an image pre-processing
that is in charge of removing lens distortion and luminosity variances. After this
process we obtain an image that is in accord with the pinhole model of the
camera and in which each pixel assumes one of a limited set of predefined colors.

Fig. 3. Vision based range data extraction

Range data extraction is thus performed by the following steps (see Fig. 3):

1. points belonging to the lines of the field and to the base of the boards are
detected by a correlation procedure identifying green-white boundaries on
the image;
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2. these points are transformed in the robot coordinate system by using the
prospective geometry equations (1) and the equation Z = 0 that states that
the points are on the ground.

5 Hough Transform based Localization in the RoboCup
Environment

In order to provide our robot soccer players with an effective and robust local-
ization method for the RoboCup environment, we apply the Hough Transform
based localization method to the points extracted by the vision system corre-
sponding to the boards and the lines in the field.
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Fig. 4. The RoboCup world model

The model of the RoboCup environment is shown in Fig. 4. We consider
seven segments corresponding to the four boards a,e,f,g and the three lines b,c,d.
Observe that the walls are real obstacles for the robot, while lines are drawn in
the field and do not correspond to obstacles. However, the vision range sensor is
able to extract range information from both of them and thus we can consider
both boards and lines for map matching.

A self-localization task is displayed in Fig. 5. We have verified that isolated
noisy points do not affect the displacement measures and that the method is very
robust to occlusion of lines, because of the properties of the Hough Transform.

The performance of the system is adequate for real-time execution with a
low-cost color camera and a conventional Pentium based PC, that is on board of
the robot. In fact, in our case, most of the computation time (currently around
30 ms.) is taken by the image processing procedure for line extraction, while
the Hough method takes a few milliseconds of computational time. As for ac-
curacy, when the vision system is well-calibrated, we obtain good results with a
discretization of the Hough grid (and hence an average precision) of 3 degrees
for θ and of 10 cm for ρ.
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Fig. 5. A self-localization example

6 Integration of Self-Localization Techniques

Several localization techniques can be used in the RoboCup environment, such as
odometry, absolute orientation with a compass, and natural landmark detection.

Odometric measures allows for a relative positioning that is reliable over a
short period of time and as long as the robot is not involved in any crash. In our
Pioneer robots2 we make use of their built-in odometric system.

We also makes use of an electronic compass that provides information about
the orientation of the robot. These values are often precise and reliable, unless
a magnetic field produced by another robot passing by makes the values of the
compass extremely incorrect.

Natural landmark detection are based on the a priori knowledge of the ab-
solute position of some objects (landmarks) in the field and on the ability of
recognizing these landmarks and place them in the environment. The effective-
ness of these techniques is related to the reliability of object recognition and to
the precision in object positioning. We have implemented vision based routines
for detecting the poles of the goals and the corners of the field and we adopt
a triangulation method for calculating their position in the field. By knowing
the actual position (with respect to the robot) of a number of landmarks in the
field and their predefined absolute position, it is easy to compute the absolute
position of the robot in the field.

Having a number of localization techniques, we must deal with integration
of their results. Observe that this is a very important issue since the process
of updating the robot’s pose cannot take place in an uncontrolled way. In fact
we have identified two different positioning strategies. The first one, that we
call passive, is normally used and is based on the combination of an odometric

2 Pioneer robots are the commercial versions of the Erratic robot [12] and are produced
by ActivMedia Inc.
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method and the above Hough Transform based method. This process is con-
tinuously executed during the robot’s task execution. The second one, that we
call active, is used in special situations (e.g. a kick restart) and takes complete
control of the robot to determine its position in the field without relying on any
previous information about it.

The difference between the two strategies is that the passive one is performed
concurrently with respect to all the other tasks of the robot, while the active
one is performed by taking full control of the robot.

Moreover, during the passive positioning there exist a number of situations
in which it is not convenient to apply an absolute positioning method: this is
due to the possibility that absolute positioning introduces an error that is larger
than the odometric error we want to correct. For example updating the robot’s
position when it is involved in critical tasks, such as positioning for kicking the
ball towards the opposite goal, could cause an overall behavior which performs
worse than the one affected by a position error.

In other words, we must provide the robot with the capability of deciding
which kind of information integration is to be performed depending on its current
state. To this end, we believe that numerical techniques for data fusion are not
always adequate in this context. For example, consider data coming from an
electronic compass: we have detected that in some situations (e.g. when another
robot is moving close around the robot) these values are completely incorrect and
numerical techniques for data fusion are affected by a large error provided by the
compass value. It is thus necessary to make use of rules that define situations in
which to apply a certain integration method, such as “if there is a robot moving
close around then do not consider compass values”.

We are thus working on the definition of a framework for information integra-
tion based on high-level rules. Specifically, the antecedent of one of these rules
specifies the conditions under which it is possible, necessary and convenient to
perform a self localization, while the consequent selects those methods that are
appropriate in this context and specifies how they should be integrated. This set
of rules is interpreted by the robot’s control system periodically and a decision
about whether and how to perform a self-localization task is taken depending
on the current situation in which the robot is.

An important feature of this framework is that it provides the programmer
of the robot with a powerful and flexible way of dealing with sensor data fusion,
and in fact it allows for defining complex criteria for information integration.

7 Conclusion

Knowing the position of a mobile robot in an environment (and specifically in the
RoboCup environment) is a critical element for effectively accomplishing com-
plex tasks requiring autonomous navigation. The localization problem has been
thus addressed in the past from many different perspectives. In particular, abso-
lute positioning methods based on map matching have been extensively studied
(see [5, 14] for occupancy grid matching strategies, [9] for the angle histogram
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method, [4] for a probabilistic approach, [8] for scan matching techniques, and
[7] for experimental comparisons).

They present different solutions that are generally robust to sensor noise, am-
biguous situations, partial model description. However, in a moderately crowded
and dynamic environment, map matching based localization methods must also
be robust to noise given by unknown objects sensed by range sensors. The dif-
ficulty in dealing with this kind of noise, that is typical in real environments, is
that it cannot be appropriately modelled.

In this paper we have presented a self-localization technique for mobile robots
that is suitable with any kind of sensors able to provide range information about
objects in the world. We exploit the robustness properties of the Hough Trans-
form for defining an effective and robust self-localization method for dynamic
environments. The technique is adequate for indoor office-like environments, and
specifically for those environments that can be represented by a set of segments,
and has been successfully tested in the RoboCup environment.

Finally, we believe that an effective integration of self localization methods
should consider both the situations in which they are necessary and reliable
and the current state of the robot. The definition of a high-level rule-based
framework allows for describing complex criteria for information integration and
for applying localization methods in a controlled way.
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Abstract. Virtual RoboCup is a real-time 3D visualization tool for 2D
simulated soccer games as played in the RoboCup simulation league.
Players are modeled as anthropmorphic figures and animated step-keep-
ingly with the underlying 2D simulation. Important aspects of player
animation concern the generation of natural 3D player movements and
realistic player-ball interactions during kicks. A key contribution of Vir-
tual RoboCup is its novel approach to task-level animation in which
task-level directives for 3D animation of anthropomorphic characters are
generated via on-line classification of fast paced 2D simulation data. As
further contribution, we investigated to what extend human observers
perceptually process the level of detail in Virtual RobCup animations.
A psychological experiment was designed to test the effectiveness of 3D
body animation. Although observers failed to notice differences in anima-
tion detail, clear effects of character animation on perceived skill were
found. The experiment confirms that is is very well justified to spend
valuable computational resources on naturalness and richness of detail
in realtime character animation.

1 Introduction

Recent advancements in computing power and graphics rendering technology
have facilitated the development of many applications (e.g. in computer games,
ergonomic evaluation of virtual prototypes, multi-user virtual worlds, etc.) in-
volving interactive animation of 3D human-like figures [7, 1]. Such animated
figures are typically controled via task-level directives which are translated by
the animation system into appropriate geometric transformations at the graph-
ical level [12, 8]. Typical task-level commands for interactive animations are, for
example, walk from A to B or kick the ball in direction α. Other work has ex-
plored cases where task-level animation commands originate in instructions by
a human, e.g. using natural language [2, 11], or in the planning processes of au-
tonomous agents situated in the virtual environment [10, 3, 9]. In this article, we
explore a third source of input to task level control of animated 3D figures: 2D
state information about a simulated soccer game.

Virtual RoboCup is a real-time 3D visualization system for simulated 2D
soccer games as played in the RoboCup simulation league [5]. The 2D soccer
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Fig. 1. RoboCup provides a 2D environment for simulated soccer games (top). Given
2D input from the soccer server, Virtual RoboCup generates real-time 3D visualizations
where players are animated anthropomorphic figures (bottom).

simulator and a 2D visualization program are provided by the RoboCup organi-
zation (Figure 1 top). Virtual RoboCup adds anthropomorphic figures to the 2D
simulation and animates the soccer game in real-time (Figure 1 bottom). Vir-
tual RoboCup classifies 2D information about the soccer game into task-level
action commands which are used to animate the 3D visualized soccer players.
Special complexities of this approach arise (a) from the high frequency in which
task level commands need to be generated, (b) from the relatively high number
- there are 22 players to a soccer game - of animated figures, and (c) from the
frequent interactions between the animated players among each other and the
ball.

In developing Virtual RoboCup, high emphasis was placed on generating
natural and physically plausible animations of soccer games. More concretely,
we focussed on the following goals:

– Real-time animation: The 3D animation is generated on the fly; computation
of 3D simulation data keeps step with 2D input from the RoboCup server.

– Natural, human-like movements of players: 3D players, as opposed to their
circle representations in the 2D RoboCup server, have legs and should use
them when moving on the field. Animation of players’ movements should
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Fig. 2. The RoboCup server defines a 2D environment for simulated soccer games;
player actions are controled by independent processes. Virtual RoboCup is realized
through several, asynchronous processes in order to allow for a step-keeping 3D visu-
alization of 2D RoboCup games on different hardware platforms. The 3D animation
process adds intermediate states to the soccer simulation, generating 3D scenes at a
fixed rate of 20 frames per second. The graphics rendering process always presents the
most recent 3D scene; its update frequency depends on the underlying graphics hard-
ware. A sound process generates acoustic feedback for successful kicking attempts.

be fluent, without discontinuities. Furthermore, the 3D players’ stepping
frequency should be no faster than human stepping.

– Physically realistic kicking actions: In order for a player to kick the ball,
contact between the player’s foot and the ball must be established. A kick,
in contrast to its instantaneous nature in the RoboCup server, is a temporally
extended action that lasts over several animation cycles.

Thus, in addition to the real-time requirement, Virtual RoboCup is mainly
concerned with the addition of articulated body models and the dynamics of
players’ footwork when running and kicking. While the 2D information from the
RoboCup server provides some constraints on these tasks, it sometimes also ad-
mits unnatural movement of players (see next section). Virtual RoboCup makes
conservative attempts to “smoothen” unnatural player behavior into movements
more consistent with human biomechanics. In general, however, the 3D anima-
tions produced by Virtual RoboCup accurately reflect the 2D game states of the
RoboCop simulation.

2 System Architecture

The system architecture of Virtual RoboCup reflects the afore mentioned criteria
of real-time capability and naturalness of players’ running and kicking actions.
Figure 2 summarizes the 3D visualization architecture of Virtual RoboCup and
its relationship to the 2D soccer simulation in the RoboCup server. RoboCup soc-
cer games are distributed simulations consisting of up to 22 players (“agents”),
realized as independent control processes, and a central server that maintains the
current simulation state. The simulation environment defined by the RoboCup
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server is two-dimensional, i.e. players and ball are represented as circles. Every
100 ms, the RoboCup server generates a snapshot of the game state describing
the current positions of players and ball as well as some additional information
about players’ kicking actions and scored goals. These snapshots constitute the
input of visualization systems such as Virtual RoboCup.

The system architecture of Virtual RoboCup consists of three asynchronous
processes for 3D animation, graphics rendering, and sound generation that com-
municate via shared memory. The main rationale behind the asynchronous com-
putation of 3D animation data and graphics rendering is to avoid having the
(usually) faster simulation process wait for the (usually) slower rendering pro-
cess. For example on an SGI Indigo 2 XZ platform, a rendering rate of 5 frames
per second is achieved for Virtual RoboCup. If 3D animation and rendering were
synchronized, the 3D animation step rate would also slow down to 5 frames per
second, thus falling behind the input data arriving at the rate of 10 frames per
second. With asynchronous animation and rendering, the rendering process visu-
alizes the most recent 3D animation state, possibly dropping some intermediate
states. If a platform with faster graphics capabilities is used, e.g. an SGI Octane
SI, all frames can be rendered. The asynchronous computation thus ensures that
the 3D visualization – independent from the specific graphics hardware used –
keeps step with the 2D simulation.

When generating the 3D animation of the soccer game, Virtual RoboCup
adds intermediate states to the original 2D RoboCup simulation, such that
the internal simulation of Virtual RoboCup runs with twice the speed of the
RoboCup simulation. One reason for this speed-up is that a more fluent visual-
ization can be generated. Another, deeper reason has to do with the way that
kicking actions are calculated in the RoboCup simulation: When the RoboCup
soccer server establishes that, in a simulation cycle ti, a kicking attempt of a
player was successful it will also, in the same cycle, calculate a new ball po-
sition reflecting the effect of the kicking action. Thus, the soccer server might
generate a new game state description for simulation cycle ti where the ball is
outside of the player’s kicking range yet annotate this scene symbolically that
the player has kicked the ball. Therefore, if in the kicking action contact be-
tween the player’s foot and the ball is to be visualized, then the time of contact
must lie before ti, yet after the preceding simulation cycle ti−1, hence in some
intermediate state.

Finally, the 3D animation is slightly (including time for graphics rendering
less than 0.5 seconds) delayed as compared to the original simulation. This time
delay is used, for example, for continuous animation of kicks (including preparing
frames for change of supporting leg, leg swinging), that are treated as instanta-
neous events in the RoboCup server. Also, the 2D simulation in the RoboCup
server is an abstract approximation of real soccer games that sometimes allows
for unnatural, or even biomechanically impossible player movements. For exam-
ple, with repeated “dash-turn” commands, 2D players can zig-zag across the
field with up to 5 direction changes per second. Similarly, with repeated “turn”
commands, 2D players can perform up to 5 pirouettes per second. To make the
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Fig. 3. The hierarchical body model of Virtual RoboCup players consists of 15 segments
representing torso, legs, arms, neck and head. Body segments are shaped as boxes so
as to allow for efficient graphics rendering (as welcome side effect players also appear
more “robotic”).

3D players’ movements appear more human-like, Virtual RoboCup examines the
temporal context of player movements and smoothens sharp direction changes
by averaging over several simulation cycles. As a last example, with quickly re-
peated “kick” commands, players can ‘hyper-kick’ the ball in consecutive 100 ms
simulation cycles. By inspecting the temporal context of kicks, such repeated,
instantaneous kicks in the 2D simulation are merged into one, yet temporally
extended kicking action in Virtual RoboCup.

3 Movement Animation

Virtual RoboCup tries to optimize animation of the 3D soccer players’ running in
two dimensions: First, players’ movements should appear as natural as possible.
For example, each visualized step of 3D players will extend over several cycles
of the underlying 2D simulation. And second, generation of the 3D animation
must occur in real time, keeping up with the 100 ms update frequency of the 2D
simulation. While physical based simulations of human running result in highly
realistic animations, e.g. [4], they are not yet computable in real-time. To meet
the real-time requirement, Virtual RoboCup uses a keyframe based approach for
animating the players’ forward movements.

As foundation for the real-time movement animation, 30 locomotion keyframes
are defined. The cyclic keyframe sequence shows a 3D player performing a step
with the right leg followed by s step with the left leg (see Figure 4). The whole
sequence will move the player 4.10 meters forward. The keyframe table also an-
notates each keyframe with the player’s position gain as compared to the first
frame of the sequence.

As the soccer players move on the field with changing speed but the ani-
mation proceeds with a fixed frequency, animation of the players’ movements
cannot simply consist of replaying the predefined keyframe sequence in standard
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Fig. 4. Some locomotion keyframes for Virtual RoboCup players.

order. Instead, computation of the players’ body postures during running ani-
mations also accounts for the player’s position gain in an animation cycle: for a
fast moving player, some intermediate keyframes might be dropped, whereas for
a very slowly moving player, even the same keyframe might be used in consec-
utive animation cycles. Also, the 30 predefined keyframes are in certain cases,
especially for very slowly moving players, insufficient to capture subtle changes
in a player’s running posture. Therefore, the players’ animation postures are not
limited to the predefined keyframes but calculated by interpolating between the
predefined keyframes (“inbetweening”).

The algorithm for computing a player’s body posture during running takes as
input the 2D state information from the RoboCup server, or more concretely, the
player’s 2D position and orientation in the 100ms simulation cycle that is to be
visualized as well as 2D state information from two preceding and two following
simulation cycles. The animation process also maintains some additional internal
state information about the players including their current posture (conceptually,
a posture is represented by a float within the range [0, 4.10] that ‘indexes’ into
the keyframe table). The output of the algorithm is the 3D player’s position,
orientation and body posture for the next 50 ms animation cycle. The movement
animation is computed in the following way:

1. The target position and orientation of the player for the next animation
cycle are calculated from the 2D input data. If the animation cycle corre-
sponds to a simulation cycle, the target position equals the player’s position
in the RoboCup simulation. If the animation cycle lies inbetween simulation
cycles, the target position is calculated through linear interpolation between
the player’s positions in neighbouring cycles. The player’s orientation is cal-
culated by averaging over several simulation cycles, thus smoothening sharp
direction changes.

2. To generate the player’s 3D pose, first an ‘posture index’ into the keyframe
table is computed by adding the position gain as compared to the last ani-
mation cycle to the player’s posture index in the previous animation cycle.
Then two frames f− and f+ are selected from the keyframe table that are
closest to the new posture index. These frames are weighted according to
their respective proximity to the new posture index and the player’s actual
body posture is generated by weighted interpolation between the two frames
f− and f+ (inbetweening).
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Fig. 5. Animation of kicking actions: Preparation – contact – follow-through.

The running animations produced by this method appear especially natural
in cases where 2D RoboCup players perform steady forward movements without
sharp direction changes. One limitation of the current implementation is that
the 3D players cannot yet come to a stillstand with both feet on the ground. In
cases where the 2D simulation allows player movements that are per se impossi-
ble to perform given the constraints of human biomechanics (e.g. the zig-zagging
and pirouetting behaviours described in Section 2), we had to make a choice,
whether to stick with the original 2D running paths or to replace them with
more natural paths. As the purpose of Virtual RoboCup is the visualization of
2D RoboCup games (and because improving on the 2D input data is in general
a nontrivial, time consuming task) we decided to correct unnatural player move-
ments only very cautiously. In particular, sharp direction changes of the players
are smoothened by averaging a player’s body orientation over several simulation
cycles. The player’s head is however always oriented according to the player’s
actual direction in the RoboCup server. Further improvements of the movement
animation might involve the definition of several keyframe sequences for player
movements in different speeds.

4 Kicking Animation

For human soccer players (and human-like 3D players), kicking a ball is a fairly
complex skill, involving e.g. selection of a foot to kick the ball with, approach
of the ball such that the non-kicking foot gives enough support to keep the
player balanced, leg swinging and orienting of the foot such that the ball is
kicked in the intended direction, and so on. In contrast, the kick-model in the
2D RoboCup simulation is rather abstract: if close enough to the ball, a player
can kick the ball in any direction. Furthermore, the RoboCup simulation treats
kicks as instantaneous events and it is possible for single players to kick the
ball in several consecutive 100 ms simulation cycles. Virtual RoboCup aims
at visualizing the players’ kicking actions as natural as possible. While not all
details of human movements during ball kicking are reenacted, kicking actions
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are visualized as extended sequences: In the preparation phase, the player’s leg
swings towards the ball. In the culmination phase, contact between the player’s
foot and the ball is established. In the final follow-through phase, the leg keeps
swinging in the direction of the kick (see Figure 5).

The RoboCup simulation allows a player to kick the ball anywhere within
a distance of 2 meters and in any direction. A keyframe-based approach for
animation of kicking actions is thus not feasible as it would require the definition
of a too large amount of keyframe sequences to cover all free parameters. Instead,
animation of kicking actions uses a inverse kinematics approach to guide the foot
towards the ball.

The kicking animation is triggered whenever the RoboCup simulation reports
a successful kicking attempt of a player. Further constraints on the kicking task,
such as timing, location, and direction of the kick are extracted from 2D game
state information of several consecutive simulation cycles. The following steps
are performed to generate the kicking animation:

1. The direction in which the ball is kicked is calculated from the 2D input
data. This is also the direction in which the kicking foot will approach the
ball.

2. Based on the kicking direction and position of the ball w.r.t. the player, the
foot to kick the ball with is selected. Foot selection also ensures that the
player’s legs don’t overlap during the kicking sequence.

3. If necessary, the player is slightly repositioned such that a kick in the correct
direction is possible. This might also involve a change of the supporting leg.

4. Using inverse kinematic techniques, the player’s posture at ball-foot contact
as well as at preparing and follow-through postures are calculated. These
postures differ in the angles of hip, knee, and ankle joints. Computation of
inverse kinematics uses a simple geometric approach.

An animated kick usually lasts for four animation cycles: Two preparation
cycles, during which the foot is moved towards the ball, one contact cycle, and
one follow-through cycle. For the reasons detailed in section 2, the contact cycle
always falls in an animation phase between the RoboCup simulation cycles. If
the RoboCup simulation reports kicks of the same player in consecutive cycles
(‘hyper-kick’, see section 2), only the first kick is animated but with an prolonged
follow-through phase; thus, visualization of ‘hyper-kicks’ is another example,
where the 3D animation slightly deviates from 2D input data in order to make
the players’ movements appear more natural.

In Virtual RoboCup, players can kick the ball in any direction (see Figure 5
for a sideways kick); furthermore, players can kick the ball equally well with both
feet. Although player animation based on inverse kinematics is computationally
more expensive than keyframe based methods, the 3D visualization still meets
the real-time requirement. This is due to the geometric (i.e. closed-form, non-
iterative) approach for inverse kinematics calculation but also to the fact that
usually at most one player performs a kick per simulation cycle. In parallel to the
visual presentation of a kick, Virtual RoboCup also generates a characteristic
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sound to give the observer a fuller impression of the kicking action. For the
time of a kicking animation, animation of the players’ running movements is
suppressed. Future work might involve improving the animation of transition
phases between running and kicking.

Team Goals

Sopra1 34:00

Sopra3 14:10

Sopra4 03:10

Krislet 00:31

Table 1. Goals scored by soccer teams during a competition.

5 A psychological experiment on human perception of
animation detail

Detailed animation of 3D articulated body models is in principle desirable but
it is also a highly resource-intensive task. It becomes particularly critical in
3D visualizations of multiple characters in real-time game sequences, such as
Virtual RoboCup. Only if human observers perceptually process (though not
necessarily consciously) visually presented animation detail can it be justified to
spend valuable resources on its computation. To test the influence of animation
style on observers’ judgments of the capabilities of RoboCup simulation league
soccer teams, we designed an experiment that allowed us to contrast the level of
perceived playing skill with richness of detail in character animation.

5.1 Design, Stimuli, Apparatus, and Procedure of the Experiemnt

First, a factor of objective skill level was created. Four teams were selected that
span a large range of accomplishment. The teams’ playing skills ranged from a
tournament winner in 1998 to a team that was a few years back in evolution.
Four clients (player agents) with known and heterogeneous abilities were used. A
team consisted of five instances of one of the clients. Thus, each team consisted
of five identical players controlled by the same algorithm but starting at different
positions on the field. As main criteria for selection of clients we required that
they were objectively discriminable by means of scored goals. Table 1 gives an
insight into the selected teams’ performance as exhibited during a round robin
competition. Three of the teams were selected from a student competition that
took place 1998 at the University of Bielefeld, Germany, where they made first,
third and fourth place. The simple client named Krislet contributed by Kryzsztof
Langner was taken from the Internet [6]. All four clients are implemented in Java
and work well with Soccerserver version 3.28 that was used for the experiment.
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Three competitions were recorded in which each of the four teams played against
each of the others.

From the recorded soccer games we cut sequences of 20 seconds duration,
which corresponds to 400 animation cycles. Each sequence showed a promising
attack, which was defined as driving the ball in the direction of the opponent
team’s goal or at least the attempt thereof. Whenever possible we chose se-
quences that ended with the scoring of a goal. The selected set of sequences
contained scenes of all 12 possible combinations of teams. For each team an
attack against each of the other three teams was included.

Second, we created four different animation levels by suppressing some fea-
tures of the animation. Conditions were as follows: 1. No animation of running or
kicking, 2. animation of running only, 3. animation of kick actions only, 4. both
running and kicking animated.

Each of the 12 sequences was presented 4 times using the different levels of
animation detail. The resulting 48 sequences were presented in random order.
The defending team was always named A, the other one B. The observer’s point
of view corresponded to a position near the corner to the right of the defender’s
goal. The direction of gaze was directed at the ball. This presentation ensured
that observers could not identify teams except by the players’ actions.

The experiment was carried out as a fullscreen application on an SGI Indigo
II XZ machine with a 21” monitor. For the experimental session the digitally
recorded sequences were presented at a frame rate of 7 Hz1. The refresh rate of
the monitor was 72 Hz. Eight student observers (4 men, 4 women) were paid
for their participation. After viewing the 20 second sequence each observer had
the opportunity to review the entire sequence if so desired. Then she was asked
to first decide which of the two teams was more apt and skillful in its overall
play. Once this decision had been made she had to assign a grade to each team.
A grade of 0 corresponded to pitifully poor skill, a grade of 12 to exceedingly
adept. About 10 practice trials were randomly selected from the pool of trials
and presented to familiarize observers with the task.

5.2 Results and Discussion

After all data had been collected, participants were asked what they thought
distinguished the teams. They were also asked whether they had noticed any
changes in animation style between trials. Amazingly, none of the observers
reported changes in character animation. Even when asked directly whether
in some trials players had moved or shot differently observers failed to report
differences in animation style. Observers, however, recognized fairly reliably the
objective skill of the teams. In 75.1 % of all cases they gave the higher ranking
team (see Table 1) also a higher skill grade. The skill grades assigned to the
different teams were correlated positively with their objective skill (r = .51,

1 Rendering frequency would have been only 5 frames/second for a standard game
with 22 players.
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Fig. 6. Skill ratings averaged over all perfomance variations, plotted by degree of char-
acter animation. Error bars indicate standard errors of the mean.

p < .0001). Thus, as expected, the main strategic differences produced by the
clients were reflected in the judgments.

For the purposes of analyzing the effects of the unnoticed changes in character
animation, the grade scores were entered into a repeated measures analysis of
variance (ANOVA) with the four levels of animation as independent factor. For
the dependent variable, the average judged grades for both teams in a given
sequence were analyzed. Note that the animation style was always the same for
both teams in a given sequence. For a perfect observer there should obviously be
no difference in judgement of playing skill for sequences that are identical except
for animation style. Thus, the ANOVA only reflects the influence of character
animation. A significant main effect was found for this factor (F (3, 21) = 3.28,
p = .041). As shown in Figure 6, team performance under the full animation
condition was judged to be significantly more “skillful” than in absence of all
character animation and also received better ratings than the animation of the
shooting action only. The difference between no animation and shooting action
only was not significant. Neither did the slightly better rating of full animation
compared to running only reach significance.

Everything else controlled for, the fact that human observers failed to notice
the manipulations of animation style did not prevent the animation style to
influence their judgments. Teams whose characters are animated in their running
and shooting actions are judged to be more skillful. The running action tended
to be most important in this context. These findings reveal that it is very well
justified to spend valuable computational resources on richness of detail in real-
time 3D character animation. They also reveal that explicit judgments, such as
obtained by questionnaires or by mere inspection of the displays, are insufficient
to asses the importance of level of detail. Detail is processed unconsciously.
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Fig. 7. The animation process generates 3D scenes at a fixed rate of 20 frames per sec-
ond. In the experimental setup, a rendering speed of 7 frames per second was achieved.
This information loss might contribute to the insignificant effect of kick animations on
perceived playing skill.

The fact that adding shooting detail to the running animation had very little
effect on the results indicates that the limit of meaningful level of detail may
have been reached. The poor effect of kick animations may however not originate
in the limits of observers’ perceptual capacities, but may instead be caused by
features of the animation itself. Soccer players are running nearly continously
for the time of a match while shooting actions are performed only at times and
by single players. Moreover, our animation technique may be suboptimal for
visualization of short and accentuated events like kicking actions. Animation
is synchronized with incoming simulation data but unsynchronized with the
rendering process (see Figure 7). As a consequence the 3D animation keeps step
with the 2D soccer simulation. However, some simulation steps might not be
visualized if rendering is slow. This loss may result in a significant effect on
observer’s perception since animation of kicking actions lasts only between four
and six simulation cycles and contact to the ball is established only for the time
of a single step. However, as disadvantagous as multiprocessing seems to be in
this context it is indispensable. Synchronization of the processes would result in
a worse and flickering visualization.

6 Conclusions

We have described Virtual RoboCup, a real-time 3D visualization tool for sim-
ulated 2D soccer games. The soccer players are visualized as anthropomorphic
characters whose running and kicking actions are animated in a natural fash-
ion. Virtual RoboCup represents a novel kind of task-level animation system
in which task-level commands are generated by classification of fast paced 2D
simulation data. By visualizing soccer games with 22 players, Virtual RoboCup
also demonstrates that real-time animation of a high number of human-like like
characters is feasible with today’s computing technology.

Virtual RoboCup is intended for ‘live’-visualization of on-going 2D RoboCup
simulation league games. Many of the design choices reflect this need for real-
time capability, such as the simple body models of the 3D players, extensive
use of keyframing and the asynchronous computation of 3D animation data and
graphics rendering. Measurements of processing time show that computation of
the 3D player animation can easily keep up with input from the RoboCup Server.
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Fig. 8. A scene from the RoboCup’97 simulation league final, seen from two different
perspectives.

Rendering times, on the other hand, highly depend on the underlying graphics
hardware (see section 2).

Besides the real-time requirement, important design goals of Virtual RoboCup
included a high degree of naturalness in the players running and kicking anima-
tions. As the computation of realistic animations is a resource intensive task, we
performed an experiment to test whether the effort for detailed figure animation
is worth its while. Results show clear effects of character animation on perceived
skill although observers were unaware of alterations in animation detail. Espe-
cially, naturalistic animation of the virtual players’ running actions proved to be
an important factor.

By virtue of being a 3D visualization, Virtual RoboCup offers, as compared
to 2D visualizations, a more life-like presentation of RoboCup games. Virtual
RoboCup visualizes certain aspects of RoboCup games, e.g. the players’ kicking
attempts, that cannot be experienced in 2D visualizations. Also, soccer games
can be watched from any angles, including the perspectives of the virtual play-
ers (Figure 8). As alternative to standard desk-top displays, we have also ported
Virtual RoboCup to the Responsive Workbench, hardware-software unit that
projects stereoscopic 3D graphics on a translucent tabletop. Another aspect of
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the soccer game not presented in the the 2D visualization, namely visualiza-
tion of the players’ changing stamina states is a desirable candidate for further
development.
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Abstract. Increasingly, agent  teams are used in realistic and complex multi-
agent environments. In such environments, dynamic and complex changes in
the environment require appropriate adaptation of the teamwork
(collaboration) among team-members. As RoboCup proposes to provide
multi-agent researchers with a standard test-bed for evaluation of
methodologies, it is only natural to use it for investigating this essential
capability. During the RoboCup-98 workshop and competition a unique event
took place: a comparative evaluation of the teamwork adaptation capabilities
of 13 of the top competing teams. An evaluation attempt of this scale is a
novel undertaking, and presents many novel challenges to researchers in the
multi-agent community. This preliminary report describes the data-collection
session, the experimental protocol, and some of the preliminary results from
analysis of the data. Rather than proposing solutions and well understood
results, it seeks to highlight key challenges in evaluation of multi-agent
research in general, and of teamwork in particular..

Introduction

Agent teamwork (collaboration) is an important and challenging research area, as
teams of agents are increasingly becoming a common, often required, theme in
many dynamic, complex, multi-agent environments. Such application environments
range from virtual environments for training (Johnson and Rickel 1997), through
distributed large-scale simulations (Tambe, Johnson et al. 1995) and robotic soccer
(Kitano, Tambe et al. 1997), to future space missions. These application domains
present many challenges to managing teamwork (collaboration) among the agent
team-members: Agents may have conflicting or incomplete local views, the
environment may impose restrictions on their ability to observe each other or
otherwise communicate, and individual, localized, failures may lead to global, team-

                                                       
1 We thank Kay Schroter and Prof. Hans-Dieter Burkhard for their help during data-

collection phases.
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wide difficulties. Agent teams deployed in such realistic settings must therefore be
able to recognize when such situations occur and adapt individually and team-wise
to the changing conditions.

Generally, evaluation of adaptive teamwork capabilities is limited to investigators
using the application domain. Each application is therefore generally evaluated on
absolute terms, not with respect to other adaptation techniques. Partially to address
this problem, RoboCup has been proposed as a standard research domain and test-
bed for multi-agent and robotics research (Kitano, Tambe et al. 1997). In particular,
the RoboCup simulation environment shares many of the characteristics that make
realistic domains so challenging. It involves multiple interacting agents, both in
collaborative and adversarial modes, uncertainty in perception and action, random
environmental effects (such as weather conditions), etc. Annual competitions,
attended by researchers and programmers from across the world present an
environment where the adaptive capabilities of teams may be investigated and
evaluated comparatively.

Indeed, the IJCAI-97 RoboCup Synthetic Challenge (Kitano, Tambe et al. 1997)
calls for rigorous scientific evaluation of teamwork techniques (among other
research topics) using the simulation as the standard test-bed environment. Since
1997, over 60 different agent teams, developed independently by different groups,
have been built for RoboCup. Unfortunately, most have been only evaluated on the
basis of their overall performance in the annual competitions, rather than on the
basis of their scientific contributions in particular areas of multi-agent research.

To remedy this situation a unique event took place during the RoboCup-98
workshop and competition: a large-scale comparative evaluation of teamwork
adaptation under controlled failure condition of 13 different simulation teams. The
evaluation of each team consisted of playing the team against a fixed opponent four
times, as up to 3 of its players were disabled. It was not only the first evaluation
session of RoboCup teams, but, to the best of our knowledge, the first multi-agent
teamwork evaluation of this kind, and on this scale.

The evaluation methodology presents novel challenges to researchers concerned
with teamwork. Issues such as statistical significance, evaluation protocols,
comparative measures of teams, etc. all raise important questions about our
understanding of teamwork in particular, and multi-agent research evaluation in
general. As an example of such a difficult issue, despite the availability of an
obvious measure of overall team performance (the score difference at the end of a
game), it isn’t clear how teamwork performance should be measured.

This short, preliminary, report provides an overview of the evaluation session
from the perspective of the organizers. It describes the controlled conditions under
which experimentation took place. It provides a description of the data collection
protocol and the motivation for its different phases. It discusses a preliminary
example how the data may be analyzed, and points at some of the challenges and
questions that emerge. Rather than point out specific answers and argue for the
correctness of particular methods or the preliminary results, this paper seeks to
promote discussion of the underlying challenges involved in this undertaking, and
the important questions that arise from them.
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This report is organized as follows. Section 2 describes the data-collection
controlled conditions and protocol. Preliminary results are provided in section 3.
Section 4 provides a discussion of these results and points to emerging questions.
Section 5 concludes.

The RoboCup-98 Evaluation Session

During the RoboCup’98 competition and workshop in July 1998 (Paris, France), a
special two-day evaluation session was organized, beginning an annual tradition of
rigorous scientific evaluation of RoboCup teams. The session consisted of 13
simulation teams each playing against the same fixed opponent four times, as
incrementally, up to 3 of their players were disabled. The following describe the
experiment protocol and controlled conditions.

Participation

Participation in the evaluation session was open to all teams who wanted to take
place, but was strongly encouraged for all teams who have made it through the
round-robin round to the double-elimination rounds (representing the top 16 teams
in 37).  All in all, 13 different teams participated in the evaluation:
• CMUnited-98 (Stone and Veloso 1998)
• AT Humboldt ‘98 (Burkhard, Wendler et al. 1998) and ’97 (Burkhard,

Hannebauer et al. 1998)
• Kasuga-Bito II (Maeda, Kohketsu et al. 1998)
• ISIS’98 (Marsella, Adibi et al. 1999)
• PaSo Team (Montesello and Pagello 1998)
• Gemini (Gemini 1998)
• Andhill’98 (Andou 1998)
• AIACS (Lubbers and Spaans 1998)
• CAT Finland (Riekki 1998)
• Darwin United (Andre and Teller 1998)
• Mainz Rolling Brains (Polani, Weber et al. 1998)
• Windmill Wanderers (Corten and Rondema 1998)

Fixed settings

 All participating teams competed against a fixed opponent—the previous year’s
world champion “AT Humboldt’97” (Burkhard, Hannebauer et al. 1998), which was
only slightly modified to accommodate changes in the simulation software made
between 1997 and 1998. Note that the fixed opponent was also a strong competitor in
1998, and was also evaluated against itself.
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Hardware settings (computers, network conditions, etc.) were identical to those of
the actual competition: Teams were allowed to use up to 8 Sun machines each for
the clients. Two different games ran in parallel, using two different machines to run
the servers. Actual competition versions of the players were used. The protocol
prohibited using any special versions of the code for the purpose of evaluation.
Indeed, teams did not know about the evaluation session until three days before it
took place, and did not know the details of the protocol until the beginning of the
evaluation session. Except for the disabling of players (which was the controlled
variable), the games strictly followed competition rules, with a referee and
representatives of each team present during the matches. No tuning of program
parameters was allowed between phases.

Evaluation Phases

 Each team played four half-games (each lasting 3000 simulation “ticks”, about 5
minutes) against the fixed opponent. Each such half-game constitutes an evaluation
phase, in which a single change to the number of disabled players was made. These
phases are denoted A through D:
• Phase A. The control phase. The team played against the fixed opponent under

normal competition rules. No players were disabled.
• Phase B. The team played against the fixed opponent with a single player

disabled.  The player was randomly selected by the computer—but was not
allowed to be the goalie. Thus, a different player was chosen for each team.

• Phase C. The team played against the fixed opponent with two players disabled:
- The same player randomly selected in phase B, and
- A player selected by the fixed opponent’s representative with the intention

of disabling the evaluated team’s most valuable player.  (But not the goalie)
• Phase D. The team played against the fixed opponent last final half-game, with

three players disabled: The two players disabled in phase C and the evaluated
team’s goalie.

The motivation for this evaluation protocol in general was to check how well teams
are able to adapt to loss of members. Phase A was intended to establish a base-line
for the evaluated team’s performance under normal conditions. Phases B through D
provided the experimental worsening conditions. In all of these phases, the ideal
would have been, for comparison’s sake, to disable the same player in all teams, to
see how their adaptive capabilities face to the same problem. The intention in using
a randomly chosen player was to make sure that the teams could not have prepared
in advance for particular evaluation settings. However, different teams assign
different player numbers to the similar roles—thus randomly selecting a player
number and then disabling the same player number is all teams would make little
sense.

The next logical alternative is to look at the role of the players: Randomly select
a role (e.g., top midfielder) and then disable the player who plays this role in each
team. But again teams greatly vary in their team strategies. Thus not all teams have
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the same roles. The most common role was that of the goalie (disabled in phase D)
but even for the goalie there was at least one team that had players take over the role
of the goalie on a regular basis (Andou 1998).

Nevertheless, some random element was required, to make sure that teams did
not know in advance which players were going to be disabled. We have therefore
decided to randomly select a player for each team that would first be disabled in
phase B, but then balance this randomness in phase C by allowing the representative
of the fixed opponent to select a player that would potentially damage the evaluated
team’s soccer-playing ability the most. Our hope was that at the very latest, all
teams would face similar difficulties when they reach phase C.

Data Collection: Experiment Execution

For each of the different phases, for each of the evaluated teams, the soccer-server
log files were saved and tagged appropriately. These provide complete records of
the game, with the exception of communicated messages exchanged between the
players. These logs were made available publicly (Repository 1998) to any and all
interested parties.

Players were disabled in their initial position and facing direction on the field at
the beginning of the game, but were left on the field. The server ignored any
commands sent by their respective clients, so disabled players could not
communicate, move, nor turn. However, they were visible to other players from their
own team and the opponent teams.

In phase B, a list of random numbers in the range 1-11 was generated by the C
library’s pseudo-random generator, and the numbers were assigned to the different
teams in order of participation. The randomly selected player could not be the goalie:
if the random number was that of the goalie for the given team, it was skipped and
the next different number on the list was used instead. The randomly assigned
number was not revealed to the evaluated team until it was actually disabled.

In phase C, when the representative of fixed opponent (Burkhard, Hannebauer et
al. 1998) was to choose the next player that would be disabled, such that it would
potentially harm the evaluated team the most, there were two potential cases of
conflicts in interest: (a) when the fixed opponent was playing itself, and when the
fixed opponent (AT Humboldt 97) was used to evaluate AT Humboldt 98, which was
developed by the same programming team. In both of these cases, the selection of
the representative of the fixed opponent was independently corroborated by a neutral
party.

The players disabled for each team in each phase are presented in the Table 1.
For each team, the table shows the players disabled in each evaluation phase (i.e.,
phases B through D).
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Preliminary Results and Analysis

Very early on it became clear that actual performance of teamwork, rather than the
team, is difficult to measure. With most teams, qualitative changes in team
performance were not observed, and even in cases where qualitative differences
were found, they were not sufficient for rigorous comparative evaluation.
Quantitative measures are required which can allow us to compare teams and their
performance in general, and their collaboration and coordination skills in particular.

Team Name Disabled Players Team Name Disabled Players
CMUnited 98 5 Rolling Brains 4

5 10 4 10
5 10 1 4 10 1

Darwin United 5 ATH 98 10
5 11 10 3
5 11 1 10 3 1

Windmill 2 Kasuga-Bito II 8
Wanderers 2 8 98 8 2

2 8 11 8 2 1
Andhill 98 2 ISIS 98 2

2 8 2 9
2 8 1 2 9 11

CAT Finland 10 Gemini 4
10 9 4 9
10 9 1 4 9 1

AIACS 7 Paso Team 5
7 10 5 7
7 10 1 5 7 11

ATH 97 10
10 7
10 7 1

Table 1. Disabled players for each team, in each phase (B-D).

Our expectation is that any quantitative measure used will show a trend of declining
performance as more and more players are disabled. A more adaptive team would
have a slower decline in performance, while a less capable team would have a
sharper decline. Intuitively, a more adaptive team would have less reduction in
performance when it loses team-members, as the remaining members would be able
to compensate for those disabled. Of course, in practice we cannot expect team
members to be successful in compensating for an arbitrary number of disabled team-
members (teams, after all, are used most often when tasks are simply too complex
and to big for a single agent to undertake). It is also useful to think of a purely
theoretical ideal of a zero-slope performance trend, in which a theoretical team so
successfully compensates for disabled players that there is no change in
performance. This allows measurement of a team’s performance not only relative to
other teams, but also on an absolutely (0 decline being an ideal best).

At least three quantitative measures are immediately available in the domain of
soccer: The number of goals scored by the evaluated team, the number of goals

350 G.A. Kaminka



www.manaraa.com

scored by the opponent, and the score-difference resulting from it. As an example,
the score-difference results are shown graphically in figure 1. For each team, for
each phase (A-D), the score-difference at the end of the half are shown. The scores
are normalized for each team on the basis of the team’s performance in phase A. In
other words, the results of phases B through D for each team are shown relative to
the team’s performance in phase A, rather than on an absolute scale. The results are
plotted as a function of the number of disabled players.

The results are difficult to interpret. Some teams seem to react with increased
performance to loss of players, at times even outdoing their performance in the
control phase (A). However, not all teams have responded in this way. Some have
shown no effect at times, while others show the expected declining trend in
measured performance. Plotting these means, we can see that on average, the
evaluated teams show a reduction in performance as we hypothesized (Figure 2).
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We use linear regression to draw a line that best represents the performance trend of
the evaluated team. Figure 3 shows the computed regression slope values for each of
the evaluated teams, as a function of the number of disabled players.
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Maintaining performance in face of disabled players is graphically equivalent to a
horizontal line, and so the more “horizontal” the performance trends of teams are,
the closer they are to this theoretical ideal. Table 2 shows the rankings in our
example. It should be emphasized again that these results are based on a preliminary
example analysis. Indeed, the results are not statistically significant. These issues
and others are discussed in the next section.
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Fig. 3.  A Plot of Estimated Team Performance Trends.

Team Name Estimated Performance Trend

CAT Finland -0.4
ISIS98 -0.5
AT_Humboldt97 -0.6
Andhill98 -0.8
ATHumboldt98 -0.9
Gemini -0.9
Darwin United +0.9
PaSo Team -1.3
CMUnited-98 -1.5
Windmill Wanderer -1.6
Rolling Brains -1.6
AIACS -1.6
Kasuga-bitoII98 -2.5

Table 2. Estimated ranking of teams’ adaptivity  (estimates not statistically significant).

Discussion

Rather than providing definitive answers to questions about actual evaluation
results, or about evaluation methodology, the preliminary results and analysis seem
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to suggest that there is much that we have yet to understand about teamwork and its
evaluation.

Measurement

Our choice of the score-difference variable as the focus of measurement raises
several important issues. First, our arbitrary choice of the score-difference variable
was arbitrary, and was made for demonstration purposes. The intuition behind the
selection of this immediately available task performance measure is that task-
performance is associated with teamwork performance. But this is an assumption on
our part (see more on this issue below).

Second, even if task performance is indeed correlated with teamwork, we are still
left with the problem of selecting a measurement variable. Such a variable may be
more or less sensitive to the effects of teamwork. For instance, we could have
chosen to measure performance by the number of passes, etc.

Third, confidence in the measurement is a serious concern. For example, the
analysis results above are not, for the most part, statistically significant. Although an
Analysis-of-Variance (ANOVA) of the normalized score-differences shows that the
mean score-difference of each phase are significantly different (p=0.005), this is
likely due to the normalized mean of 0 (with 0 variance) in phase A. The number of
data points (4) is simply not enough to give us a clear picture of each team's
response to the different evaluation phases. Although the trend suggested by the
mean normalized goal scores supports our expectations of declining team
performance, we need to investigate methods by which this analysis can be stated
with greater confidence.

One way to do this would simply to repeat each test a relatively large number of
times. For instance, if we repeat each of the phases for an evaluated team 40 times,
we stand a greater chance of discovering statistically significant results. However,
we should be aware that sometimes the surprising result is that even a great number
of games may be insufficient to give us the level of confidence we want.  Random
effects in the environment and the unpredictable responses of the opponent, issues
such as machine and network load, all interfere with our controlled conditions and
make evaluation more difficult.

For instance, Tambe et al. (1999) report on a series of over 230 games of the
ISIS'98 team against fixed opponents in which the only independent variable was the
use of communications (about half the games were played with communications
allowed between the evaluated team's players, and the rest were played with no
communications). Despite the relatively large number of games, no statistically
significant result was found. However, when a different measure was used, the
average-time-to-agreement measure (ATA), very statistically significant differences
were found between the communicating and non-communicating teams (the
statistical significance levels exceeded 99%).

Another problem with measurement is that it may not make it clear to what extent
changes in the performance (even when significant) are due to adaptation (or lack
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thereof) on the part of the evaluated team, rather than other factors, such as
adversarial re-planning (for instance, an advanced fixed opponent might recognize
that the evaluated team-member is disabled, and adapt its attack to take advantage of
this weakness). It may also be that limits of performance are reached -- if an
evaluated team is very strong indeed, it may be successful in showing no change in
performance despite its lack of adaptations. Here, agents are able to individually
compensate for the lack of adaptation on the part of the team.

Perhaps a more productive, and certainly more challenging way of approaching
this problem is to change the measures used. This paper demonstrated an initial form
of using the score difference to analyze team performance. This measure has
generally been used by researchers involved in RoboCup to evaluate their teams.
However, it may very well be that this measure is simply insufficient for our
purposes, and that techniques that measure teamwork performance more directly are
more useful for our purposes. The ATA measure mentioned above (Tambe et al.
1999), for example, measures the average time it takes team-members to come to
agreement on chosen team-plans (tactics). But other measures can be found in the
literature. Balch (1998) for instance investigated the use of Social Entropy to
measure diversity in soccer, and found a positive correlation between diversity and
performance. Goldberg and Mataric (1997) suggest a different measure, based on
inter-agent interference.

Analysis

The preliminary results in the previous section raise many issues in our underlying
intuitions and knowledge of teamwork and coordination. For instance, we have
introduced a theoretical ideal of perfect adaptation as 0-slope performance trend. In
other words, we have chosen to look at no change in performance as a
characteristics of a perfectly adaptive team. However, this really does not take into
account theoretical limits that are likely to exist on the number of agents that are
required (as a lower limit) or optimal (as an upper limit) for performing a team task.
For instance, perhaps soccer cannot be done with less than 9 agents, in which case
disabling more than 2 players will always result in a sloping trend, even with the
best possible theoretical team.

Another issue is that we assume in our earlier analysis that degradation is linear.
But this may or may not have basis in reality. It could be that, as some of the results
may suggest, degradation in performance is non-linear with respect to the number of
disabled players. For instance, some teams show an increase in performance when
some players are disabled, and a decrease as others are disabled (Figure 1). These
changes may be the result of the team moving back and forth from sub-optimal
organizational structures to optimal ones as a result of our disabling of clients, but
they may also reflect degradation phenomenon due to other factors.

We have mentioned above that our choice (for the example analysis) of a task-
performance variable assumed that task performance is correlated with teamwork.
But in actuality, such correlation between teamwork and performance is an open
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research question. For instance, teams that have done well in the competition did not
necessarily rank high in the analysis above (again, this may be due to the
insignificance of the results). CMUnited'98 (Stone and Veloso 1998), which was the
champion in the RoboCup-98 competition, ranks fairly low in terms of the estimated
performance trend slope, while the leading team in those terms is the CAT
Finland'98 (Riekki 1998) team, which proved to be a middle-level entry in terms of
its placement in the competition. However, CMUnited'98 players, in particular, have
been observed to send messages to the screen indicating that they correctly recognize
that specific players have been disabled. The question remains why this recognition
capability, which no other team was able to demonstrate, did not carry with it the
implied compensation in terms of performance.

Rather than argue for the correctness of a particular technique and the implied
evaluation results, we seek here to use our earlier analysis to demonstrate the
possibility of evaluation on one hand, and the challenges involved in it on the other.
The intent here is to stimulate discussion of evaluation methods, not of the obvious
lacking of the one we have been using as a demonstration. The analysis provided
earlier is a demonstration of a possible approach, and we warn again that its results
are preliminary, and are not statistically significant.

Summary

The evaluation session and protocol were organized and executed with the intent of
providing the multi-agent research community with a substantial data set that may
be used for research in teamwork, adversarial planning, coordination, etc. The data
collection and evaluation protocols were developed with this intent in mind, and we
hope the research community will find them useful. However, they certainly can be
improved upon. In particular, the data may not be statistically significant for certain
tests, and the evaluation protocol itself can certainly be improved. We therefore
welcome any and all comments and suggestions from investigators on how the
evaluation methods and collected raw data may be improved.

The soccer-server log files collected during this evaluation session are to serve as
the raw-data upon which the actual evaluation takes place. There are different ways
of measuring the teams’ performance, and these can be compared using this standard
data repository. The logs present the data from the games of all 13 different
participating teams, and are intended for use by the scientific community. They are
publicly available for all interested parties (Repository, 1998). We hope useful,
innovative measures will be developed and presented to the scientific community as
a result of this data set. Perhaps most importantly, if RoboCup is truly to make an
impact on AI and Robotics research, our investigations should result in evaluation
techniques that generalize beyond RoboCup to other multi-agent domains.
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Abstract. Many AI professionals consider RoboCup small robots league 
competition as an ideal platform for testing distributed artificial intelligence 
techniques.  Among these techniques are Multi-Agent systems (MAS), which 
advocate collective intelligence by focusing on autonomy of agents and their 
intercommunication. Multi-Agent Systems have been used by computer 
scientists and software engineers in several disciplines such as Internet and 
Industry [16]. For the robotics community Multi-Agent Systems was a 
paradigm shift from the classical centralized approach in building intelligent 
machines. By the late 80’s MAS were used in several multi robot systems 
ranging from cellular robots (Fukuda et al) [1] to a team of trash-collecting 
robots ( Arkin et al) [2].  This paper describes a distributed approach in 
implementing the Multi-Agent system architecture of a robotic soccer team, 
Temasek POlytechnic Team( TPOT ).  

1. Introduction 

The major characteristic of the RoboCup soccer competition is the dynamic nature of 
the environment in which robots operate. The only static object in the competition 
field is the field itself. Team and opponent robots as well as the ball can be placed 
anywhere in the field, be it a purposeful strategic positioning, a missed action or a 
forced displacement. This has led many researchers to shift from the traditional 
model-based top down control  [3,4] to a reactive behavior based approach 
[5,6,7,8,9,10]. Robots need not waste a huge amount of resources building maps and 
generating paths that might prove useless at the time of action. Instead robots are 
supposed to react to the actual changes in the environment in a simple stimulus-
response manner [11]. However due to the size limitations imposed by the RoboCup 
small robots league (15cm diameter circle) and rich visual input, on-board vision 
proved to be a complex and expensive task.  
Due to these constraints, several RoboCup researchers [12,13] have turned to off-
board global vision. Cameras are placed above the field from where relevant 
information about the field such as robot coordinates, identities and ball position is 
dumped to a stand-alone computer. This centralized approach in building the control 
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system has led to the adoption of a hybrid (deliberative and reactive) approach. 
Reactive behavior based agents are embedded in the robots for urgent time-critical 
actions such as obstacle avoidance and command execution. Visual data manipulation 
and filtering as well as high-level reasoning e.g. ball position prediction are done in 
the remote computer.  

 

Fig. 1.  Temasek Polytechnic RoboCup Team TPOT 

In this paper we will present a hybrid control architecture, distributed among the 
robots (figure 1) and the host computer. Associated with every robot is an embedded 
agent, in charge of navigating the field and executing commands generated by the 
remote agent. Remote agents select and implement the required tasks, based on the 
visual data provided by the vision system and the strategy selected by the reasoning 
module. 

2. System Architecture 

The system hardware consists of a Pentium host computer, a vision system based on 
Newton labs Cognachrome vision card, RF transmission system and five robots 
(figure 2). 
• The robot : The robot on-board controller is implemented in an 8 bit processor 

running at 9.216MHz with an on-board memory of 512kbyte RAM and 
512Kbyte EEPROM. The board also includes a real time clock and 
programmable timers.  

 
• Sensors: Attached to the robot are three infrared sensors mounted in the front 

and rear to detect obstacles whilst moving. 
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 PC 

• The communication module: The host computer transmits commands to the 
robot via radio transceivers utilizing UHF radio waves.  Each robot has its own 
transceiver and a unique node address.  The low-powered wireless system 
transmits less than 1mw of power and is effective over distances of 3 to 30 
meters.  Two-way communication rates of up to 38.4Kbps are possible.  The 
command set is transmitted as text code piggybacking on the transmission 
protocol.  Commands are sent and received from the transceiver using an RS-232 
interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. System Overview 
 

• Vision: A global vision system, which consists of color camcorders and a special 
image processor (MC68332), is used. The system is able to segment and track the 
robots and ball at a high frame rate. Each robot has two color pads. The image 
processor is trained to see the different colors and gives the locations of the 
center of gravity of the two color pads. Hence the orientation and robot position 
are known. Color pad areas are used to distinguish between different robots and 
minimize latency.  

3.  Distributed Multi-agent System 

 
Our approach in implementing the control architecture of the robots is based on 
dividing each robot controller into two parts: Embedded agent running on the on-
board processor and situated in the environment (field) and Remote agent running in 
the off-board host computer and situated in an abstract model of the filed. The 
embedded agent consists of several reactive behaviors competing with each other 
through the use of activation levels (inhibition and suppression). The main role of the 
embedded agent is to execute commands issued by the remote agent and navigate 
safely the soccer field while avoiding other robots and obstacles. 

RF Transmitter 

Player Robot  

Video 

Radio 

Video 
Camera 

Cognachrome 
Vision Card 
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The remote agent on the other hand implements strategies generated by the reasoning 
module. Based on the current score and performance of the opponent team, the 
reasoning module selects a strategy from a pool of pre-designed strategies and 
downloads it to the remote agents.  
This enables the agents to select the appropriate tasks for each robot. Such tasks will 
enable the robot to intercept the ball, follow a target or simply move to a 
predetermined position. These behaviors are implemented in every robot’s remote 
agent except the goalie. This allows the robots to swap roles e.g. from being a 
defender to a forward and vice versa.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Fig. 3.   Distributed Muti-Agent Architecture 

3.1 Embedded Agents 

An embedded agent consists of reactive behaviors designed to perform low-level 
navigational tasks. These behaviors are simple stimuli-response machines where the 
stimulus can be a sensory input or an incoming RF command. The arbitration 
mechanism is based on a fixed prioritization network [14]. The response of a single 
higher priority behavior takes over the control of the robot whenever the associated 
stimulus is present (figure 4). 
Obstacle avoidance is the main autonomous task done by the robot. Using the three 
infrared sensors, the robot moves away from obstacles using the Avoid Left and Avoid 
right machines. The robot than  moves a certain distance until a straight line path  to 
the target position is clear. The remote agent detects that the robot is out of the 
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previously computed path and re-computes and transmits a new path. Due to the 
dynamic nature of the environment obstacles are not taken in consideration while 
planning a path for the robot. 
Remote agents transmit paths in the form of a turning angle followed by a traveling 
distance. The two machines on the robot i.e. Turn and Move are in charge of 
executing these commands. Note here that unlike the Move machine, the Turn 
machine is of a highest priority and therefore un-interruptible.  
 

 
 

 

 

 

 

Fig. 4. A Network of  Stimuli-Response Machines. 

3.2 Remote Agents 

For the robot to be able to play soccer it needs some basic skills such as moving 
towards the ball position, kicking the ball towards the goal area, intercepting the ball 
and passing the ball to a team member. Most of these skills could be performed by the 
following behaviors: 

• Intercept_ball. This machine enables the robot to move behind a predicted ball 
position before kicking it towards a target area. The target area could be the 
opponent goal keeper area (in an attempt to score a goal figure 5.), a clear area 
in front of a team member (ball passing) or simply the opposite side of the 
field, in the case of a defending robot. This behavior is achieved by the robot 
first moving to an intermediate position. Once there, the robot charges towards 
the ball. The intermediate position is determined by computing the two lines 
starting at the edges of the target area and intersecting at the predicted ball 
position (L1 and L2 in figure 5). The distance between the intermediate point 
and the ball predicted position d is fixed (charging distance). The intermediate 
position corresponds to the midpoint of the base segment of the equilateral 
triangle b. 

• Follow: This machine is designed to keep the robot following a target object. 
The target can be the ball, a team robot or an opponent robot. This is done to 
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keep the robot nearer to the ball and therefore in a better position to intercept 
the ball.   

• Homing: Depending on the strategy being executed robots could be required 
to be placed at a certain position for the purpose of forming a defense wall for 
example. The Homing machine performs such actions. 

 
Each of the above machines contains a path planner. This planner generates a path in 
the form of a straight line between the robot and its target position. After the path has 
been generated and transmitted the planner keeps track of the robot position. This will 
enable the remote agent to detect divergence of the robot from its most recent path. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 5.  To intercept the ball the robot needs to position itself in an intermediate position 

Divergence of the robot could be caused by a hit from an opponent robot or a 
purposeful move to avoid an obstacle. In both cases the path planner computes and 
transmits a new path to the robot.  

3.3. Behavior Arbitration 

Table 1 shows a list of the behaviors implemented in each robot. The on-board agent 
consists of a set of reactive behaviors situated in the actual robot environment 
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whereas the remote agents are situated in an abstract environment constructed using 
the visual data. Embedded behaviors use a competitive coordination mechanism; a 
fixed prioritization network is used to resolve behavior conflicts. The remote agent 
uses a supervisory coordination mechanism in the arbitration of its set of behaviors. 
Each robot is modeled in the following structure: 
 

Robot_Player (ID)  ( 

  Robot_ID,   ;;each robot has an id number. 

  Robot_X,    ;;the robot Cartesian coordinate. 

  Robot_Y,    ;; 

  Robot_Angle, ;;robot direction. 

  Robot_Path, ;;most recent path generated. 

  Robot _Behavior ;;current robot behavior. 

 )   

 
Using the Robot–Behavior parameter, the robot could be assigned any of robot 
remote task, i.e. Intercept_ball, Follow and  Homming. It is therefore possible that 
more than one robot would be assigned the same task.  
 

 

Table 1. Robot behaviors distributed among the robot’s on-board and off-board agents. 

4. Conclusion 

The RoboCup small league main challenge to AI professionals is the size limitations. 
In contrary to the medium size league, very little computational power could be 
embedded in the robot itself. In this paper we summarize research done in the field of 
RoboCup and Multi-Agent Systems. Each robot player controller is subdivided into 
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two agents. On-board agents composed of a collection of survival behaviors and 
situated in the environment. The remote agents on the other hand are situated in an 
abstract model of the environment. While remote agents communicate with the 
embedded agents in a direct manner through the RF link. On-board agents have no 
explicit communication link with the remote agents. The remote agent’s perceived 
environment is therefore the only source of information on the embedded agent.     
This architecture was implemented in Temasek POlytechnic Team ( TPOT) during 
the 1998 Pacific Rim Series RoboCup Competition  in Singapore [15] and the 1999 
World RoboCup Competition in Sweden [17].    
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Abstract: To meet the timing requirements set by the RoboCup soccer server
simulator, this paper proposes a multi-threaded approach to simulated soccer
agents for the RoboCup competition.  At its higher level each agent works at
three distinct phases: sensing, thinking and acting. Instead of the traditional
single threaded approaches, POSIX threads have been used here to break down
these phases and implement them concurrently. The details of how this parallel
implementation can significantly improve the agent’s responsiveness and its
overall performance are described.   Implementation results show that a multi-
threaded approach clearly outperforms a single-threaded one in terms of
efficiency, responsiveness and scalability. The proposed approach will be very
efficient in multi-processor systems.

1. Introduction

The creation of the robotic soccer, the robot world cup initiative (RoboCup), is an
attempt to foster AI and intelligent robotics research by providing a standard problem
where wide range of technologies can be integrated and examined [6][7].  Some of the
fields covered include multi-agent collaboration, strategy acquisition, real-time
planning and reasoning, sensor fusion, strategic decision making, intelligent robot
control, and machine learning. Given the nature of the RoboCup environment, the
response time of a soccer agent becomes significantly important since the soccer
server operates with 100ms cycles for executing actions and 150ms cycles for
providing visual sensory data [10].  In addition to that, auditory sensory data can be
received at completely random intervals. It is vital that each agent has bounded
response times.  If an action is not generated within 100ms, then the agent will stay
idle for that cycle and enemy agents that did act might gain an advantage.  On the
other hand, if more than one action is generated per cycle, the server will only execute
one of them randomly, which might result to a non-optimal solution. An additional
constraint is that Unix is not a “true” real-time system and hence real-time
performance and response can only be guaranteed up to a certain resolution [12].

A real-time system is a system in which the time that output is produced is
significant.  In other words, a real-time system should be able to respond to stimuli
from its environment within fixed time limits [4]. This is particularly true for the
RoboCup simulator agents since each of them must react within an interval of 100ms,
therefore achieving real-time performance. For a non real-time agent the desired
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behaviour is focused on the logical correctness of the result. In contrast, a real-time
agent requires both logical and timing correctness.  There are two broad categories of
real-time agents: hard real-time agents and soft real-time agents [1].  For hard real-
time agents, timing correctness is of critical importance and should never be
sacrificed for other gains. In contrast, timing correctness in soft real-time agents is
important but not critical.  An occasional failure to meet a deadline should not result
in catastrophic consequences.

 Another distinction between real-time agents is whether their responses are based
on events or clock times.  This classification is of particular importance at the
implementation level.  Event-triggered agents respond to external stimuli by first
detecting various conditions and then generating the appropriate reactions
dynamically.  Time-triggered agents operate in accordance with clock times as shown
by an independent clock.  In other words, clock pulses are treated as signals that
generate certain actions.  An appropriate action is selected based on the current state
of the environment perceived by the agent.
     This paper considers robotic soccer agents as hard, time-triggered real-time agents,
and will only focus on how to improve the real-time performance of the soccer agents.
Real-time systems are a large topic and a more detailed description of real-time
systems can be found in [1][9]. In the rest of this paper, a few design issues regarding
the agent architectures are discussed in the next section.  Section 3 illustrates how
single-threaded implementations have been developed, and then presents the proposed
multi-threaded implementation. Section 4 shows experiment results and compares the
two approaches.  Finally, conclusions are given in section 5.

2. System Design

2.1 Agent Requirements

The robotic soccer simulator is a client/server application in which each client
communicates with the server via a UDP (User Datagram Protocol) socket [10].  The
server is responsible for executing requests from each client and updating the
environment.  At regular 150ms time intervals the server broadcasts visual
information to all clients depending on their position, the quality and size of the field
of their view, and their facing direction on the field.  Moreover, the server sends
auditory information to various clients at random time intervals.

After processing the sensory data, the clients respond by sending action requests to
the server from a set of primitive actions available to them.  To avoid message
congestion on the server, the clients are allowed to send one request per cycle
(100ms).  If no message is sent within this cycle, the client will not perform any
actions.  If more than one message is send during the same cycle, the server executes
only one randomly, which may produce undesired results.  The server updates the
state of the environment by serially executing each request.  The results are projected
on a window shown in figure 1.

It is important to mention that UDP sockets have a limited receive buffer.
Messages arriving on a UDP socket will be queued until the receiving buffer is full in
which case additional messages will be discarded.  A client that fails to retrieve the
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messages at the rate that they arrive is in danger of receiving older information from
the server, since newer data will be further back in the queue.  This will cause the
client to create the wrong representation about the current state of the environment,
leading to undesired effects when the wrong actions are executed.

The term “client”, used in the client/server application context above, is the real-
time agent to be built.   For each cycle, the agent receives data from the server (if new
data is available), processes this data, and produces an action.  A very basic model of
an agent’s loop can be seen in figure 2. When new data is available, the agent should
receive this data and update the current state of the environment.  It should then
“think” and send an action to the server. To be efficient an agent should satisfy the
following conditions:
• To receive the newest sensory data that arrives on the socket as quickly as possible,

and do not let data queue up.  This enables the agent to have the most recent
representation of the environment, and hence execute the most appropriate action.

• To send the action requests to the server timely, i.e. only one request/cycle.  If the
agent sends more than one request per cycle, the server will only execute one
randomly. Otherwise, it might miss a cycle if it is too slow.

• To allow the maximum time for the thinking process and the minimum time to
send or receive data.
Given the frequency of the message exchange and the timing constraints, building

an agent that will satisfy the conditions described above becomes a challenging task.
A brief description of the available I/O models under Unix and the agent architecture
is briefly reviewed here.

2.2 I/O Models

Since the client/server communication is done via UDP sockets, there are a number of
different ways to handle input and output on these sockets.  Unix provides five I/O

Figure 1 Robot Soccer Simulator
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models: blocking I/O, non-blocking I/O, I/O multiplexing, signal-driven I/O, and
asynchronous I/O.  For the shake of completeness each I/O model is briefly
introduced here.  A more detailed description can be found in [12].
• Blocking I/O mode is the default mode for all sockets under Unix, which means

that requesting data from a socket will not return until data is available.  In other
words, the whole process will be put to sleep until new data arrives or an error
occurs.

• Non-blocking I/O mode avoids putting the process to sleep. If data is not
immediately available, the kernel returns an error message, such as
EWOULDBLOCK.  The process will not be blocked and data can be requested at a
later stage.

• Multiplexing I/O mode is achieved by using either the select or poll system calls.
This method will block in one of these two calls rather than blocking at the actual
I/O system call.  When select returns, the socket is readable and the rcvfrom
function is called to copy the data into the application buffer.

• Signal-driven I/O mode enables the kernel to notify the process with a (SIGIO)
signal when a descriptor is ready. To read the data from the socket the process
needs to establish a signal handler for the (SIGIO) signal.  To send actions to the
server, an interval timer that generates a (SIGALRM) signal when it expires can be
used.  By setting the timer to 100ms and using a handler that sends actions to the
server the accuracy is guaranteed within certain limits.

• Asynchronous I/O mode enables the kernel to notify the process when the entire
I/O operation is complete.  The difference with the signal-driven I/O is that the
kernel tells the process when an I/O operation is complete rather than an operation
can be initiated.  Asynchronous I/O is not very widely used primarily because of
support issues.

2.3 Agent Architecture

Given this variety of I/O models supported under Unix, choosing an I/O model
heavily depends upon the inner structure of the agent. In this section a novel
architecture for building RoboCup agents is presented.  Basically the agent contains
six different modules as shown in figure 3, namely the agent’s sensors, a set of
behaviours, the actuators, the current play mode, a set of predefined parameters, and a
memory module.  The dashed arrows between the agent and the server in this diagram
represent the communication links.  The server sends information received by the
agent’s “Sensors” module and the agent sends actions back to the server through its

Server Agents

Act

Sense

Think

Figure 2 Agent’s main loop
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“Actuators” module.  The solid arrows give dependence relationships between the
modules.  More specifically, the output produced by the “Actuators” module is
directly dependent upon the input it will receive from the “Behaviours” module.  The
rest of the modules within the agent affect the “Behaviours” module.  A brief
description for each of these modules is given below.
• Sensors -- are responsible for receiving and analysing the visual or auditory

information transmitted by the server.  After receiving the data for each cycle, the
agent creates a representation for the current state of the environment.  Due to the
limited field of view, the agent updates only part of the environment in each cycle.
When new information arrives from the server, the old information is passed to the
memory module, which holds a probabilistic representation for the whole
environment.

• Behaviours -- is the most important module within the agent.  It is responsible for
generating actions according to the current state of the environment.  The state of
the environment is determined using all the modules within the agent apart from
the actuators.  Normally the agent needs to gather information from all other
modules before an action is generated, including data regarding the agent’s
position and role in the team, the current formation, the position of the ball and
other agents, the current play mode and so on.  The “Behaviours” module should
process all this information and determine the best course of action.

• Actuators -- are responsible for timing, and sending actions to the server.  As
mentioned earlier the server accepts one action each 100ms.  The actuators receive
an action (or a set of actions) from the “Behaviours” module, and send them to the
server.

• Play Mode -- holds and updates the current play mode using the information
received by the “Sensors” module.  The current play mode directly affects the
behaviour of the agent.  For example the agent is expected to act differently if a
free kick has been won for its team or if the opposition has won a corner kick.

• Parameters -- hold information regarding various settings both for the server and
the agent.  The parameters affect the behaviours of the agent since they include
information regarding the current formation, the role of the agent in the team, and
most of the server parameters including use of offside rule, player’s size and
maximum speed.

• Memory -- is a representation of the whole soccer pitch, rather than a partial
representation like the one provided by the sensors.  The “Pitch” contains players,
lines, flags, goals and a ball.  Each of these objects is associated with a confidence
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Play Mode
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Parameters Memory

Players Pitch Ball

Lines Flags GoalsAgent
Memory

Figure 3 Block Diagram of the Soccer Agent’s Structure
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value that represents the agent’s confidence that an object is at the current co-
ordinates.  If an object was seen in the last cycle, its confidence value is 1.
Otherwise, this value is multiplied by a confidence decay constant for every cycle
that the object has not been seen.  When the confidence value falls under a certain
threshold the object is ”forgotten”.

3. System Implementation

This section is to describe the single-threaded models used so far and the multi-
threaded approach being proposed for the RoboCup simulator agents. This paper
focuses on POSIX threads that are the thread application-programming interface
(API) specified by the standard POSIX 1003.1c-1995 [1][2].  Although POSIX
threads are used in this implementation for portability reasons, the higher level design
can be implemented in any system with any threads API.

3.1 Single-threaded approach

According to [2] a thread is the set of properties that suggest “continuousness and
sequence” within a machine.  In other words when a program is executed, a process is
created.  This process can be thought of as a single “thread” of execution.  Of course a
process has many additional properties like its own address space, file descriptors and
various other data.  Up to date, the majority of the implementations in the RoboCup
simulation league have been single-threaded (e.g. CMUnited [13], ATHumboldt [3],
Andhill).  This essentially means that the initial process generated by the executable
file does not create any additional threads.  All computations are performed in a serial
manner. If a given operation requires that the process is put to sleep (e.g. a blocking
read when no data is available), then the whole execution is paused.

At the higher level, the agent is responsible for performing three individual tasks.
First it needs to receive sensory information from the server via a UDP socket. Then
the agent has to “think” in order to produce a desired action.  Finally this action
should be sent back to the server via the UDP socket.  To perform all these tasks
using a single thread the agent has to use a serial-processing loop shown in figure 4.

Given the nature of the simulation and the fact that two out of three operations
involve I/O on a UDP socket, it is clear that a single-threaded serial implementation
puts a significant limitation to the agent’s capabilities. I/O operations can be
extremely slow. Although an agent receives visual information every 150ms, it can
send actions every 100ms.  If an agent is put to sleep until new data arrives, it will
miss a number of cycles, which significantly decreases the agent’s overall

S e rv e r S e n s e T h in k A c t

F ig u r e  4  S in g le - th r e a d e d  m o d e l

S o c c e r  A g e n t
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performance. Therefore, both I/O multiplexing and signal-driven I/O are widely used
in single threaded implementations.

Using I/O Multiplexing
I/O multiplexing is the capability to tell the kernel to notify the process if one or more
I/O conditions are ready (i.e. input is ready to be read, or the descriptor can take more
output).  For the RoboCup simulator, the agent needs to check if data is available
from the server, or if it is ready to send data to the server. To implement multiplexing,
after the connection has been established with the server, the agent enters an infinite
loop that is normally called the main-loop (or message-loop).  In this main loop the
select call is used to determine whether data are ready to be received or to be sent.  If
new data has arrived from the server, the agent analyses and stores the information.
Alternatively if data are ready to be sent, the agent sends the required action to the
server.

     This approach has several disadvantages.  Firstly it is difficult to accurately
time each phase of the agent’s cycle.  The agent can only have an estimate of the time
required to analyse the sensory data, perform all the thinking, and produce an action.
Hence, timing correctness cannot be guaranteed for the 100ms-interval set by the
server. Secondly only one I/O operation will be executed at a time.  In other words,
although select can wait on multiple descriptors, the main-loop can only perform one
operation when select returns.  Hence every time the agent enters the main-loop it will
either analyse the sensory data that were received, or send an action to the server.
Since only one of the two tasks can be executed, and since this task will not be
interrupted before completion, the agent cannot guarantee timing correctness. Finally,
the select function requires two system calls to receive the data.  Initially select has to
be executed to check whether data is available, and then if data exists on the socket
the agent needs to call rcvfrom in order to receive that data. Figure 5 presents an
example of a pseudo-code implementation using I/O multiplexing.

Using Signal Driven I/O
Signal driven I/O mode is used to instruct the kernel to notify the agent by generating
a signal when something happens on a descriptor.  To implement signal driven I/O
two signals are normally used.  One is generated when new data arrives from the
server through the UDP socket (SIGIO), the other is generated when an interval timer
expires which indicates that an action must be sent.

while (agent is alive)
{
       Call select to check which descriptor is ready.

       if (read descriptor is ready)
               receive and analyse data from the server.

       if (write descriptor is ready)
               send an action to the server.
}

Figure 5 Pseudo-code for I/O multiplexing

372 K. Kostiadis and H. Hu



www.manaraa.com

Signal driven I/O can only handle one signal at a time.  Although it is possible to
establish signal handlers for multiple signals (e.g. SIGIO, SIGALRM, etc.) only one
signal handler can be executed at any given point.  Therefore, when a signal is
generated while another signal handler is being executed, certain precautions have to
be taken to avoid signal loss.  To resolve this problem it is necessary to mask
additional signals before entering the signal handler and then unmask them when the
handler has finished.

However, great care needs to be taken for masking (SIGIO) signals.  When a signal
handler is being executed, if two more datagrams arrive on the UDP socket, the
(SIGIO) signal will be generated two more times.  But since the signal is blocked,
when the signal handler returns, the system will only observe one (SIGIO) signal.
This will force the agent to read the second datagram but the third one will remain on
the queue until another (SIGIO) is generated.  This clearly causes a problem since this
architecture is unable to guarantee that the number of (SIGIO) generations matches
the datagrams on the UDP queue.  A solution would be to keep polling the queue until
it is empty but this clearly consumes valuable time that could be used to perform other
computations. An example of a pseudo-code implementation for signal driven I/O is
given in figure 6.

3.2 A multi-threaded approach

Instead of a single-thread, a process can have multiple threads, sharing the same
address space and performing different operations independently and without
affecting each other.  This architecture allows the agent to use a separate thread for
each of the three tasks.  The proposed multi-threaded model can be seen in figure 7.

Inside the agent, the three main tasks are running concurrently (or in parallel in
multi-processor hardware) minimizing delays from the I/O operations.  Only the
“Sense” thread is responsible for waiting data from the server, and only the “Act”
thread is responsible for timing and sending the actions (these relationships are

Signal handler for SIGIO
{
     // SIGALRM has just been blocked .

     Receive  and analyse  data from the server.

     // On exit, SIGALRM will be unblocked .
}

Signal handler for SIGALRM
{
     // SIGIO has just been blocked .

     (Since 100ms have expired…)
     Send  an action to the server.

     // On exit, SIGIO will be unblocked .
}

Agent’s Main-Loop
{
    Install  SIGIO & SIGALRM handlers
    Set  an interval timer  to 100ms
    Start  thinking process…

    /* The kernel will generate signals for
    the process and hence execute a signal
    handler if either of these two events occurs
    if (100ms expire)
         execute  SIGALRM handler.
    If (new data arrives on the socket)
        execute  SIGIO handler.
    After the execution of the handlers has
    finished, the program will return
    precisely where it was before the
    signal was generated. */
}

Figure 6 Pseudo code for signal driven I/O
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indicated by the dashed arrows).  In this way the agent can dedicate the maximum
amount of processing power available by the processor(s) to the “Think” thread.

Firstly it is necessary to specify the I/O model that is going to be used.  This now
becomes much simpler since there are separate execution threads for input and output.
The “Sense” thread can now use a blocking I/O connection.  Since this thread is now
dedicated to receiving data, it does not need to waste processing time querying the
socket as to whether data is available.  With a blocking connection the rcvfrom call
will put the “Sense” thread to sleep until new data arrives on the socket.  Putting the
“Sense” thread to sleep does not affect the execution of the other two threads that can
proceed as normal.  When data arrives on the socket, the “Sense” thread will be
awaken, execute a rcvfrom call to receive the next available datagram from the server,
and analyse the new data.  This approach does not allow for datagrams to be lost, or
queue up.  This would only happen if the server transferred data faster than the thread
could analyse it, which is impossible.

Secondly, the “Act” thread needs to send any available actions to the server at
100ms intervals.  By having a dedicated thread to perform this task, the accuracy of
the timing is only limited by the resolution of the operating system’s clock. The
gettimeofday function and a conditional variable are used to implement the “Act”
thread.  In other words, the current absolute time is incremented by 100ms and then
the thread waits for the conditional variable to return.  Assuming spurious wake-ups
will not occur, and since no other thread will signal this conditional variable, it will
only return when the 100ms have passed, in which case the “Act” thread can send an
action to the server.  This method provides highly accurate timing comparing to the
single-threaded approaches described earlier.  This enables the agent to guarantee
certain levels of timing correctness, which is something single-threaded approaches
failed to do.  In addition to that, this thread is also put to sleep while waiting for the
conditional variable to return.  This provides the other threads with the maximum
amount of resources available.

Thirdly the “Think” thread is the only one that stays permanently awake, and
consumes the majority of the available resources to perform most of the
computations.  Part of the “Think” thread of the current implementation can be found
in [8].  If required, various scheduling policies and different priorities among the
threads could be implemented.  However, given the nature of the problem, no
scheduling is needed.  In addition to that, synchronization between separate threads
can also be implemented if required.  Multi-threaded programming is a large topic
itself.  Describing issues such as how threads compete for resources, or how often
pre-emption occurs falls outside the scope of this paper.  A detailed description on
multi-threaded programming can be found in [2]. A pseudo-code implementation of
the proposed multi-threaded approach is shown in Figure 8.  An alternative multi-
threaded approach based on an organic programming language can be found in [11].

Server

Sense

Think

Act

Figure 7 Multi-threaded model

Soccer Agent
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4. Results and Analysis

4.1 Experimental Results

To compare the two models a simple experiment was carried out using a PC with an
Intel Pentium II 450MHz processor, running Redhat Linux 5.2.  The purpose of this
experiment was to evaluate only the timing correctness of the models described
above, since logical correctness is based on the individual AI implementations.  The
test required an agent to connect to the server and send a turn command in each cycle.
In addition to that the agent is required to receive and analyse all sensory information
to simulate a real game situation.  The sensory analysis functions are identical for all
implementations.  Initially, a single agent was tested on the field. The same
experiment was then carried out using 6 and 11 agents to examine what would happen
as computational resources decrease.  The results for a 6000 cycle test (a game
duration) are illustrated in table 1.

 The table entries indicate the number of cycles for which an agent failed to send
an action and hence did not meet the timing requirements.  Adding more agents has a
similar effect as extending the thinking process.  In both cases system resources are

depleted by adding more computations.  This is to test the scalability of each
implementation in terms of number of operations per cycle. As can be seen, I/O
multiplexing using select has over 27% cycle loss even when only 1 agent is used.
However multiplexing is highly scalable since this percentage does not increase much
more for 6 or even 11 agents.  On the other hand signal driven I/O performs
significantly better in the single agent trial with only 0.4% cycle loss.  However this
approach is not scalable since there is 17% loss for six agents and nearly 55% cycle
loss for 11 agents.

Main-Loop
{

Create Sensorthread.
Create Actuatorsthread.
Start thinking process…

      /* Although two threads are
the main execution is a thread

f      Hence there is no need to
another thread for the
process, the current one can used*/

}

Sensorthread
{

while (agent is alive)
   {

receive & analysedata from server
   /* if data is not available the

will be put to sleep.  When
arrives on the socket, the
will wake up, receive andanalyse
that data. */

   }
}

Actuatorsthread
{

while (agent is alive)
     {

wait for 100ms

          /* Again this thread is
to sleep until 100ms
passed. */
executean action Agent's

      }
}

Figure 8 Pseudo code for the proposed multi-threaded approach

C ycle  lo ss
  S ing le-thread
I/O  m ultip lex ing

  S ing le-thread
signal d riven I/O

M ulti-th read
  approach

1 agent

6  agents

11  agen ts

1651  (27 .52% )

1653  (27 .55% )

1656  (27 .60% )

24  (0 .4% )

1020  (17% )

3294  (54 .9% )

0 (0% )

0 (0% )

4 (0 .07% )

T able  1  Perfo rm ance testing
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From the results generated by the multi-threaded approach, it can be seen that there
is nearly 0% cycle loss for all trials.  This proves the superiority of multi-threaded
approaches in terms of performance and scalability.  It should be noticed that multi-
threaded implementations are very efficient in multi-processor hardware. The use of
parallel processing is significantly important in obtaining real-time performances even
in highly complicated systems such as aerospace control systems [15] and advanced
AGVs in industry [5].

4.2 Discussion and Analysis

Although comparing the multi-threaded approach against the single-threaded ones is
not an easy task, certain points about the two approaches are briefly presented here.
The main advantages of the proposed multi-threaded approach include:
• The multi-threaded model allows more efficient exploitation of the agent’s natural

concurrency.  Various computations can be performed while waiting for slow I/O
operations to complete.  This provides the agent with a significant advantage
considering the number of I/O operations per game.

• Using multiple-threads provides a modular programming model that clearly
expresses relationships between independent events within the agent. However,
designing a multi-threaded approach clearly illustrates various program
dependencies and synchronization requirements between different modules within
the agents.  Mixing CPU-intensive processes with I/O intensive processes results in
better utilization of resources of an uni-processor system. Note that multi-threaded
implementations allow an agent to achieve even better performance in a multi-
processor environment.

• A multi-threaded approach is highly scalable. In the current implementation,
consecutive actions can be sent 100ms apart. A multi-threaded implementation
could have one thread performing an expensive search algorithm, and a separate
thread executing simple reactive behaviours.  By combining the results from both
threads, the agent can significantly improve its performance.
However, multi-threaded programming has also a few limitations.  First, a multi-

threaded model is normally more complicated than a single threaded one.  Careful
design is required to keep track of synchronization protocols and program invariants.
Second, it is necessary to avoid deadlocks, races, and priority inversions.  Third, the
POSIX standard does not provide an interface for object oriented languages. However
a solution does exist and can be found in [14].

5. Conclusions

It has been shown in this paper that the behaviour of real-time agents is not founded
only on the logical correctness of their actions.  Timing correctness becomes an
equally important factor especially in applications where response times can
significantly affect the result.  In such cases the quality of the results becomes a
function of both logically correct output and response time.  To satisfy all the
necessary timing constraints for a real-time agent, a single-threaded implementation
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will not suffice.  This is mainly due to the low speed of network I/O operations, and
the limiting serial nature of such architectures. Therefore, a multi-threaded
implementation is proposed in order to overcome this problem. Based on this
approach, the agents can perform various computations concurrently (or even in
parallel on multi-processor hardware) and hence avoid waiting for the slow I/O
operations to complete.  This allows the agents to guarantee a certain degree of timing
correctness that is only limited by the resolution of the given operating system.  In
addition, the experimental results have shown that a multi-threaded model clearly
outperforms a single-threaded one in terms of responsiveness and efficiency.
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Abstract. A three-level functional architecture for a team of mobile
robots is described in detail, including the de�nition of the role assigned
to each level, the main concepts involved, and the corresponding imple-
mentation for each individual robot. The architecture is oriented towards
teams of fully autonomous cooperative robots, able to carry out di�erent
types of cooperative tasks. Complexity is reduced by the decomposition
of team strategies into individual behaviors, which in turn are composed
of primitive tasks. Relationships among robots of the team are modeled
upon the joint intentions framework. An application to Robotic Soccer
and some of its preliminary results are presented.

1 Introduction and Motivation

Di�erent functional architectures have been proposed in distributed arti�cial
intelligence and intelligent control literature to handle the complexity of con-
trolling a fully autonomous mobile robot or a team composed of such robots. A
common concept among those approaches is the existence of atomic primitive

tasks or behaviors which are the kernel of the architecture. Tasks executed by
the robot result from the composition of those entities.

The main di�erence between the existing approaches concerns the interaction
among the atomic entities. While some authors allow full exibility, so that a
team behavior emerges from a negotiation between running behaviors [3], others
prescribe, with di�erent exibility levels, the task decomposition into primitive
tasks [1], to an extent which may even forbid any direct communication between
primitive tasks [7].

A three-level functional architecture for a team of mobile robots is introduced
in this paper. The architecture is oriented towards teams of fully autonomous
cooperative robots, able to carry out di�erent types of cooperative tasks. The
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level splitting is inspired by the work of Drogoul and his co-workers [3], but
there are important di�erences regarding the modeling of the relational level,
which describes inter-agent negotiation and role assignment. The joint intentions
framework [8, 5, 2] provides a solid foundation for teamwork modeling, and will
be used in this work to support the implementation of the relational level.

Complexity is reduced by the decomposition of team strategies (i.e., what
should be done) into individual behaviors, which in turn are composed of prim-
itive tasks. A set whose elements are the behaviors assigned to each robot of
the team is designated as the tactics (i.e., how to do it) for a given strategy.
An application to Robotic Soccer and some of its preliminary results developed
during and after the RoboCup'98 contest are presented.

The paper is organized as follows. Section 2 describes the team and individual
architectures, with details of teamwork modeling at the relational level and of
the foreseen/current implementation for the introduced concepts. Section 3 maps
the concepts onto a robotic soccer team. Section 4 closes the paper with some
preliminary conclusions and reference to future work.

(strategy selection)

tactics world state

WORLD

act sense sense

Behavior N2 Behavior NM

Behavior 11 Behavior 12 Behavior 1L

Behavior N1

act

Individual Level

world + team statestrategy Organizational Level

Relational Level
(behavior selection, temporary behavior modification)

BehaviorIJ: behavior I of robot J

Fig. 1. The functional architecture of the ISocRob team.

2 The Functional Architecture

2.1 Team Architecture

The team architecture, based on the 3-level agent team architecture �rst pro-
posed by Drogoul and his co-workers [4], is depicted in Fig. 1. Our interpretation
of Drogoul's three-levels follows:
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{ Organizational level: establishes the strategy to be followed by the whole
team, given the team and world states. The team state corresponds to the
current set of behaviors under execution. The following examples, taken from
the robotic soccer context, illustrate the concept of world (game) state, which
is divided in two classes:
1. game situations reached upon the application of RoboCup tournament

rules (e.g., kicko�, end-of-game, penalty-for, penalty-against);
2. team evaluation of current game status (e.g., losing & close to the end of

the game, ball close to our goal).
Strategies can be divided in, at least, two major categories:
� pre-programmed scenarios for game situations in game state category 1
above;

� dynamic strategies (e.g., defend, attack, counter-attack), corresponding
to game state category 2 above.

{ Relational level: at this level, relationships among robots are established.
The robots negotiate and eventually come to an agreement about some team
and/or individual goal. Moreover, behaviors are assigned to the individual
robots, after a selection from within behavior sets representative of alterna-
tive tactics for the strategy selected by the organizational level. The selected
behavior set depends on the current world plus team states. Behavior as-
signments may also be temporarily modi�ed as a result of inter-robot nego-
tiations.

{ Individual level: encompasses all the available robot behaviors. Those in-
clude the primitive tasks (e.g., SeekBall, KickBall, RotateLeft) and their re-
lations.

A behavior corresponds to a set of purposive (i.e., with a goal) primitive tasks
sequentially and/or concurrently executed. A primitive task is a sense-think-act

loop (STA loop), a generalization of a closed loop control system which may
include motor, ball tracking or trajectory following control loops, to name a few.

STA loops are composed of the following key components:

{ goal: the objective to be accomplished by the primitive task (e.g., moving
to a given position plus orientation (pose) set-point, tracking the ball in the
image);

{ sense: sensor data required to accomplish the goal (e.g., distance to an
object, object position in an image);

{ think: the actual algorithm which, using the sensor data, does what is re-
quired to accomplish the goal (e.g., motion controller, ball visual servoing);

{ act: the actions associated to the think algorithm (e.g., moving the wheel
motors).

The sequence of primitive tasks is traversed as the logical conditions associ-
ated with the connections among them become true. The logical conditions are
de�ned over a predicate set. There are two predicate classes:

{ predicates which check the value of a given variable (e.g., the variable goal

in lastseen(goal)=left);
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{ predicates which check the occurrence of a given event (e.g., the see(ball)
predicate checks whether the ball became visible).

A world model is required to provide information to the relational and or-
ganizational levels regarding the world state. Since all computation is supposed
to be distributed over the team members, with no external storage available, a
distributed world model representation is required, containing all the relevant
information for negotiation between agents, and in general the result of process-
ing raw data, for primitive tasks usage. A distributed blackboard is proposed to
implement the world model [9].

2.2 Individual Robots Architecture

Each individual robot is provided with all the three levels of the team func-
tional architecture. However, the organizational level is only active in one of
the robots, assigned as the team captain. The remaining robots have a dormant
organization level, to ensure fault-tolerance: whenever the captain robot has a
malfunction, the next robot in the list takes over as the captain. The list has
no special order since, from the hardware standpoint, all robots of the team are
currently homogeneous. In an non-homogeneous population, the potential cap-
tains (from a computational capacity standpoint) should be sorted according to
their descending computational power.

An agent-based programming language has been speci�ed and is currently
under development [9, 10], to provide the team strategist (e.g., the coach, in
robotic soccer) with the means to program the population in order to achieve
the strategic objectives, embedded in the behaviors and in the primitive task
STA loops.

Each of the above concepts will be implemented as follows:

{ the strategy is determined at the organizational level by a state-machine

whose transitions are traversed upon the matching of speci�c world states,
and whose states de�ne the current strategy. Therefore, strategies change
when the world state (as perceived by the team) changes;

{ tactics selection, including behavior selection, negotiation, and temporary
behaviors modi�cation, is implemented by relational rules at the relational
level;

{ a behavior consists of a state-machine, where each state corresponds to an
STA loop and each transition has associated logical conditions de�ned over
the predicate set described in subsection 2.1;

Team organization is necessarily a centralized operation. As such, decisions on
strategies must be taken by a single agent, designated as the captain. Thus, the
organizational state machine runs in the captain. To increase team robustness,
whenever the current captain does not signal that it is alive for more than a
timeout period, a new captain must take control of the team.
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Fig. 2. Implementation of team functional architecture at each individual robot: a)
Blackboard, relational rules, organizational state-machine and communications. b) Be-
havior selection and coordination.

A blackboard implements global shared memory and event-based1 communi-
cation. The blackboard is the sole medium of communication between the agents,
supporting the message exchange required for negotiation. One of the key factors
will be the distribution of data per robot, which should minimize the need to
communicate in order to obtain information (e.g., data obtained from process-
ing an image should be stored in the robot where the image was acquired). The
global team strategy is also stated in the blackboard, as a variable which triggers
some of the relational rules.

The schematic block diagram of the implementation, at each individual robot,
of the team architecture is depicted in Fig. 2 - (a). The behavior selection and
spatial coordination are detailed in Fig. 2 - (b): the behavior coordinator selects
the correct behavior for the robot, based on the world state and on the strategy
and tactics provided by the organizational and relational levels of the team
architecture. When a behavior is selected, the corresponding spatial supervisor

is also activated. The spatial supervisor ensures that the robot always stays
within the inuence zone associated to its active behavior (see Section 3).

2.3 Relational Rules

Relationships among the team robots are established at the relational level of the
team functional architecture. Given a strategy established by the organizational
level, di�erent tactics can be used to implement it. Tactics consist of behavior
sets, whose elements are the behaviors assigned to each individual robot of the

1 Event is interpreted here in the context of a computational model.
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team. A tactics is chosen based on the current world state, but also on each
agent's current internal state. The strategy must specify not only the goal to be
attained (e.g., attack, defense) but also criteria to check how close to the goal
the team is. Behaviors can be temporarily modi�ed as a result of inter-robot
negotiation, as part of the tactics to attain the goal.

An example is the situation where two teammates, both assigned a forward-
like behavior, actively try to get the ball. In such a case, one of them should signal
the other its intention. A negotiation process would follow, where the teammates
would determine their distances to the ball, to decide which one should pursue
it. After taking such a decision, the other player should temporarily modify its
normal forward-like behavior.

The absence of such a relational mechanism leads to situations where team
behavior is poor. Consider the case of two forward-like players with similar be-
haviors, that often conict with each other while trying to reach the ball. The
key to solve this problem is to endow the team members not only with individual
goals, but also make them knowledgeable of the team goals. This is clearly related
to concepts such as joint persistent goal, joint intentions and joint commitment

[8, 5, 2]. Moreover, it requires communication between team members.

For instance, a joint persistent goal is de�ned in [5] as follows: A team of

agents has a joint persistent goal, relative to q, to achieve p i�: they all mutually

believe that p is currently false; they all mutually believe that they all want p to

be eventually true, and until they all come to mutually believe either that p is

true, that p will never be true, or that q is false, they will continue to mutually

believe that they each have p as a weak achievement goal relative to q.

The example above can be interpreted under this de�nition. The strategy p

(e.g., attack) is a weak achievement goal relative to the main goal q of scoring
a goal. Suppose the two players both assumed the Forward behavior as part of
the selected tactics. They will pursue the strong goal q (i.e., they will attempt to
score a goal) by executing their Forward behaviors so as to attain p. A criterion
to check whether p is attained is to determine whether the players are able to
keep playing within their assigned inuence zone. Both players will continue
to work towards meeting this and the other criteria which de�ne the attack

strategy until they all come to mutually believe either that all the criteria were
met, that the criteria will never be attained (e.g., after a timeout), or that
'scoring a goal' is no longer the main team endeavor (e.g., because the game
is over). Working towards meeting the criteria includes temporarily modifying
their behaviors to cope with the team goal (e.g., refraining from pursuing the
ball). This distinguishes a group of non-cooperative agents whose individual
goals just happen to be the same, from a group of cooperative agents which
share a common aim. The latter exhibits cooperation and coordination, while in
the former the individual agents compete when the resources are scarce [5].

The relational rules implement a recipe which is commonly agreed by all the
agents of a team [5]. This recipe is embedded in the rules and may either be
prescribed initially (i.e., before joint action is started) or evolve over time. We
are currently looking at the possibility of changing the recipe over time using re-
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inforcement learning techniques, based on a performance function which weights
the reliability (i.e., the ability to meet speci�cations) and the cost (computa-
tional or other) of a given recipe [6]. Reinforcement learning should be able to
determine the recipe (to achieve a joint intention) that best balances cost and
reliability.

3 Application to a Soccer Robot Team

Some of the concepts described in the previous section will now be mapped onto
a team of fully autonomous soccer robots.

Fig. 3 presents a functional division of the �eld in several regions. These are
zones where robots try to locate themselves inside the �eld, according to their
assigned behaviors, e.g., defenders should stay inside the D zone and Forward
players should stay inside the F zone. This division helps the assignment of
inuence areas to players.

L

C

D MD MF F

R

X

Y

Fig. 3. The �eld division in actuation areas.

Besides Defense (D), MidDefense (MD), MidForward (MF) and Forward (F),
further divisions are introduced to increase the �eld resolution. Along the �eld
longitudinal axes, the �eld is divided in Left (L), Center (C) and Right (R)
parts. This division is particularly useful when the team has more than one
player acting in the same functional area (e.g., L and R defenders).

3.1 Player Behaviors

As explained before, behaviors are composed of primitive tasks sequentially or
concurrently executed. A �eld inuence zone is associated to each behavior. Sev-
eral behaviors must be implemented in a robot soccer team. The most signi�cant
ones, whose inuence zones are depicted in Fig. 4, are:

{ GoalKeeper { Defends the goal. To do that, it continuously looks for the ball
and, if necessary, leaves the goal area and kicks it away. The inuence zone
is de�ned by the goal area lines and is shown in Fig. 4 - a).
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a) GoalKeeper
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c) MidFielder

D MD MF
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F
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Y

X

d) Forward

Fig. 4. Inuence zones for individual behaviors.

{ Defender { The defender mission is to move the ball from the vicinity of its
team goal to the opponents �eld. If possible, it should try to move the ball
to the vicinity of a MidFielder. It should return to its original position (D)
when the ball is once again in the opponent's �eld (see Fig. 4 - b)).

{ MidFielder { Such as in real soccer, the Mid�elder is able to play in a variety
of positions. Its inuence zone lies within the MD and MF areas (see Fig. 4 -
c)). This player natural ability is to receive the ball from its own team �eld
and decide what to do, based on the other players availability. If a Forward
is in the near vicinity of the opponents goal (F area), the MidFielder should
try to pass it the ball.

{ Forward { The Forward behavior induces the player to be in the F zone (see
Fig. 4 - d)). If the ball goes into our �eld, the Forward's mission is to keep
track of the ball, although it should not move out of its zone by its own
initiative. When the ball moves into the F zone, it must try to take control
over it and kick it into the opponents goal. Such a behavior is implemented
by the state machine of Fig. 5 - a).
An alternative implementation would consist of letting the Forward players
move up and down the �eld, using the lateral L and R corridors.

3.2 Relational Behavior Modi�cation

Individual behaviors can be temporarily modi�ed to allow cooperative rela-
tions between teammates, as explained in Subsection 2.3. Fig. 5 - b) depicts
the state machine which implements the Forward behavior endowed with states
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see(ball) & see(other_goal)

~closest(distance)

b)

Fig. 5. State machines for the Forward behavior: a) With no cooperation. b) With
cooperation. States and state transitions representing relational rules are �lled and
dashed in the diagram, respectively.

and state transitions representing relational rules. The negotiation implemented
corresponds to the example in Subsection 2.3 concerning two Forward players
who actively try to get the ball. The additional state ShouldIGo is entered by a
Forward player upon its detection of the ball (predicate see(ball)). In this state,
a message is broadcasted through the blackboard to all teamates stating that
this Forward player saw the ball and also the estimate of its distance to the ball.
The occurrence of messages from the the other teamates stating that they saw
the ball and including the estimate of their distance to the ball is also checked
in the ShouldIGo state. The distance to the ball of all the Forward players who
saw the ball recently is continuously sorted. The sorted distances are checked
by the closest(distance) predicate, associated to all the dashed arcs of the state
machine in Fig. 5 - b), which are responsible by the temporary behavior mod-
i�cations with respect to the non-relational Forward behavior of Fig. 5 - a).
The most important modi�cation consists of not immediately kicking (KickBall
state) or following (FlwBall state) the ball upon its detection in state SrcBall,
but rather moving to state ShouldIGo where distances to the ball are compared.
Should the Forward be the closest the ball among all its Forward teammates (or
the only one who sees the ball), the state machine execution proceeds as in the
non-relational Forward behavior. Otherwise, the behavior is modi�ed by making
the player move to a location close to the other team's goal (states SrcGoal and
Move2Goal).

3.3 Game State

The game state refers to either situations reached as a result of the application
of RoboCup rules or to an evaluation of the current game status. State changes
are induced by the time ow and teams actions during the game. Examples of
game states are as follows:

Game situations
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{ game-start { This happens in the beginning of the game, after a goal or when
the game restarts after a break;

{ penalty-for, penalty-against;
{ end-of-game { This is signaled by an external event (e.g., two whistle blows).

Evaluation of game status

{ ball-our-o�eld { One of our players has ball possession. The ball is in our
�eld;

{ ball-nour-ot�eld { None of our players has ball possession. The ball is in the
other team �eld;

{ losing & close to the end of the game;

{ ball close to our goal.

3.4 Scenarios for Game Situations

Pre-de�ned scenarios are usually associated with the game states corresponding
to game situations (see above). An example is the game-start situation, where
the players must move to their pre-determined start positions (see Fig. 6). Self-
location of the players must be accomplished at this state as they must be
correctly positioned prior to the start of the game. After positioning, the players
will wait for the external kicko� signal (e.g., a whistle blow) that signals the
start of the game.

L

C

D MD MF F

R

Fig. 6. Players position at game start-up.

3.5 Dynamic Strategies and Tactics

During the game the ball moves inside and outside of the team mid-�eld. De-
pending on factors such as the ball position and motion, the current game state,
the current score, the number of available players and their behaviors, the op-
ponents positions, the elapsed time, and the current strategy, the team strategy
may change. This is inspired by real soccer. Possible strategies are:
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{ defense { The ball must be prevented from entering our �eld. Should that
happen, it must be moved into the opponents �eld. Several defense tactics
exist. Two examples of tactics for the Defense strategy are:

� Strong Defense (SD) { This strategy points towards creating a continu-
ous, physical barrier between the ball and our goal. It is aimed at avoiding
opponent players from moving towards our goal. When re-positioning,
the Defender players should try to avoid occluding the GoalKeeper visi-
bility of the �eld, i.e., the DC zone should be free of players (see Fig. 7 -
a)).

L

C

D MD MF F

R

a) Strong defense initial positions.

L

C

D MD MF F

R

b) Medium Defense initial positions.

Fig. 7. Strong and Medium Defense tactics for the Defense strategy.

� Medium Defense (MD) { Points towards a strong defense and a good re-
covery mechanism, essential to counter-attack. The concept is illustrated
in Fig. 7 - b). The di�erence between the SD and the MD is that in MD
not all players are moved into our �eld. This makes the transition to
Counter-Attack easier, as one of the players stays in the opponent �eld.

{ counter-attack { A counter-attack happens if the team is positioned to move
the ball quickly into the opponent �eld and score a goal. It requires a De-
fender, to handle a possible interception of the ball by an opponent, a Mid-
Fielder, to pass the ball into the Forward area, and a Forward player to kick
the ball into the opponent goal.

{ attack { Under this strategy, the whole team moves forward. Besides the GK,
there is only one player in our �eld. This movement requires two MidFielders
(one in the MD zone and another in MF zone), and one Forward. The idea
is to have the ball passed from the M zone into the F zone, where a Forward
player is to pick it up and kick at the goal.

4 Preliminary Conclusions and Future Work

Currently, our mid-size real robots are capable of simple but essential behaviors,
composed of primitive tasks, such as following a ball, kicking a ball, scoring
goals and defending the goal, using vision-based sensors (see Fig. 5). Current
available behaviors include shooting at an empty goal starting from increasingly
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more di�cult situations or defending the goal by permanently tracking the ball
and kicking it out of the goal area as soon as it gets too close. One Forward vs

one Defender and a GoalKeeper have also been successfully tested in live action.
Our current and future work is centered on four main topics:

{ development of the self-localization system based on a vision camera and a
mirror;

{ update and tuning of the primitive tasks software;
{ design and implementation of an agent-based programming language suitable

for multi-agent systems;
{ study and development of a teamwork model and its integration with the

team functional architecture.

Among those, self-localization is perhaps the most essential. The functional
architecture described in this paper relies on a (at least rough) awareness by
each robot of its location in the �eld and, consequently, of the team current
disposition in the �eld.

The work has been carried out in a bottom-up fashion, since we believe that
many conceptual issues can be raised from and are strongly constrained by the
actual implementation problems. Nevertheless, the basic framework described
in the paper, concerning hardware, software and functional architectures, was
designed in a top-down fashion in the beginning of the project and has been
essentially kept unchanged so far.
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Abstract. The Real Magicol soccer players team for Robot Cup 99 is based
on a BOC architecture extension which combines reactive and deliberative
reasoning by the distribution of the knowledge system into modules called
behaviors. The hardware remains the same as the 1998 Robot Cup one, our
research bearing on the cooperative architecture based on agent concept.

1 Introduction

Soccer players constitute a complex application of collective robotics. In fact, in
such a context, the control architecture of a robot grows in complexity since this
robot has to evolve in dynamic environment and cooperate with its partners in order
to develop a team game. Such an application has to be considered as a set of
decision−making, processing and communications, rather than a centralised and
monolithic set, where little room is left to the autonomy and little importance is
granted to interactions between the different robots. This agent oriented approach
allows a redistribution of the decision−making among the different levels of the
organisation leading consequently to a distributed, dynamical and reactive
organisation.
The control architecture of a soccer player robot constitutes a complex system. This
complexity is due to the necessity to make coexist both mechanisms of knowledge
management (deliberative actions), and constraints of reactivity to "survive" in a
dynamic environment. To process this problem, several architectures have been
proposed in mobile robotics.  
Deliberative architectures [MORAVEC 89] [CHATILA 85] use a centralised model
of the environment to verify sensory information and to find the best response in the
physical world. All actions of the robot are directed to a known final goal. These
architectures allow to endow the robot with reasoning capacities that confer it the

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 390−399, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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function of planning.  
Reactive architectures [BROOKS 86] [CONNEL 90] are interesting to study the
emergent behaviour of the robot from its primitive behaviours. On the contrary of
deliberative architectures, these ones neither allow the planning of operations nor
authorise elaborate reasoning. These architectures use a set of modules of
behaviours that react directly to variations of the environment by using simple
transfer functions. Consequently, need of a model of the world disappears.  
Hybrid architectures [SIMMONS] offers a compromise between the two previously
described approaches to be both reactive and capable to follow a plan.
We propose in this paper the concepts that are going to allow the modelization of an
organisation of soccer playing robots from both of a local point of view (the agent
robot component) and a global point of view (interactions between ‘robot’ agents).
The objective is to propose a control architecture model for each robot, that
includes a both deliberative and reactive dimension, in order to take into account, on
the one hand, its interactions with the environment and on the other hand, its
interactions with its partners to make emerge a strategy of group. These works
concern the participation of the team "Real Magicol" (Realismo Mágico
Colombiano [Realismo Màgico] to the RoboCup−99 in the category " middle size ".
The hardware architecture as well as general concepts of control architecture
implemented by this team have been described in a communication presented during
the RoboCup−98 WorkShop [LOAIZA 98]. Given the amount of constraints of
soccer playing robots, we have proposed an architecture of control based on the
Behaviour−Oriented Commands (B.O.C) concept [CUERVO 96]. This architecture
confers to the robot both deliberative (in order to reason on complex situations) and
reactive capacities (in order to respect deadlines). More specifically, it relies on a
decomposition in competitive modules which interaction allows to endow the robot
of typical reactive, deliberative or hybrid behaviours. 
In this paper, we present results of works started on the extension of the B.O.C
model in order to endow each robot with a supplementary deliberative dimension
oriented towards the group strategy. This is necessary in the case of a soccer playing
robots since it allows to endow each robot with a motivation going in the senses of
the satisfaction of a collective tendency. Consequently, it allows through
collaboration and co−operation mechanisms between robots to make emerge a
collective game at the organisation level. In the 2nd. paragraph, we introduce
notions of classification of roles to define an organisational model of the team. The
objective being to make emerge at the organisation level behaviours with collective
tendency. We present in the paragraph 3, the extension of the BOC model and
particularly deliberative behaviour units "individual strategist" and "strategist of
group". The paragraph 4 describes collaboration and co−operation mechanisms
between robots, used for the implementation of the distributed B.O.C. We have also
introduced at the goalkeeper control architecture a BlackBoard cartographer to
provide relevant information, used in the game strategy. The objective being to
guarantee a temporal coherence when deliberative behaviour units oriented to the
strategy of group are activated.
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2 Emergent collective behaviours and organisational model

Each of robots playing on the field can be considered as an agent participating to the
strategy of game. Indeed, if a game strategy can be assimilated to the convergence
of a set of actions to a goal or to several ones, it is then necessary to decentralise and
assign each action to each member of the team and to establish a collaboration
between them. Thus, the emergent collective behaviour results from the sum of local
agents behaviours.
To obtain a coherent collective behaviour, it is essential to well co−ordinate ‘robot’
agents. Each has to have a predetermined role to avoid a divergence of the
consequent of players actions. More, the efficiency of co−operation of players
results also from their good synchronisation. Without this synchronisation, the
collective behaviour is inoperative, and consequently, the strategy of group is non−
existent. Indeed, because of the uncertainty of the "freshness" of information from
others, each robot has then to evolve individually and to act in autonomous manner.
If this determinism is absent at the individual level (robot level), the realisation of a
behavioural model is made impossible. Thus, behaviour units work stand by
themselves and no emergence arise. To reach these objectives, a real time
deterministic system managing communications is necessary.
According to the previous discussion, the fact that the global behaviour of robots is
the consequent of local behaviours of each one implies a good distribution of roles
to each robot.

Classification of roles, notion of formation
The chosen classification is in relation with a division of the field in zones. Each
robot is assigned to a zone of activity, they are told in formation. Here is an
example:
• The goalkeeper, number 1 on the figure 1, rest in the zone of goal of the team.

1

4

5

32

Fig. 1. The team formation

• The two defenders, numbers 2 and 3 on the figure 1, are in two distinct zones,
sharing transversely half of field.
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• The two attackers, numbers 4 and 5 on the figure 1, are also in two distinct zones,
sharing lengthways half of field from adverse side.

Note that these zones may have a non empty intersection. Moreover, formations
may be subdivided into sub formations. Each one includes then a subset of roles and
interactions between these roles. Although that in a given time the robot performs
only one role, it has a knowledge of all roles of the team. This allows the
organisation to evolve according to two different approaches:
• The dynamic change of the role. For example, robots A and B may change their

roles as well as their positions on the field if the robot A has to follow the ball in
the zone of the robot B.

• The dynamic change of the formation, by taking into account the remaining time
as well as the current result of the game. All the team may change its strategy
leading to a  more offensive or more defensive formation.

Each robot can choose between three action modes:
• It remains in its pre−defined position (the inactive state)
• It moves to the ball by tempting to shoot it to the adversary goal or, to pass it to

its partner (the active state)
• It tries to intercept the ball that displaces to the goal (the auxiliary state).
These three modes of action define different behaviours according to the
environment and the strategy under way of execution. Two types of behaviour can
then be extracted:
• A purely opportunist behaviour, consisting in a direct answer to stimuli. This

behaviour follows the reactive model.
• An intelligent behaviour computing a plan of actions in order to score at the

adverse goal. This behaviour follows the deliberative model .
We present hereafter the B.O.C. model for the implementation of the control
architecture of soccer playing robots.

3. BOC Architecture (Behaviour Oriented Commands)

3.1. The  BOC Model

The BOC architecture is a hybrid architecture which combines reactive and
deliberative reasoning by the distribution of the knowledge system into modules
called behaviours. An important feature of this model is that it is easily and directly
translated into a real time application.
Our architecture supplies independent entities capable of reacting directly to stimuli
and also endowed with an inference system allowing deliberative planning. The
knowledge of each module is encapsulated in a set of rules describing its desired
behaviour. The reasoning module of each behaviour appeals to a production rules
system (expert system of order 0+ or a finite state automaton) that allows to
describe in a simple way complex behaviours.
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Our design methodology is supported by two classical notions: abstraction and
decomposition. Abstraction allows us to define a general commands without
knowing its implementation while decomposition permits to map a complex set of
rules into a group of less complex entities. This decomposition of the system allows
the simultaneous representation of both the temporal evolution and the parallel
relation of the treatments. The knowledge of the robot is represented on two levels:
• The encapsulation of a set of related rules into independent entities called

behaviours.
• The establishment of association links between these entities, in order to carry

out a behaviour−oriented−command (BOC) by the execution of co−operative
actions.

A BOC is like a service that must be requested, executed and acquitted. It is carried
out by a set of associated behaviours which can execute at the same time. Each
behaviour groups a set of rules in order to achieve and maintain its own goal. It can
be seen as an agent whose actions are either direct interactions with the sensors and
actuators or requested services to other BOCs. The co−operative work of these
Associated Behaviours (ABs) allows to solve problems beyond the scope of each
one independently.

 

Behav. A1

Behav. A2

Behav. AN

Control
Unit

Interactions

Activation / Inhibition of  behaviors

End Signal

COC Request

COC Acknowledge

Physical  Interaction

Fig. 2. Representation of a COC

A BOC is composed of a control unit and a set of associated connected behaviours
which carry out a service respecting a specific set of co−ordination rules. The
control unit associated to a BOC (fig. 2) includes an input port for the BOC’s
request, an output port for the BOC’s acknowledgement and three control links
between the BOC and its associated behaviours (AB): activation, inhibition and end
signals.
These signals allow the co−ordination and synchronisation of the ABs. Activation
signals are used to activate the necessary ABs for the correct execution of the
requested BOC. End signals are sent from an AB to its BOC’s control unit when it
finds a BOC ending condition. Once the control unit receives the end signal, it sends
inhibition signals to all the ABs which were activated. Finally, the control unit sends
an acknowledgement to the behaviour that requested the BOC.
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Fig. 3. Managing of concurrent actions using COC architecture

Figure 3 illustrates how the BOC architecture is used to manage two concurrent
actions. Each action is modelled as a BOC which is carried out by a set of ABs.
Generally, there is at least one behaviour that verifies that the conditions required to
continue the execution of the BOC are valid. In a decision system, this behaviour
can be seen as an entity monitoring the motivation of the action. Motivation allows
to manage in a simple way the activation of concurrent actions (solid lines fig. 3).
When the motivation decreases the behaviour sends an end signal to the control unit
to indicate that the action must be stopped. When the end signal arrives, the BOC is
finished and acquitted. A behaviour of higher level receives this acknowledgement
and uses its reasoning system to determine the next action to perform. The rules
describing the behaviour and co−ordination of activities are distributed into
modules, each one with a specific role. 
In order to improve the performance of our decision system, the unit control of a
BOC can also activate the motivation behaviour of a concurrent BOC (dotted lines
in figure 3). This behaviour measures the relevance of starting the concurrent action,
thus acting as an anti−motivation monitoring entity. A behaviour used as an anti−
motivation sends an end signal when the motivation to perform its associated action
is high enough. The trigger values are dynamically set by the high level behaviour
and include an hysteresis to avoid undesirable oscillations when motivation is close
to the transition value. Remark that since concurrent control units are never
simultaneously active, a motivation behaviour will never be working at the same
time for different  control units.
Our robots use the BOC model. As a matter of fact, this model allows to easily
separate into different units the robot’s behaviours. It is then possible to construct
the set of roles the robot can play by considering them as behaviours. For instance
the attackers can be considered as an aggressive reactive behaviour and an
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aggressive deliberative behaviour. For instance, when the ball is found in position
allowing for goal kicking, motivation of the aggressive reactive behaviour will be at
its highest. On the contrary, when the ball interception is found to be impossible
without obstacle avoidance the motivation of the deliberative behaviour will take
over.
Currently BOCs are implemented as fully reentrant functions. Each BOC shares the
source code in charge of the real time issues (communication, synchronisation,
priority) allowing the programmer to concentrate in the behaviours themselves. In
order to achieve even more transparency we are currently planning a future fully
object oriented BOC version.

3.2. Reactive and Deliberative BOCs

The game tactics are implemented as a set of behaviours of different types.

Reflex Behaviours
This behaviours will accomplish very simple actions, as a direct response to a
reduced set of pre−recorded stimuli. This allows fast "reflexive" actions. By
definition, reflexive actions are simple, use only the most recently available
information and have small, unambiguous rules.
Reflex behaviours have very high motivation values when their pre−conditions are
met. Motivation however decreases rapidly as the expected condition is not found,
allowing other more deliberative behaviours to be considered.

Deliberative Behaviours
These behaviours execute actions with a significant degree of complexity (plans).
This includes a long set of movements which should finish in a better global
position of each robot. No negotiation between the robots (like which one should go
for an equidistant ball) has been implemented until now. Communication and
synchronisation are performed through the environmental perception. Team play is
mainly achieved through coherent motivation equations. 

3.3. Strategy

The different roles and sub−roles are also a result of behaviour motivation
evaluations.

Attack Behaviour
This is the aggressive robot’s personality. Its goal is to find and keep track of kick
solution.
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Defence Behaviour
This is a more conservative behaviour. It looks for a backup or ball recovering
position. This is achieved by trying to fill the gaps while remaining behind the ball
and adverse robots.

Individual Strategy Behaviour
This is the highest level behaviour inside any single robot. It is charged of
maintaining the robots global behaviour. It will therefore evaluate the motivations to
play defensively or aggressively. This behaviour is activated at the beginning of the
game with the parameters of initial robots position and playing attitude.
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Fig. 4. C.O.C. model of each robot’s role : Attacker – Defender – Keeper
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Group Strategy Behaviour
This behaviour is in charge of collective play. It is the root behaviour. As such, it
will start the individual strategy behaviour of all robots. It is also in charge of
stopping any or all robots if necessary (dysfunction, goals, end of match…). The
physical location of this behaviour can be a fixed post (used also for supervision) or
any of the robots (actually the goalkeeper which has a much simpler behaviour
hierarchy). Due to the network transparency of the real time kernel chosen (QNX),
this can be done with no extra code. However, the physical position of this
behaviour cannot be changed after starting. We intend to pass through this
behaviour in order to improve the role swap of robots.

The Cartography Behaviour
Each robot saves the information gathered from different sources (camera,
odometer, communications) and keeps track of a local model of the world. This
allows to calculate object’s future positions and to continue to evolve even when an
object is not directly in sight. 
A global cartography is also constructed, which takes into account information
produced by several different robots. This model has to take into account local
uncertainties of the different robots as well as temporal aspects. It is still in
development and therefore unused for any strategic purpose. A blackboard
approach is used which must fusion:
• The ball position
• The adverse goal position (Although the goal itself is a static object, we’ve

created a dynamic goal which corresponds to the biggest goal acces and “moves
away” from the opponent’s goalkeeper.

• The team robots positions
• The opponents robots positions
The Blackboard control unit chooses a map building domain related with the
strategic needs. Hence, if the ball’s co−ordinates are necessary and a priority, they
will be the first chosen domain. To illustrate the control unit’s functioning let’s
consider the following instance :
The ball’s co−ordinates belong to the designated domain, the control must choose
the knowledge sources enabling it to determine them:
• The data coming from the vision modules directly from each robot;
• The data coming from the vision modules from each robot associated to make a

triangulation ;
• The former ball’s co−ordinates if none of the robots see the ball.
The control unit then determines the most precise source, which is to say the
information coming from the closest robot to the ball or a triangulation constituted
thanks to information issued from several robots. The triangulation may be chosen if
the information coming from the robots is synchronous during a short time interval
determined before hand according to the maximum estimated ball speed, for
instance.
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4. Conclusion

We have presented in this article an extension to the BOC model. This allows to
endow each robot with a deliberative dimension oriented towards group strategy,
while maintaining reactivity. One of our main objectives is to study and improve the
emergent collective behaviours. 
The notions of role and formation as well as a role classification are introduced.
Defensive, offensive and individual strategy behaviours are oriented towards the
role concept with a group strategy behaviour co−ordinating the whole. The entire
architecture is implemented within the BOC paradigm. We currently work in an
object oriented BOC implementation. 

Acknoledgement

Vincent & Jean Moritz for their inconditional cooperation.

References

 [BROOKS 1986] R. A. BROOKS, A Robust Layered Control System for a
Mobile Robot, IEEE Journal of Robotics and Automation, Vol.
2, No. 1, pp 535−539, 1986.

[CHATILA 1985] R. CHATILA, J. LAUMOND, Position Referencing and
consistent World Modeling for Mobile Robots, IEEE ICRA, 4
pp 138−145, 1985. 

[CONNEL 1990] J.H. CONNEL. A Colony Architecture for an Artificial
Creature, MIT A.I. lab Technical Report 1151, 1990.

[CUERVO 96] J. CUERVO, E. GONZALEZ, A. SUAREZ, C. MORENO,
Behavior−Oriented Commands: From Distributed Kwoledge
Representation to Real Time Implementation, Proc.Euromicro
Workshop on Real−Time Systems, pp. 151−156, Jun. 1996. 

[LOAIZA 98] H. LOAIZA, A. SUAREZ, E. GONZALEZ, S. LELANDAIS,
C. MORENO, Real MagiCol: Complex Behaviour througth
simpler Behaviour Oriented Commands, Proceedings of the
second RobotCup Workshop. pp. 475−482, Paris 1998.

[MORAVEC 1989] H. MORAVEC. D. CHO., A Bayesian Method for Certainty
Grids, Proceedings AAAI Spring Symposium on Robot
Navigation,  pp 57−60, 1989 .

[Realismo Màgico] http://artcon.rutgers.edu/artists/magicrealism/magic.html

[SIMMONS 1994] R SIMMONS, Structured Control for Autonomous Robots,
IEEE Trans. on Rob. and Automation, Vol. 10, No. 1,  1994.

399Extension of the Behaviour Oriented Commands (BOC) Model



www.manaraa.com

NODA, Itsuki12

noda@etl.go.jp

1 CSLI, Stanford University, Palo Alto CA 94306, USA
2 Electrotechnical Laboratory, Tsukuba 305, Japan

Abstract. Soccer Server has been used as the o�cial simulator for

RoboCup Simulation League last three years. Based on this experience,

I investigate the feature of Soccer Server and �gure out the issue to

building such kind of open simulator. Then, I propose a new design of

simulator that will provide more exible version up, easiness of mainte-

nance, and wide application.

1 Introduction

Soccer Server has been used as the o�cial simulator for RoboCup Simulation
League last three years. The reasons why Soccer Server is chosen are open sys-
tem, light weight, and widely supported platforms. These features enable many
researchers to use it as a standard tool for their research. And now, we have
a large community of simulation league, in which we discuss new rules, share
ideas and information, and cooperate with each other to develop libraries and
documents.

However, problems of Soccer Server become clear in recent years. Most of
them are lied on design of Soccer Server itself. Originally, it was built just as a
prototype of the simulator and modi�ed again and again to add new features and
to �x bugs. Therefore, the system became complicated and di�cult to maintain.

So, it is the time we re-design a new system of simulator. In this paper, I
investigate features and problems of current Soccer Server, and propose a new
design of Soccer Server.

2 Issues on Soccer Server

2.1 Soccer Server

Soccer Server [5, 4] enables a soccer match to be played between two teams
of player-programs (possibly implemented in di�erent programming systems).
The match is controlled using a form of client-server communication. The server
(Soccer Server) provides a virtual soccer �eld and simulates the movements of
players and a ball. A client (player program) can provide the `brain' of a player by

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 400−410, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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Fig. 1. Architecture of Current Soccer Server

connecting to the server via a computer network and specifying actions for that
player to carry out. In return, the client receives information from the player's
sensors.

A client controls only a player. It receives visual and verbal sensor informa-
tion (`see' and `hear' respectively) from the server and sends control commands
(`turn', `dash', `kick' and `say') to the server. Sensor information tells only par-
tial situation of the �eld from the player's viewpoint, so that the player program
should make decisions using these partial and incomplete information. Limited
verbal communication is also available, by which the player can communicate
with each other to decide team strategy.

2.2 Features of Soccer Server

Here, I like list up features of Soccer Server that are reason why it is used widely.

{ Soccer Server is light. It can run entry-level PCs and requires small resources.
This enables researchers to start their research from small environment. And
also, in order to use it for educational purpose, it is necessary to run on PCs
students can use in computer labs in schools.

{ Soccer Server runs on various platforms. Finally, it supports SunOS 4, Solaris
2.x, Linux, IRIX, OSF/1, andWindows 3. It also requires quite common tools
and libraries like Gnu or ANSI C++ compiler, standard C++ libraries, and
X window. They are distributed freely and used widely.

3 Windows versions were contributed by Sebastien Doncker and Dominique Duhaut
(compatible to version 2), and now by Mario Pac (compatible to version 4) indepen-
dently. Information about Mario's versions is available from:
http://users.informatik.fh-hamburg.de/~pac m/
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{ Soccer Server uses ascii string on UDP/IP for protocol between clients and
the server. It enables researchers/students to use any kind of program lan-
guage. Actually, participants in past RoboCup competitions used C, C++,
Java, Lisp, Prolog and various research oriented AI programming systems
like SOAR [8]. Version control of protocol is also an important feature. It
enables us to use old clients to run in newer servers.

{ The system has a separated module, soccermonitor, for displaying the �eld
status on window systems. Simulation kernel, soccerserver, permits to con-
nect additional monitors. While this mechanism was introduced only for
displaying �eld window on multiple monitors, it leads unexpected activities
in the di�erent research �eld. Many researchers have made and have been
trying to build 3D monitors to demonstrate scene of matches dynamically
[6]. In addition to it, a couple of groups are building commentary systems
that describe situations of matches in natural language dynamically [9, 1].
Both kinds of systems are connected with the server as secondary monitors,
get information of state of matches, analyze the situations, and generate
appropriate scenes and sentences.

2.3 Open Issues of Soccer Server

During past three yeas, Soccer Server was modi�ed again and again in order to
add new functions and to �x bugs. From these experience, it became to be clear
that Soccer Server have the following open issues.

{ huge communication:
Soccer Server communicates various clients (player clients, monitor clients,
o�ine-/online-coach clients) directly, so that the server often becomes a
bottle-neck of network-tra�c. In order to solve this problem, the server
should be re-designed to enable distributed processing easily.

{ maintenance problem:
Though Soccer Server is maintained only at ETL, the source code became
so complicated that it is di�cult to �gure out bugs and to maintain the
code. The reason is that structure of classes of C++ program became not to
reect a hierarchy of required functions. Therefore, it is the time to re-design
modules of the server according to required functions.

{ version control:
In order to keep upper compatibility as much as possible, Soccer Server us-
es version control of protocol between clients and the server. Because the
current server is a single module, the server must include all version of pro-
tocols. In order to solve the problem, the server should have a mechanism
that enable to connect with a kind of �lter or proxy that convert internal
representation and each version of the protocol.

In order to overcome these problems, I introduce a modular architecture into
Soccer Server. In this architecture we divided Soccer Server into a couple of
modules, which are loosely coupled via networks. These modules can run in a
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distributed way, so that we will be able to avoid bottle-neck problem of huge

communication. Modularity also provides the way of distributed maintenance

of the system. Also, it makes easy to version control by swapping modules to

communicate player's clients for each version.

In the next section, I propose a new design of the simulator based on this

idea.

3 A Design of New Simulator

3.1 Overview of the Design
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Fig. 2. Plan of Design of New Soccer Server

As mentioned in the previous section, I divided the functions of Soccer Server

into the following modules:

{ Field Simulator is a module to simulate the physical events on the �eld

respectively.

{ Referee Module is a privileged module to control a match according to

rules. This module may override and modify the result of �eld simulator.

{ Player Simulators/Proxies are modules to simulate events inside of play-

er's body, and communicate with player and on-line coach clients.

{ Monitor Proxy provides a facility of multiple monitor, commentator, and

saving a log.
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These modules are combined by a kernel (Fig. 2). The kernel manages
shared data and synchronization among the modules. Each module communi-
cates only with the kernel rather than with each other directly. In order to
guarantee to run modules in various platforms, the system useMID, a platform-
independent format, in the communication. 4

The kernel keeps the primary data, and each module has its copy. When
a module changes the data, it uploads the change to the kernel. Then other
modules refer the changed data in the kernel.

The kernel treats all modules in a uniformed way. So, we can add additional
modules for the system. Also, we can apply this kernel to di�erent purposes like
a rescue simulator.

3.2 Kernel

Kernel is a back born of whole system. The kernel will provide the following
services to the modules:

{ Management of Shared Data: All shared data are kept in the kernel as
the primary data. Each module should have a copy of the primary data.
When a module modify the data, the module must upload the data to the
kernel. Other modules download the data when they use it. The kernel al-
so provides automatic download mechanism. If a module is registered as a
watcher of the data, the kernel automatically downloads the data when it is
modi�ed.

{ Control of Synchronization by Phase: In order to synchronize execu-
tions of modules, the kernel provides phase facilities. The kernel begins a
phase when a certain condition is satis�ed. Then it noti�es the beginning
of the phase to all modules join the phase. Each module noti�es the end
of operation of the phase to the kernel. The kernel ends the phase when it
receives the noti�cation from all joined modules.
The phase mechanism provides the way to give a priority to a certain oper-
ation of a certain modules. The kernel can begin a phase adjunctly before
or after another phase. Therefore a user can put phases in order using the
relation of adjunctness.

At the beginning of the simulation, each module connects to the kernel, and
registers shared data and joining phases. Then the module start to receives
services phase controls and automatic download of data. Also, the module can
upload/download the data when it needs.

As mentioned above, the kernel treats all modules in a uniformed way. So
there are no restriction on the number and the type of modules. This means that
we can connect additional simulation units like an auditory simulator or global
coaching modules. Also, we can swap the (2D-) �eld simulator to a 3D-simulator
easily. (In this case, we may have to change other modules to adjust new data

4 CurrentlyMID is de�ned originally. However, I will move to use more common way

like CORBA.
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format of 3D.) The kernel is also applicable to other domains. For example, the
kernel can be used in a rescue simulation. In this case, a couple of simulation
modules like �re simulator, tra�c simulator, and so on.

3.3 Player Simulator/Proxy

One of major problems of the current Soccer Server is management of protocol.
In the Soccer Server, the protocol is implemented in various point of the whole
system. Therefore, it is di�cult to maintain and version-up the protocol.

On the other hand, in the new design, A player simulator/proxy receives
whole information about data from the kernel, and convert it to the suitable
protocol. As a result, maintainers may focus only to this module when we change
the protocol.

This style brings another merit. The current system communicates with
clients directly, so it the server tends to be a bottle neck of network tra�c.
On the other hand, this module works as a proxy that connects with multiple
clients. Therefore, when we run two proxies for both teams on two machines
placed in separated sub-networks, we can distribute the tra�c. This also equal-
izes the condition for each team even if one team uses huge communication with
the server.

3.4 Referee Module

The implementation of the referee module is the key of the simulator. Compared
with other modules, the referee module should have a special position, because
the referee module needs to a�ect to behaviors of other modules directly rather
than data. For example, the referee module restricts movements of players and
a ball, that are controlled by the �eld simulator module, according to the rule.

One solution is that the referee module only controls ags that specify the
restrictions, and simulator modules runs according to the ags. The problem of
this implementation is that it is di�cult to maintain the referee module sepa-
rately from other modules.

Another solution is that the referee module is invoked just before and after
the simulator module and check the data. In other words, the referee module
works as a `wrapper' of other modules. The merit of this implementation is that
it is easy to keep simulator modules independent from referee modules. Phase
control described in Sec. 3.6 enables this style of implementation in a exible
manner.

3.5 Protocol Between Kernel and Modules

Protocol between the kernel and modules uses TCP/IP, not UDP/IP. The reason
is that:

{ Communication between the kernel and modules should be reliable. For ex-
ample, if communication of the phase control is not reliable, the execution of
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the whole system may fall into deadlock because of fault of communication.
Because of the nature of UDP/IP, it is di�cult to avoid such fault completely
in UDP/IP during a match.

{ The number of packets will be smaller than communication between Soccer
Server and its clients, so that overhead of TCP/IP will be negligible.

Of course, the low-level protocol layer is designed to be independent from high-
level layer. We can replace this level if more e�cient protocol will be available
in the future.

In order to guarantee independence of data format frommachine architecture,
I designed MID (Machine Independent Data) format. All data are reformed into
network byte order (big-endian). In addition to it, we can use �xed decimal point
format to transfer oat values. It is useful because most of physical value has a
limited domain of value and �xed decimal point format can reduce the size of
data.

All conversion methods of data to/from MID format are de�ned shared head-
er �les of C++ in an object oriented manner. For example, `position' and `player'
classes will be de�ned as Fig. 3.

Note that we can keep that protocol between the server and player clients is
UDP/IP. The conversion of TCP/IP and UDP/IP is done by the player simula-
tor/proxy modules.

3.6 Phase Control

The kernel controls synchronization of execution of modules by phases.
A phase is a kind of an event that have joined modules. When a phase starts,

the kernel noti�es the beginning of the phase by sending an achievePhase

message to all joined modules. Then the kernel waits until all joined modules
�nish operations of the phase. Each module must inform the end of the operation
of the phase by sending an achievePhase message to the kernel.

The kernel can handle two types of phases, timer phase and adjunct phase.
A timer phase has its own interval. The kernel try to start the phase for ev-

ery interval. For example, a �eld simulation phase should occur every 100m-
s 5.This phase has the �eld simulator as a joined module. So, the �eld simulator
receives an achievePhase message for every 100ms. Then the simulator exe-
cutes its operation and sends an achievePhase message back to the kernel.

An adjunct phase is invoked before or after another phase adjunctively. For
example, a referee phase will be registered as an adjunct phase after a �eld

simulation phase. Then the kernel starts the referee phase immediately after
the �eld simulation phase is achieved. For another example, a player phase,
in which player simulators/proxies upload players' commands, will be registered
as an adjunct phase before a �eld simulation phase. In this case, the kernel
starts the player phase �rst, and starts the �eld simulation phase after it
is achieved.

5 This interval is based on the interval of the original soccer server.
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class FsPos {

public:

FsFloat x ;

FsFloat y ;

...

FsBool writeMID(FsBuffer buffer) {

writeMID(buffer,x,10) ;

writeMID(buffer,y,10) ;

} ;

// precision of x and y are 3 decimal

// places under decimal points.

FsBool readMID(FsBuffer buffer) {

readMID(buffer,x,10) ;

readMID(buffer,y,10) ;

} ;

...

} ;
class FsPlayer {

public:

FsSide side ;

FsUInt unum ;

FsPos pos ;

...

FsBool writeMID(FsBuffer buffer) {

writeMID(buffer,side) ;

writeMID(buffer,unum) ;

writeMID(buffer,pos) ;

...

} ;

FsBool readMID(FsBuffer buffer) {

readMID(buffer,side) ;

readMID(buffer,unum) ;

readMID(buffer,pos) ;

...

} ;

...

} ;

Fig. 3. Example of de�nition of data structures and their conversion to/from
MID format
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A phase may have two or more adjunct phases before/after it. To arrange
them in an order explicitly, each adjunct phase has its own tightness factor. The
factor is larger, the phase occurs more tightly adjoined to the mother phase. For
example, a �eld simulation phase will have two adjunct phases, a referee

phase and a publish phase, after it. Tightness factors of the referee and publish
phases will be 100 and 50 respectively. So, the referee phase occurs just after
the �eld simulation phase, and the broadcast phase occurs last.

Fig. 4 shows phase-control and communication between the kernel and mod-
ules in the soccer simulation. Note that the implementation of the phase control
mechanism is general and exible, so that there is no limitation on the number
of phase, the duration of the interval of timer phase, or the depth of nest of
adjunct phases.
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4 Related Work

4.1 Distributed Interactive Simulation

There is a series of development of distributed interactive simulation systems for
military training and simulation [3, 2, 7, 11]. The most signi�cant features of such
kind of simulations is that the area of the �eld is very wide and objects are located
relatively sparse. They use the similar architecture of the new simulator proposed
here. Their main purpose is to connect simulators developed individually via
network, and to enable integrated training of pilots simulate war in large scale
in real-time. In addition to it, the system can connect with machine-intelligented
pilots [8].

Major di�erences between the new simulator and these military simulators
are:

{ Existence of referee module is signi�cant compared with other simulator.
Referee module is tightly coupled with the �eld simulator, so the kernel is
required to control these two modules in sequential manner. On the other
hand, military simulators listed above suppose interaction between each sim-
ulation modules are localized, so that it is possible to build loosely coupled
system.

{ The new simulator should be light weight. One of important features is
light weight and ability for researchers to run it with low cost of computer
resources. In the military purpose, more realistic simulation is required even
if it needs more expensive computational resources.

{ The new simulator will be released under Gnu GPL. Open source policy is
important in RoboCup community.

4.2 Hybrid Simulation

Hybrid simulation systems also have been investigated. [10] shows a core ar-
chitecture to enable a hybrid simulation of embedded systems. Compared with
the military simulations and the proposed systems, this hybrid simulation aims
to simulate a system consists of more tightly coupled elements like inside of a
circuit, rather than to simulate events happen in widely spread area like com-
bat/soccer �eld. However, when we move to more accurate and multi-modal
simulation (for example, rescue domain), we must take care the similar problem
they attacked.

5 Conclusion

I investigated problems of current Soccer Server, and �gure out issues that should
be solved in the new simulator. Two main points are modularity and possibility
of distributed simulation. Base on this investigation, I proposed a design of the
new simulator. In which, simulation and communication are divided into deferent
modules.
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The proposed design is relatively general and is not restricted to simulation

of Soccer. So, it is possible to use this design as a prototype of the kernel of

other simulation of complex environment like rescue from huge disasters.

There still remain many open issues. For example, the following issues are

still open:

{ tradeo� between reality exibility and computational power

{ tradeo� between tight coupling and loose coupling

{ generality of interaction between modules

{ timing control over networks
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Abstract. This paper presents ETHNOS-IV - a real-time programming
environment for the design of a system composed of different robots, devices
and external supervising or control stations. ETHNOS is being used for
different service robotics applications and it is has also been used successfully
used in RoboCup in the Italian ART robot team during the Stockholm ’99
competition. It provides support from three main point of views which will be
addressed in detail: inter-robot and intra-robot communication, real-time task
scheduling, and software engineering, platform independence and code-reuse.
Experimental results will also be presented.

1 Introduction

Among the positive aspects of the RoboCup [5] we believe that the emphases on
multi-robot coordination and integration is particularly important. In fact most of the
practical applications of mobile robotics for service tasks in civilian environments
consist in systems composed of multiple robots communicating with each other, with
external sensing and actuating devices, and with external supervising workstations
[2]. In our opinion the research in robot architectures, currently mostly focusing on
single robots and on the difficulties in the integration of different paradigms of
representation (symbolic, diagrammatic and procedural) and of different types of
robot-environment interactions (reactive and deliberative) [1] [3], should also address
this scenario and the problems it involves. For example in the RoboCup a robot soccer
player must allow a successful intra-robot integration of the different activities (visual
perception, path planning, strategy planning, motion control, etc.) spanning over many
different types of representation (raw sensor data, images, symbolic plans, etc.), but
also guarantee a successful inter-robot integration by supporting communication and
co-operation. The robot and system architecture should also allow for different levels
of autonomy: the single robot, more robots in cooperation among themselves or also
with external devices or supervising stations.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 412−423, 2000.
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This paper focuses on these problems, presenting ETHNOS1-IV - a real-time
programming environment for  the design of a system composed of different robots,
devices and external supervising or control stations - which has been used for
different applications and which has also been successfully used in the Italian ART
robot team during the Stockholm ’99 competition. ETHNOS pr ovides support from
three main points of view which will be addressed in detail:

- from the communication perspective it supports and optimises transparent inter-
robot information exchange across different media (cable or wireless).

- from the runtime perspective it provides support for the real-time execution of
periodic and aperiodic tasks, schedulability analysis,  event handling, and resource
allocation and synchronisation.

- from the software engineering perspective it provides support for rapid
development, platform independence and software integration and re-use.

2. ETHNOS IV

ETHNOS IV (Expert Tribe in a Hybrid Network Operating System) is the latest result
(the fourth version), in a project that began more than four years ago, for the study
and development of a programming environment for autonomous robotic systems. It
has been designed in order to support a specific hybrid cognitive model (HEIR [8])
but, since it is sufficiently general, it has also been used in other cognitive or
architectural organisations. It is composed of:

- ETHNOS IV, a dedicated distributed real-time operating system, from which the
overall environment takes its name, supporting different representation,
communication, and execution requirements,

- a dedicated network communication protocol designed for both the single robot
and the multi-robot environment, specifically taking  noisy wireless
communication into account,

- an object oriented Application Programming Interface (API) based on the C++
language (and a subset based on Java),

- a set of additional development tools (a robot simulator,  a Java-applet template,
etc.)

The reference architecture of a single robot, and consequently of the ETHNOS
operating system, is entirely based on the concept of expert, a concurrent agent

                                                          
1In ETHNOS the expression “expert tribe” signifies an ana logy between a robotic system and a
tribe composed of many experts (concurrent agents) in different fields (perception, actuation,
planning, etc.). The term “hybrid” indicates the support to the integration of deliberative experts
with experts responsible for reactive and partially reactive behaviours; the term “network”
refers to the possibility of distributing components (groups of experts) on a computer network.
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responsible for a specific deliberative or reactive behaviour. Experts are members of a
tribe which are distributed in separate villages (network computers) normally
depending on their computational task. An example related to the HEIR cognitive
model is depicted in figure 1. Three non-hierarchically organised components can be
noticed, each characterised by the type of knowledge it deals with: a symbolic
component (S), handling a declarative explicit propositional formalism, a
diagrammatic component (D), dealing with analogical, iconic representations, and a
reactive behaviour based component (R). The experts (depicted as circles) are also
classified depending on the component they belong to: symbolic(S), diagrammatic(D)
or reactive(R). Each group corresponds to a different set of computational tasks,
distinguished depending on: the type of cognitive activity carried out, timing
constraints, type of data managed, duration, etc.

S

D

R

 KB

S S

S

S
S

 D1

D

 D2

 D3

D
D

D
D

D

R

R

R

R

R

R

R

R

REAL WORLD

Fig. 1. HEIR Cognitive Architecture

Within this general framework, ETHNOS supports (throughout its protocols or APIs)
or performs (throughout its kernel calls) different functions:

- it supports the creation of, and access to, shared representations (in the figure the
KB and the different iconic instances D1, D2, etc.).

- It allows the concurrent execution and real time scheduling of different experts
transparently and efficiently implemented as real-time threads, and their
transparent synchronisation when accessing the above shared resources.

- It supports both asynchronous and synchronous intra-robot, inter-expert
communication.

- It supports transparent asynchronous inter-robot communication.
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- It allows experts to suspend, waiting for the occurrence of specific events
(reception of particular message types or even combinations of them) to avoid
wasting computational time. Moreover it allows each expert to specify a desired
period of execution which the Posix real time scheduler will transparently be
instructed to respect.

The next sections will deal with these properties in greater detail.

3. Communication

One of goals of the RoboCup competition is to encourage the comparison and
exchange of methodologies, techniques and algorithms within the robotics and
artificial intelligence community. A common programming environment which,
without imposing significant constraints on the single components, allows to easily
put together the result of different researchers within the same group (or possibly also
across different groups) is certainly a contribution in this direction. In harmony with
this goal, the ETHNOS programming environment allows the robots to be
programmed  in such a way that the different experts can be integrated, during
development but also at run time, with little or no intervention in the software of the
expert itself, thus facilitating both rapid prototyping and dynamic architectural
reconfiguration. The first property facilitates the development of a robot application
(from a set of components or behaviours) even by non highly specialised
programmers (for industrial purposes but also for didactic activity in student projects,
particularly relevant in RoboCup); the second property  allows the system to easily
scale-up to a robot capable of different complex activities and thus able to switch at
run-time from a configuration in which it is performing a certain task (for example in
which the active behaviours are responsible of path planning, navigation and obstacle
avoidance) to a totally different configuration (for example in which the behaviours
are responsible of object grasping and manipulation).

These properties are achieved by exploiting a suitable inter-expert communication
protocol which comprises of three  different communication methods:

- asynchronous message-based communication,
- synchronous access to an expert based on the type of service,
- access to a shared representation.

The first method is the most general of the three and it is at the base of ETHNOS
applications, in particular in the communication between experts of different type (i.e.
handling different types of representations).  It is a message-based communication
protocol (the EIEP – Expert Information Exchange Protocol [7]) fully int egrated with
the expert scheduler. The EIEP encourages  the system developer to de-couple the
different experts in execution, to reach, as close as possible, the limit situation in
which the single expert is not aware of what and how many other experts are running.
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In this way an expert can be added, removed or modified at run-time without altering
the other components of the system.

Expert de-coupling is achieved by eliminating any static communication link. The
EIEP is essentially an efficient implementation of a blackboard in a network
distributed environment. In fact, the EIE protocol is mainly based on an asynchronous
message-based method in which the single expert subscribes to the particular message
types, known a priori. When another expert publishes any message of the subscribed
types, the subscriber receives it transparently. In this way, an expert does not know,
explicitly, who the sender of a message is or to which other experts, if any, its
message is being distributed. Moreover, the same principles apply also if the
application is distributed in a computer network: messages are distributed and
received regardless of the particular machine on which they were produced or on
which an expert subscribed [9]. Thus, from this point of view, the same application is
programmed in the same way, whether it will run with all the experts executing on the
same computer (robot soccer player) or with the experts executing on different
computers connected in a network (soccer player and supervising station or remote
high-level component responsible of non time-critical computationally intensive
tasks). Figure 2 illustrates this concept.

S
D

R

S

D

R

Fig. 2. Equivalence between centralised and decentralised configuration

The second method provides synchronous access in a way that is similar (from the
programming point of view) to function calling. Analogously to the asynchronous
communication, is based on two primitives:

- an expert declares the external services it can carry out: examples might be get-
robot-position, increase-robot-speed,

- an expert requests a particular synchronous service to the operating system.

In the first step the operating system keeps the information on the types of services
available, defined a priori, and on the experts which can carry them out.  In the
second step the operating system searches the previously stored information and
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provides the expert with the connection to the service required. It is important to
notice that this connection will be maintained until the expert explicitly declares that
it needs the service no further. Thus, during the normal expert execution the service
access will be practically equivalent, in terms of efficiency and behaviour, to a
standard function call. The benefits deriving from this approach clearly emerge only
when experts are dynamically removed or modified. In this case, it is possible that a
service currently in use by some other expert will no longer be available. The
operating system, however, detects the critical situation and, searching again in its
database, re-connects the related expert(s) to another one providing the same type of
service and currently in execution.

The third and last method of communication allow the experts to share information
stored in a common area of memory. It is very important when two or more experts
need to work on the same, analogical or symbolic, data of relatively large dimensions.
In this situation both previous methods are not applicable to real systems: the former,
based on messages, is highly inefficient because of the implicit cost due to dealing
with messages of inevitably large size; the latter implies the ownership of the memory
by a single expert which would therefore share with it its lifetime.

ETHNOS also provides transparent inter-robot communication support. In fact,
using the same EIEP principle, messages can be exchanged on the basis of their
contents not only within the same (potentially network distributed) robot (soccer
player) but also in-between different robots (players within the same team).  However,
in the single robot case, experts running on a particular machine do not have to be
aware of the location of the message receivers  whether on the same machine or on
another one connected in the network; in inter-robot communication the situation is
different and it is often important to know exactly who the sender is. Moreover it is
also important to distinguish internal messages (meaning messages to be distributed
within the machines implementing a single player) and external messages (meaning
messages to be sent from a player to another) to avoid the explosion of unnecessary
network data communication.

In ETHNOS the different experts are allowed to subscribe to communication clubs.
For example, we may envisage a single club to which the different players belong or
even different clubs, one for the reactive components, one for the diagrammatic
components, etc. Message subscription and publication can thus be distinguished in
internal, internal and in a specific club or internal and external in all clubs. Again, it is
the responsibility of the system to dynamically transparently distribute the messages
to the appropriate receivers. Figure 3 shows some example configurations that we
have tested. In particular we are allowing the robots to communicate in a single club
(to which all of them have subscribed) and with an external supervisor (the coach)
which monitors the activity of all the robots.

Moreover since in the Robocup (and in general in mobile robotics) network
communication is often wireless (i.e. radio link, Wavelan©, etc.), because of
interference or because the robot may have moved to a blind zone, transmission
packets are frequently lost. In this context, both TCP-IP and UDP-IP based
communication cannot be used: the former because it is intrinsically not efficient in a
noisy environment; the latter because it does not guarantee the arrival of a message,
nor any information on whether it has arrived or not. For this reason we have also
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designed a protocol for this type of applications, called EEUDP (Ethnos Extended
UDP) because, based on the UDP, it extends it with the necessary properties.

S

DR DRDR

Fig. 3. Example of multi-robot ETHNOS configuration.

The EEUDP allows the transmission of messages with different priorities. The
minimum priority corresponds to the basic UDP (there is no guarantee on the message
arrival) and should be used for data of little importance or data that is frequently
updated (for example the robot position in the environment that is periodically
published). The maximum property is similar to TCP because the message is sent
until its reception is acknowledged. However, it differs because it does not guarantee
that the order of arrival of the different messages is identical to the order in which
they have been sent (irrelevant in ETHNOS applications because every message is
independent of the others), which is the cause of the major TCP overhead. Different
in-between priorities allow the re-transmission of a message until its reception is
acknowledged for different time periods (i.e. 5 ms, 10 ms, etc.).

4. Real-Time Expert Scheduling

An overall architecture for the development of RoboCup players should, in our view,
permit the integration of reactive planning and control activities (whose execution is
critical for the system and which therefore have real time requirements) with
deliberative ones (whose execution is not critical for the good functioning of the
system but which can increase performance in many situations).

In ETHNOS IV this is achieved in the following way. The different experts can be
scheduled following different policies: real time Experts can be mapped into different
Posix Threads (on one extreme) and scheduled as stated by the Rate Monotonic
algorithm[6] with a Deferrable Periodic Server[11] (we chose this algorithms because
of their ease of implementation with every Posix compliant OS) or executed into one
single thread (on the other extreme) and scheduled following the non pre-emptive
EDF algorithm [4]. In both cases the deliberative activities are performed in a lower
priority thread which executes in the background.

When ETHNOS is given a particular set of experts  and it is asked to schedule
them, its kernel acts as follows:
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- Each expert (both periodic and sporadic) is executed many times for an
approximate analysis of its worst execution time.

- For each expert (both periodic and sporadic) the scheduling conditions (the Rate
Monotonic conditions or the EDF algorithm ones depending on the scheduling
policy we choose) are tested referring to its period (or the minimum time between
two consequent runs) and its worst execution time.

- If the scheduling is possible, expert are scheduled as stated by the Rate Monotonic
or the EDF algorithm.

- Should an expert miss its deadline (this is possible because of the approximate
execution time analysis) a very simple recovery policy is adopted: the next
deadline of the expert is obtained by adding the expert’s period to the end of the
last run (not to the end of the previous period). This is equivalent to changing the
phase of the expert, saving the processor from computational overload and from
the consequent deadline-missing by other experts.

- The background expert is scheduled when no other expert is ready for execution.
Should we need a temporary intensive activity of the background expert (for
example if the robot needs to perform planning activities because of a particular
situation) it is a matter of the specific application to suspend or reduce real time
tasks activities to leave more computational time to the background ones.

5. The Programming Interface

ETHNOS-IV has been designed to facilitate the development of complex distributed
real-time applications even by non highly specialised users. This is particularly true in
the RoboCup context, in which the exchange of research results between attending
teams assumes a relevant interest. Moreover it should be outlined that within the ART
team, in which different research groups (belonging to different Universities or
Research Institutes) are involved in the same project by conducting separate research
activity, these properties have been extensively exploited. In fact, different research
units involved have adopted ETHNOS IV as their reference underlying architecture
(for the soccer player for which they are responsible) even though they adopt different
scientific solutions.

As a programming environment for the development of robotics applications,
ETHNOS provides an object oriented programming interface (EPI-Ethnos
Programming Interface) for the software implementation of the different components
of the architecture. The EPI consists of a library of abstract C++ classes related to all
the elements of the architecture, encapsulating their properties and their common
behaviours. For example, the abstract class ETExpert is the base class for defining the
behaviour of a generic expert; ETPeriodicExpert, ETAperiodicExpert and
ETBackgroundExpert classes inherit its properties and pose further constraints on the
expert timing characteristics. The user that needs to build a new expert must simply
inherit the appropriate expert class.
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6. Experimental Results

ETHNOS has been tested and used in service applications in hospitals and museums
on different robots (TRC Labmate,  GenovaRobot Snoopy robot) equipped with
different sensor devices: ultrasonic proximity sensors, bumpers, laser positioning
system, camera, etc.  Within  the RoboCup context, ETHNOS has been adopted by
our laboratory in the Università di Genova, by the Università di Padova, by the
Università di Parma and by the Politecnico di Milano. The first three have used as a
mobile base an ActiveMedia Pioneer vision guided robot especially modified with
additional devices (kicker, compass). For this purpose we have redesigned the Pioneer
control libraries to directly communicate via serial interface to the robot (thus
bypassing the Saphira architecture and allowing for an accurate, real time control of
the actuators).

Fig. 4. Left: Mo2ro Robot developed by Politecnico di Milano, Middle: TinoZoff developed by
the Università di Parma, Right: ActiveMedia® Pioneer used by Università di Genova and
Università di Padova

In the Politecnico di Milano it has been implemented on a robot platform they
developed (Mo2ro, additional information can be found at the internet web address:
http://airlab.elet.polimi.it/projects/robocup.htm)  which is equipped with kickers and
an omnidirectional vision sensor. Both RoboCup robots are depicted in figure 4.
It is worth mentioning that the solutions of the different groups that adopted ETHNOS
differed not only in their robots but also in the control architecture: subsumption
based control, fuzzy logic control, artificial potential field based control, evolutionary
learning. These diversities emphasise both the flexibility of ETHNOS and its
fundamental role in the co-ordination of heterogeneous robots.

During the Stockolm99 competition the ETHNOS architecture will be fully
exploited, in particular for the real time selection and execution of robot behaviours.
The ETHNOS based architecture we are using in Genova  is illustrated in figure 5.
The lower level real time experts and middle level soft real time experts have the
following functions:

- communicate with sensors and actuators
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- update two diagrammatic representations: VIEW (a snapshot of what the robot
currently sees suitably processed to clearly distinguish the objects in the scene) and
LPS (a local perceptual space describing the situation of the field known to the
robot due to its perceptions or the information coming from the other team mate
robots)

- perform real-time navigation.

LPSVIEW

Navigator

View Handler

x Trajectory
generator

Motion
controller

Camera
perceiver

Camera Robot Actuators/Kickers

positioner

Odometry

KB

LPS Analyser

Planner

Global positioner

Team Mates
Communicator

Wavelan®

Fig. 5. ETHNOS based RoboCup Architecture

The latter in particular is responsible for ball following, ball pushing and obstacle
avoidance, exploiting a non linear trajectory generator called x. The upper background
experts analyse the information on the LPS to extract symbolic information on the
match and perform high level action planning which tunes the behaviour of the real
time navigator. Figure 6 depicts a photo taken during the experimenting of the
architecture in which the robot has to reach the ball while avoiding the black obstacles
on the floor.
The communication properties of ETHNOS have also been exploited to develop a
graphical monitor for displaying and debugging the team activity during a match. In
fact the monitor can receive some of the information that is being exchanged between
the robots simply by subscribing to the team club and to the desired message types. In
figure 7 some snapshots of the monitor during a real match have are illustrated. The
small dark circle represents the ball, the larger light circles represent the opponent
team robots and the other black objects are the team mate robots for which the recent
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trajectory is also depicted. It can be easily noticed that there are many overlapping
opponent robots. This is because a circle is draw relatively to the opponent perception
for each robot which slightly differs because of positioning and perceptive errors.

Fig. 6. ART Pioneer robot follows the ball while avoiding  black obstacles

  

Fig. 7. Robot and ball positions perceived during a match

On the left figure the black team is scoring by pushing the ball directly into the goal.
In the middle the opponent team is counterattacking and therefore the robot on the left
is rapidly returning in defence. On the right figure the robot is preparing to kick the
ball towards the goal while a team mate is positioning as a back up. Notice that in
many cases there are sharp changes in the robot trajectory. This is either due to a
change in the ball position  or it is a movement to attempt to avoid an opponent (no
longer depicted because out of the perceptive field of the robot).

7. Conclusions

This paper presented ETHNOS, a programming environment for real time control of
distributed multiple robotic systems. Its properties have been described as well as its
influences on the development of a soccer team for RoboCup. This year’s competition
in Stockholm has shown the importance of ETHNOS in the co-ordination of an
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heterogeneous team of robots independently developed. In particular it is work
mentioning the ART managed to reach the finals and show effective and efficient co-
ordination despite the fact that the robots played together less than a handful of times
before the competition.

It is also worth mentioning that ETHNOS is publicly and freely available for non-
commercial use to academic and research institutions. An on line HTML user guide
can be found at the following address: http:// www.ethnos.laboratorium.dist.unige.it.
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Abstract This paper describes the hardware and software architecture
of the Attempto RoboCup-99 team. We first present the design of our
heavily modified commercial robotic base, the robot sensors and onboard
computer. Then the robot control architecture which realizes a hybrid
control, consisting of a reactive behavior based component and a planner
component for more complex tasks is introduced. Also the problems we
currently are working on are presented, as there are a fast and reliable self
localization algorithm and a robust behavior based reactive component
for the hybrid control system.

1 Introduction

For building a good team of agents that can take part in the RoboCup-99 con-
test, ideas and results from different fields of research, e.g. artificial intelligence,
robotics, image processing, engineering, multi agent systems can or even must
be used and tested [1],[2].
Since we are developing a team for the mid-size contest our main objective is to
build a robot system, which is able to recognize the environment in a suitable
way and to build a fast and reliable control system, which is capable of solv-
ing the given task of playing football. This control system must cope with the
dynamics and adverse aspects of RoboCup-99 and with complex situations, e.g.
teamwork which occurs in RoboCup-99.
The remainder of the paper is structured as follows: Section 2 describes the
robot, sensor and computer hardware of the Attempto team robots. Section 3
gives an overview about the three different layers of our software architecture.
Section 4 focuses on our concepts to address the problems of doing a reliable and
fast self localization and to develop a fast and robust reactive control component.

2 Hardware

2.1 Robot platform

As the basic robot platform for the field player we are using the Pioneer2 DX
from ActivMedia Inc. (Fig. 1). This robot is equipped with a differential drive
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system with a free running caster wheel mounted at the back of the robot. The
maximum achievable translation speed is about 1,5 m/s, the maximum rotational
speed is 2 π/s. The robot can carry weights up to 20 kg and can be equipped
with a maximum of three 7,2 Ah batteries, which allows an operating time
with all additional hardware like PC and sensors of nearly three hours without
recharging.
The two driving motors are equipped with 500 tick position encoders. With these
encoders the speed and the position of the robot can be obtained. The robot is
controlled by a Siemens C166 microcontroller. This device is responsible for
controlling the actuators of the robot and for the calculation of the position and
orientation from the motor encoder data.
Via a serial device the controller can communicate with a remote computer.
This device can operate at a maximum speed of 38400 bauds. The robot sends
20 times a second a status data packet to the remote computer. It also accepts
commands from the remote computer with the same rate. Therefore the minimal
achievable response time for a closed loop controller is about 50ms.
As the basic platform for the goalkeeper we are using a Pioneer AT. Each of
the four wheels of this robot is driven by its own motor. The wheels on each
side are coupled with a belt. The battery with a capacity of 12Ah allows an
operating time with our additional hardware of 1.5 hours. A custom designed
board with a MC68332 CPU replaces the standard MC68HC11 board and gives
faster response time, higher precision of odometry and more flexible sonar firing
patterns. Despite serious problems in the preliminary rounds the goalkeeper was
influential for our 1998 success at Paris reaching the final.

2.2 Sensors and actuators

As we are convinced that better sensors will result in a better situation assess-
ment and, ultimately, in better playing capabilities, we try to employ a diversity
of sensors on the robot. While the final design is not finished at the time of
this writing, we are considering the use of the following sensors: Sonars, 2d laser
scanner, IR sensors, colour camera, 3600 camera, digital compass.
Sonars: The Pioneer2 DX is equipped with eight, the Pioneer AT with seven
Polaroid 6500 Ultrasonic transducers, which are mounted in front and at the
front side of the robot.
Laser scanner: The employed laser scanner is a LMS200 from SICK AG. It has
a 1800 field of view and a angular resolution of 0,250. It can measure distances
up to 15 m with an accuracy of 10 mm. With a resolution of 10 and a total field
of view of 1800 and 500 kbps data transfer rate over a RS422 serial device the
achievable scan rate is nearly 60 Hz. This sensor, which is a successor to the
device which secured Freiburg’s [3] advantage last year, is currently the fastest
and most precise distance measurement device. Its main drawbacks are its size
(137*156*185 mm), weight (4,5 kg) and power comsumption (max. 17,5 W).
Color camera: For the task of object detection and classification we are us-
ing two vision systems. Both systems use a Siemens SICOLOR C810 CCD-DSP
color camera, with a 1/3 inch CCD-chip and a resolution of 752x582 pixel. The
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output format is a regular CCIR-PAL signal with 625 rows and 50 half frames
per second. One of the cameras is mounted at the front of the robot. This cam-
era is equipped with a 2,8f wide angle lens. It is mainly for the detection of the
ball and the objects, which lie in front of the moving robot. This camera is also
responsible for distinguishing team mates from opponent robots.
3600 camera: The second camera is mounted in an omnidirectional vision sys-
tem, which is mounted at the top of the robot (Fig. 1). A 4,2f lens is mounted
at this camera, to achieve a large visual field. The design of this camera has
been made by Matthias Franz from the MPI for Biological Cybernetics from an
earlier MPI design used for biologically inspired vision experiments. In contrast
to most other omnidirectional vision systems this design has a paraboloid mirror
instead of a conical mirror. This should give a better mapping of objects below
the horizon.
Digital compass: This device is capable to determine the absolute orientation

Figure1. left: The P2 robot with laser scanner in the front between the wheels, 3600

camera on top, front camera and pneumatic kicking device.
right: The AT robot with 3600 camera on top, front camera and electric kicking device.

of the robot, where the error in measurement does not depend on the distance
traveled or on other influences the odometry suffers from. It sends heading data
with 5Hz, a resolution of 10 and an accuracy of 20.
Kicker: We adapted the pneumatic kicking device used at the RoboCup-98 con-
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test in Paris to the new robots. This kicker consists of a pneumatic cylinder, an
electric valve, and a tank for compressed air. We also developed a second kicking
device based on a spring mechanism wound up by a BMW car windshield wiper
motor. This spring loaded kicker even shot harder than the pneumatic kicker
and was successfully demonstrated at the Vision RoboCup-98 at Stuttgart, but
it could not easily be fitted into the P2 chassis.

2.3 Onboard Computer

The onboard computer is the same as the one used last year in Paris, with the
exception of an improved power system (the old suffered several failures in Paris
and Stuttgart). It is a custom design based on standard PC parts with custom
enclosure and is mounted at the rear top of the robot. Each PC has a 400 MHz
AMD K6 CPU, 64 MB RAM and a 1,2 GB Hard Disk Drive. Additionally each
computer is equipped with two PCI framegrabbers with a Booktree BT484 chip.
These devices deliver images in YUV-format at 25 fps (PAL) and a maximum
resolution of 768x576 pixels. For the connection to the laser scanner a high speed
RS422 serial card was modified to achieve a data rate of 500 kbps, the highest
data rate supported by the laser scanner. For the communication between the
robots and to an external file server wireless PCMCIA Ethernet cards in a PCM-
CIA to ISA adaptor from ARtem Datentechnik, Ulm, with a data transfer rate
of 2 Mb/s are used. For this device we also developed a Linux device driver,
which has now found its way back to the sponsor.

3 Software architecture

The software architecture of the Attempto team can be divided in three different
layers (Fig. 2): low level data processing, intermediate level layer, high level robot
control. We now describe each layer in detail.

3.1 Low level data processing

In the bottom layer different server programs organize the communication with
the sensor and robot hardware, and do the first steps of data processing.
The robot server receives status data from the robot, which contains position,
wheel velocity, sonar data, and battery status and sends movement commands
to the robot, which are received from the Arbiter. The aim in developing the
robot server was to send commands as fast as possible to the robot, under the
constraint that the robot is only capable to execute 20 commands per second,
to achieve a minimum duration for one control loop cycle.
The laser scanner server configures the laser scanner device at startup time with
a field of view of 1800, an angular resolution of 10 and a distance resolution of
10mm. The laser scanner then starts to send whole 1800 scans with a rate of 60
Hz.
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Intermediate level layer

High level robot control
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Figure2. layered software architecture of the Attempto RoboCup-99 robots
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The image processing grabs images from the front camera and the omnidirec-
tional camera with a resolution of 384*288 pixels in YUV format. With this
resolution it is possible to detect the ball with the front camera over a distance
of 8 m and estimate the ball size and therefore the ball distance with an accuracy
of 5 percent. The error in the angular position estimate is less than 1 degree.
To save processing time, the image processing does not search the whole image
for the ball, but uses a history of ball positions in old images to predict the
position of the ball in the next image. Only if the ball is not at the predicted
position, the whole image is searched, starting the search at the predicted posi-
tion.
Aside from the ball position the image processing provides an array data struc-
ture with 360 elements. Each of this elements represents a field of view of 10 and
contains information about detected objects (ball, robots, goal, wall) and the
determined distance and distance errors of these objects. In the field of view of
the front camera the data structure additionally contains information about the
type of the detected robots (own or opponent). Our high speed image processing
needs only 3 ms per frame in the worst case (ball not at the predicted position).
The average processing time for one frame is less than 1 ms. Therefore the image
processing is capable of handling the 2 * 25 fps which the framegrabbers write
to main memory in real time.

3.2 Intermediate layer

The intermediate layer consists of two different modules, the data fusion module,
which fuses the data from the different low-level data processing servers and the
arbiter, which receives steering and control commands from the behaviors and
the planner and calculates a resulting movement command for the robot (section
4.2). The data fusion reduces the amount of information by extracting relevant
object data from the raw sensor data. Objects fall in two different classes: dy-
namic objects like the ball and the other robots and static objects like the walls
and the goals. The extracted information about an object includes opening angle
in the field of view, distance and type of the object. The estimation error in the
distance measurement is provided [4]. Therefore for the upper layer it is not nec-
essary to know from which sensor source a specific distance measurement comes,
because the properties of the sensor device are modeled via the measurement
error. The data fusion also fuses the status data of the robot. For this reason, it
receives the data from the odometry and tries to adopt the position of the robot
with the information from the self localization algorithm described in section
4.1.

3.3 Top layer

The top layer realizes the hybrid robot control architecture [5]. It consists of a
reactive component where a set of independent behaviors like obstacle avoid-
ance, ball search or ball following try to fulfill their tasks. The behaviors can
react quite fast on changes in the environment because they work directly on
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the preprocessed sensor data. This system is easy to expand because it is possi-
ble to start and stop behaviors at runtime.
The planner component is responsible for resolving more complex situations.
This component is capable of suppressing or enhancing the output from specific
behaviors and can also work as a special behavior with the same output to the
arbiter like the other behaviors. The planner works on the data from the world
model. This module fuses the data from the internal sensors and the data com-
ing from other teammates via the wireless Ethernet connection. It tries to keep
track and identify all the objects in the environment, and tries to predict the
trajectories of recently undetected objects. This component is also responsible
for sending data of all objects detected by the internal sensors to all the other
robots.
The communication channel over the wireless Ethernet connection to the other
robots is unreliable. Therefore we are using a UDP based protocol to prevent a
communication action from locking while waiting for another robot to acknowl-
edge.

4 Research Topics

In this section we give a brief overview of some of the problems we are currently
working on.

4.1 Fast self localization with fused sensor data
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Figure3. a) laser scan of a part of our RoboCup field. b) the corresponding histogram
for the directions of the difference vectors between two scan points. The two arrows
point to the lines which correspond to the maximums in the histogram

Perhaps the most important information a robot needs to know to operate
successfully in the RoboCup-99 is his own position within the field [3]. Therefore
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a fast self localization algorithm was developed, which makes use of the fused
sensor data. In a first step this algorithm calculates the vectors and the directions
between successive points in a laser scan. Then a histogram is calculated for
these directions [6]. In a polygonal environment like the RoboCup-99 field this
histogram shows usually one or more maxima which correspond to the main
directions in the environment (Fig. 3). Now the laser scan is segmented into
lines, by projecting each of the normalized difference vectors connecting two
adjacent scan points onto the unit vectors in the main directions. If the result
of this projection exceeds a certain threshold the two points cannot lie on a line
with a direction equal to the main direction. After the segmentation there is
a set of lines with directions according to the maxima in the histogram. The
problem now is to decide, whether some of these lines correspond to a wall or
a goal in the RoboCup-99 environment, because if this is the case, the distance
to this wall can be used to adopt the robot position. Especially if it is possible
to find two lines on different walls, the global position within the field can be
calculated by trying all possibilities of matching the extracted lines against a
set of lines representing the environment given as a priori information. Usually
such matching algorithms possess a high computational complexity of at least
second order in the number of lines. For the case that there is additional visual
information from the vision systems, these matching algorithms can benefit from
this knowledge. First each extracted line is classified into one of the following
categories: WALL, BLUE-GOAL, YELLOW-GOAL and UNKNOWN (Fig. 4).
If the classification supplies only lines in the categories WALL and UNKNOWN
the number of lines which must be matched against the a priori information can
be reduced by using only lines classified as WALL and so the runtime behavior
of the matching algorithm improves. In the case where the classification supplies
lines in the category BLUE-GOAL or YELLOW-GOAL the runtime behavior
improves further, since there is only one possibility to match such a line against
an environment which contains only one blue and one yellow goal. That means
that by fusing the data from different sensor sources a self localization algorithm
can be implemented, which works significantly faster than an algorithm working
purely on range data.
At the moment we are also working on a self localization algorithm which

relies only on the type classification data from the omnidirectional vision system.
This algorithm works with a set of snapshots of the environment taken earlier
and tries to match the current view (Fig. 4) of the environment against these
snapshots to determine the actual position with respect to the positions, where
the snapshots were taken [7]. The advantage of this approach is, that no prior
geometric knowledge of the environment is necessary.

4.2 Hybrid robot control architecture

To play in the RoboCup-99 environment means to fulfill a quite complex task
in a dynamic, adverse environment. Therefore our robots are equipped with a
hybrid control architecture, existing of a reactive component and a planning
component. A set of behaviors realize the fast, reactive part which is capable of
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a) b)

Figure4. a) Image of the omnidirectional vision system. b) Classified objects from the
omnidirectional view in the left picture (white: wall, grey: the two goals)

dealing with the aspects of the dynamic and adverse environment. The planner
controls more complicated tasks, where a purely reactive control could fail, e.g.
team cooperation. The problem in question is to find a suitable way to merge
the different outcomes of the behaviors and the planner. For this problem some
solutions were proposed, e.g. the subsumption architecture [5]. We currently test
and compare different ideas and proposals if they are appropriate for a scenario
with the above mentioned properties of RoboCup-99.
Another problem closely connected to the mentioned one, is to find an appro-
priate mapping for a behavior between the sensor input and a useful response.
The solutions proposed in the literature for this problem range from learned
mappings to potential field methods [8].

5 Summary and Discussion

This paper described the hardware and software architecture of our RoboCup-
99 robot team. Our approach so far has been hardware oriented: we tried to
find the most capable robot platform within our budget and tried to maximize
the number, diversity and the quality of our sensors. To this end we are using
sonars, a wide angle color camera, an omnidirectional camera, a compass and
a 2d scanning laser. Our underlying assumption is that at the current state
of RoboCup play, improving the sensing capabilities will give a higher payoff
than raising the speed of the robots or the onboard processing power or the
“intelligence” of the robots. This is in contrast to the simulator or small size
league, where all robots nearly have the same sensing capabilities. Our choice
of sensors dictated the use of our pneumatic kicker and also the use of a larger
PCI bus PC system with two frame grabbers. We use heavily specialized and
optimized vision algorithms to keep the vision processing requirements low. The
highlights of our software architecture are our method of sensor fusion which
abstracts from individual sensors but keeps information about the reliability of
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sensor state with error data and the coupling of a reactive behaviour layer with
additive behaviour outputs (rather than exclusive ones as in the subsumption
architecture) with a planning component. We also believe we have found a good
solution to update the global world model of each robot under unreliable radio
ethernet communication.
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Abstract. Research in dynamical physical agents, consensus of proper physical
decisions among physical agents, and an example of passing is shown. The interest
is to introduce introspection of the dynamical behavior of each physical body so that
every agent has better knowledge. This has to lead to better passes.

1 Introduction

The Rogi Team started in 1996 as the result of a doctorate course in multiagent systems in
the University of Girona.  The main goal of the team has always been the experimentation
of dynamical physical agents and autonomous systems.  Here, dynamical is understood
from the automatic control background.  It means dynamic temporal evolution of
continuous variables of robots’ physical body, which can be described by transfer
functions or continuous state representation.  The aim is to see the impact of dynamics of
the physical agent’s bodies in the co-operative world.

The micro robots have now clear dynamics for automatic control. There are good
transfer functions available to describe the physical bodies of the physical agents.

Our vision hardware, result of our research, is able to process up to 50 frames/sec,
locating ten robots and a ball.  This sample time is enough for dynamics.

A rational physical agent’s approach, result of our research, is operative for robots co-
operation.   It is here exemplified in terms of passing the ball joint actions.

2 Team’s Hardware Description

Our micro-robot team is made up of three parts: robots, vision system, and control system.
The vision and control systems are implemented in two PC. The control system is called
the host. The host and vision systems are connected by TCP/IP protocol. This allows
remote users to do tests on our micro-robots team and permits distant co-operative
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research [4]. The vision system provides data to the host that takes decisions by an agent
oriented approach. The decision is converted into individual tasks for each robot and sent
using a FM emitter from the host computer.

   We have designed some specific hardware to perform vision, merging specific
components for image processing (video converters, analog filters, etc.) with multiple
purpose programmable devices (FPGAs) and using multiple color segmentation. This is a
real time image-processing tool, which can be reconfigured to implement different
algorithms. To locate the robots and the ball, the first step consists in their segmentation
from the scene. The discriminatory properties of two color attributes, hue and saturation,
are used so as to segment the objects, and different labels to pixels belonging to different
color textures are assigned. Moreover, a more robust behavior under non-uniform lighting
of the scenario is achieved, thanks to the stability of hue and saturation under variations
on the intensity of the illuminant [2].

3 Taking Dynamics into Account for Decisions

Explicit reasoning on dynamics of the physical body of agents will improve co-operative
performance of physical agents.  Knowing that controllers modify (controls) dynamics of
the physical body of agents, then agents have to be aware (introspection) of the set of
controllers their physical body has.  Control engineers need tools for developing these
agents and their controllers, as stated in [3].

AGENT0 [6] is used as an agent language. In this language an agent’s state consists of
mental components such us beliefs, capabilities, choices and commitments.  In our point
of view, the capabilities can represent the dynamics of the agent’s body. Some of the
agent’s capabilities have to be associated to the control of the agent’s body and they are
proposed as a way for the agent to be aware of what he can or cannot do.  This drives to
an extension of the agent concept from physical agents [1] to dynamical physical agents
as follows: The physical knowledge of the physical agent contains knowledge about
dynamics of its physical body, which is supported by further declarative control and
supervision levels [5].

As a first example, this approach is applied to a ball passing experiment between two
robots. The purpose of the example is to show the utility of inter-agent negotiation with
explicit representation of dynamics and to improve the decision of when and how to do
passing with respect to static knowledge. The passing experiment is here simplified as
follows (see Fig. 1): two robots have an obstacle-free crossing trajectory and have to
decide whether to pass the ball and how. The robots have several controllers to move
forward in one-dimensional linear movement. The Single Input Single Output transfer
functions of the robots and the ball are known. Necessary steps to do the experiment are:

� To find a model that represents dynamics of two mobile robots and a ball.
� To implement several position and speed controllers for passing. Their

specification is to reach the set points with precision and stability.
� To inspect untargeted situations: not enough or too much impulse for the ball.
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� A negotiation algorithm based on dynamics represented in Agent0 capabilities.
There are passes that are not physically feasible since there are not controllers to

execute them. For instance, to do a short pass could be an extremely difficult task if there
is no slow speed controller, and the same happens at any required speed set point where
no controller exists.  The physically unfeasible passes are called undesirable situations,
that could be (see Fig. 1):  (1) the robot 2 has slow dynamics, or (2) the robot 1 does not
give the necessary impulse to get ball to the crossing point in some convenient time for
dynamics of robot 2.  This impulse has to be calculated according to dynamics of the ball.

Both robots have to agree the applicable control and moment for the pass based on the
knowledge they have of their dynamics. Since passing between the robots has to be
assured by proper physical decisions, then to determine whether a pass is possible or not
during a football match, at least Robot 1 has to have a controller to make the ball get
through the crossing point.

d1 Distance between the ball and
the crossing point.

d2 Distance between the Robot 2
and the crossing point.
Ball.
Crossing point of the Robot 2
with the ball.

Fig. 1: Simplified passing experiment

In this example the transfer functions are:
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Fig. 3 shows the response of a robot to a speed set point 30 cm/s step (this step is the
required speed to kick the ball in the pass).  Robot 1 knows that the ball can move 10 cm
away from him:

� In 0.285 s with the impulse of 32 cm/s.

Robot 1

d1 d2

Robot 2
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� In 0.428 s with the impulse of 45 cm/s.
� And in 1.1 s with the impulse of 60 cm/s.

This knowledge is contained in its base of capabilities.

 For doing d1 Robot 1 can provide with three different impulse to kick to the ball as shown
in the Fig. 2.

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

Time [s]

D
is

ta
nc

e 
[c

m
], 

S
pe

ed
 [c

m
/s

]

1.10.285 0.428

Speed impulse (kick)

d1

     
0 0.5 1 1.5 2 2.5 3

0

10

20

30

40

50

60

70

80

90

Time [s]

D
is

ta
nc

e 
[c

m
]

   d2

1.1

Ideal response

Fig. 2: Response of the ball to  three                 Fig. 3: Response of Robot 2.
                  different kicks (impulses).

Consensus Decision Algorithm

� Step 1: Proposition: With these data, Robot 1 proposes to do the pass in 0.285
seconds to Robot 2.

� Step 2: Robot 2 is 30 cm away the crossing point.
� Step 3: Introspection: Robot 2 looks up its base of capabilities what time is required

to be 30 cm far from its actual position. The result is 1.1 s.
� Step 4: Answer: Robot 2 tells Robot 1 it can move 30 cm in 0.285s, 60% of certainty.
� Step 5: Decision: Robot 1 considers that this certainty is not enough.
� Step 6: New Proposition: Robot 1 proposes to do a pass in 0.428 s, impulse 45 cm/s.
� Step 7: Answer: Robot 2 responds 75% certainty.
� Step 8: Decision: Robot 1 considers that this certainty is not high enough.
� Step 9: New Proposition: Robot 1 proposes new time, 1.1 s with impulse 60 cm/s.
� Step 10: Answer: Robot 2 to Robot 1. It can move 30 cm in 1.1s with 90% certainty.
� Step 11: Decision: Robot 1 agrees this certainty is big enough and they do the pass.

Fig. 4 shows how the ball and Robot 2 arrive to the crossing point at the time the
robots had decided. Robot 2 had to move 30 cm and the ball 10 cm. Note that Figure 3
also shows the difference between the real (dynamical) and the ideal (static) responses of
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the robot.  If agents take decisions considering the ideal case, the decisions may be wrong.
Taking into account the dynamics of their bodies in the decision, agents can assure they
take the physically proper (and correct) decision.
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Abstract. This paper describes a softbot agent capable of learning to
choose its actions, in order to achieve its goal when facing an opponent
in a dynamic environment. The agent uses rewards gathered from the
environment to assess and improve the quality of its own behavior. A
multilayer perceptron neural network is assessed regarding its adequacy
as a value function approximator for state-action pairs in the robotic
soccer domain.

1 Introduction

The reinforcement learning approach is a very e�ective alternative to the stan-
dard supervised training of arti�cial neural networks (ANNs). Instead of having
an external teacher that indicates the correct output for each given input, re-
inforcement learning simply provides a reinforcement signal that indicates the
quality of the network output. According to [10], one can identify the follow-
ing main sub-elements of a reinforcement learning system: a policy, a reward

function, a value function and sometimes a model of the environment.
A policy is a mapping from perceived states to actions to be taken in those

states.
A reward function de�nes the goal in a reinforcement learning problem, map-

ping each pair formed by a state s and an action a to a single number. This single
number is the reward that indicates the desirability, in an immediate sense, of
choosing action a when in state s.

The value function indicates the bene�t of selecting action a when in state
s, in a long-term sense. Roughly speaking, the value of a state-action pair is the
total amount of reward an agent can expect to receive if it takes action a when in
state s, following a policy. The only goal of a reinforcement learning agent is to
maximize the total reward it receives in the long run. Methods for determining
values are the most important components of almost all reinforcement learning
systems.
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In stochastic domains, a model describing the state transition probabilities
and the resulting immediate rewards is usually not available, at least in many rel-
evant domains. For this reason, the reinforcement learning agent learns through
direct interaction with the environment.

The main objective of our research is to develop a team of agents capable of
learning cooperative behavior solely by observing the impact of their actions in
the environment. To achieve this goal we have been developing an agent capable
of learning to choose its actions by observing environment rewards. The �rst
phase of the development, described in this paper, intends to assess an (ANN)
as an action evaluator in the robotic soccer domain.

The RoboCup soccer server is a simulated robotic soccer domain that allows
matches between two teams of up to 11 players, where each player is controlled by
a single process. The soccer server works in 100 milliseconds (this is an adjustable
parameter but 100 is its default value[2]) simulation cycles. It demands that
agents act in real time. The environment changes are inuenced by the actions
of both teams of agents. This combination of features makes it a very complex
and realistic domain, where decisions are made in stages, and the output of a
decision can not be fully predicted. Each decision results in some immediate
reward and a�ects the environment, inuencing the reward received by the next
decision to be made.

In the following section, it is �rst introduced the learning agent's structure
and the environment state perceived by the agent. Section 3 justi�es the use of
an ANN as a value function approximator. It also describes the overall approach
implemented, including the reward signal and the ANN. Section 4 presents the
results, which are discussed in Sect. 5. Section 6 presents some related work and
Sect. 7 presents the conclusions.

2 The Learning Agent

The softbot agent is in essence a reinforcement learning agent, whose main ob-
jective is to gather the maximum reward. This goal can be achieved by choosing
the action that has the best value in face of the present state signal.

The agent must learn while interacting with the environment since it has
no previous knowledge about the task or the domain it is about to face. Once
it is not practical to use memory tables to keep the value of each state-action
pair that is experienced by the agent (Sect.2.1), we decided to use an (ANN) to
approximate such values (Sect.2.2).

The agent's structure is very simple, yet e�cient. It works according to the
following loop:

Sense the environment state.

If it is time to choose the best action:

Use the neural network to evaluate each of the available actions

in light of the state signal.

Choose the action that has the best-estimated value.
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If it is time to choose randomly:

Choose randomly among the set of available actions.

Execute the chosen action.

Gather the reward.

Update the value estimate of the neural network.

2.1 The Environment State

The learning player senses the world according to the following state signal:

1. The angle between the ball and the learning agent.
2. The distance between the ball and the learning agent.
3. The angle between the opponent and the learning agent.
4. The distance between the opponent and the learning agent.

According to [2], the soccer �eld size is 105 x 68 where the unit is meaningless.
We use the arctan function to calculate the relative angles above. We did not use
any kind of generalization, in order to reduce the size of the state space. As the
Soccer Server gives us oat point precision, we have an enormous state space.

2.2 Set of Actions

Each of the agents is given a set of three actions, each action is implemented by
a routine that has all the information it needs to perform the action.

Get the Ball.

Pre-conditions : The ball must not be within kicking distance of the agent.

E�ect : This moves the agent (A) in the direction of the ball. When it reaches
the ball, A stops within kicking distance from it.

Kick Towards Adversary Goal.

Pre-conditions : The ball must be within kicking distance of A.

E�ect : This kicks the ball toward the adversary goal.

Turn the Ball.

Pre-conditions : The ball must be within kicking distance and behind A, with
respect to the adversary goal.

E�ect : This turns the ball towards the adversary goal, keeping it within kicking
distance. When the ball is in front of A with respect to the adversary goal, A
kicks the ball.
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2.3 Decision Cycle

In this paper, we had matches between two opposing players, without goalies.
One player uses the learning structure already depicted while the other chooses
its actions at random. Both agents must decide which action will be taken at
each simulation cycle. The action set and the short simulation cycle allow even
the random player to score consistently if it does not face opposition.

3 The Learning Approach

As the main objective of this work is to assess an ANN as a function approxi-
mator in the robbotic soccer domain, we are not dealing with delayed reward.

3.1 Why a Neural Network as Value Function Approximator

It is clear that, given the chosen state representation, it is not practical to keep
the actions values in memory tables, since the number of possible states is very
large. This imposes the use of an approximator for the value function.

The chosen approximation architecture must attend at least, the following
conditions:

1. Once it is not possible to know beforehand the features of the value function
that must be approximated, the architecture must allow for good generic
function approximation for at least continuos functions.

2. It must be capable of working well even in a noisy, uncertain environment.
3. It must be able to work under real-time demand.

The Kolmogorov's Mapping Neural Existence Theorem [9] gives the mathe-
matical justi�cation for the use of three layer perceptron networks, as universal
continuos function approximators.

3.2 Coding the Agent's Goal as a Reward Signal

In the reinforcement learning framework, the reward signal is used to encode
what we want the agent to do. It is the same in the present case, where the
reward following the choice of each action is used to inform the agent whether
it was a "good" or a "bad" choice.

In this paper, "good" means choosing an action that has all of its pre-
conditions (constraints that must be valid, given the present state signal, such
that the action is applicable) satis�ed by the state signal the agent perceives
from the environment. In this case the reward signal is positive.

If anyone of the pre-conditions of the chosen action is unsatis�ed, the reward
signal will be negative. In other words, the encoded goal is to learn to choose
actions that have all pre-conditions satis�ed by the perceived state signal. This
goal and method for calculating the reward are intended just to provide an easy
yet valid mean to evaluate the proposed value function approximator.
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3.3 Learning the Value of a State-Action Pair

To learn the value of a state-action pair, the (ANN) is presented with the action
chosen by the agent and the perceived state signal. The network output must be
equal to the reward immediately received by the agent. In other words, when we
talk about values in this work, we are talking about immediate rewards (given
the goal of this work, that is to assess a ANN as a function approximator in the
robotic soccer domain, we are not dealing with delayed rewards). If the ANN
is able to learn the immediate rewards, it will be able to learn the values of
state-action pairs (in the usual reinforcement learning sense) when dealing with
delayed rewards.

Given the goal proposed to the agent, there is no need to estimate the true
value of all state-action pairs; learning the immediate rewards will be enough.

3.4 The Neural Network

The neural network shown in Fig. 1 is a three-layer fully connected feedforward
perceptron, with ten hidden neurons and one output neuron.
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Fig. 1. ANN diagram

The hidden neurons use the hyperbolic tangent as the activation function
while the output neuron just sums up all of its inputs. The training method is
the backpropagation algorithm [6].

3.5 Choosing the Best Action

The choice of the best action to be taken is based solely on the state signal
perceived by the agent. When it is time to choose an action, the agent feeds
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the (ANN) input with the current state signal and the input corresponding to
the action being evaluated is made positive, while the other action inputs are
kept at zero level. The ANN output is then recorded. This procedure is repeated
for each existing action and the agent chooses that one that yields the biggest
numerical output of the ANN. Each action is implemented by a routine and
identi�ed uniquely by a positive number.

4 Results

To assess the e�ectiveness of the proposed state-action pair value approxima-
tor, we conducted experiments consisting of a series of ten-minute games. The
learning agent faces an opponent that selects its actions randomly.

If the learning agent e�ectively learns to take actions which pre-conditions
are satis�ed by the state of the environment, it will be able to outscore a random
selecting agent, that wastes time selecting actions that may not be e�ective in
the current environment state.

4.1 Experiment Results

Experiment 1 - The learning agent always selected a random action and did not
learn from the rewards received from the environment. Therefore, the learning
player actually performed just like a random player. The goal of this experiment
is to assess the performance of two random players.

The results, presented in Tables 1 and 2 and Fig. 2, show that in this case,
the performance is the same for both players.

Table 1. The score of each match in experiment 1

Game Number Learning Player Random Player

1 5 2

2 2 5

3 3 4

4 4 4

5 3 5

6 4 3

7 3 5

8 5 4

9 5 5

10 6 4
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Table 2. Some statistics referring to experiment 1

Game Number Learning Player Random Player

Number of goals 40 41

Average goals 4 4.1

Number of wins 4 4

Fig. 2. Average score per game in experiment 1
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Experiment 2 - At random, with probability 0.2, the learning agent selected

the most valuable action, and with probability 0.8 selected randomly one action

from the set of available actions.

At the beginning the ANN's weights were assigned randomly, and they changed

according to the learning process throughout each game. The goal of this exper-

iment is to assess the e�ect of the learning process on the player's performance.

The results, presented in Tables 3 and 4 and Fig. 3, show that in this case,

the learning player is becoming superior as the number of games grow.

Table 3. Some statistics referring to experiment 2

Game Number Learning Player Random Player

1 5 5

2 9 3

3 2 7

4 3 5

5 6 2

6 6 2

7 2 6

8 6 3

9 7 2

10 5 2

Table 4. Some statistics referring to experiment 2

Game Number Learning Player Random Player

Number of goals 51 37

Average goals 5.1 3.7

Number of wins 6 3
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Fig. 3. Average score per game in experiment 2

Experiment 3 - At random, with probability 0.8, the learning agent selected

the most valuable action, and with probability 0.2 selected randomly one action

from the set of available actions.

At the beginning the ANN's weights were assigned randomly, and they changed

according to the learning process throughout each game. The goal of this exper-

iment is to assess the e�ect of the learning process on the player's performance.

The results, presented in Tables 5 and 6 and Fig. 4, show that in this case,

the learning player becomes much superior as the number of games grow.

Table 5. Some statistics referring to experiment 3

Game Number Learning Player Random Player

1 6 4

2 7 2

3 5 4

4 10 2

5 7 3

6 7 3

7 7 2

8 8 4

9 9 4

10 10 2
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Table 6. Some statistics referring to experiment 3

Game Number Learning Player Random Player

Number of goals 76 30

Average goals 7.6 3.0

Number of wins 10 0

Fig. 4. Average score per game in experiment 3
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5 Discussion

The simulation results show that:

1. The average number of goals per game of the random selecting player con-
sistently decreases as the probability of selecting the most valuable action
for the learning agent increases.

2. The average number of goals per game of the learning agent consistently
increases as the probability of selecting the most valuable action increases.

3. The number of wins of the learning agent consistently increases, reaching
100%, as the probability of selecting the most valuable action increases.

Since the only di�erence between the three experiments is the learning agent's
probability of choosing the best-estimated action, it is clear that this is what
caused the above changes in the experiments' statistics. Because of the fact
that the increase in this probability improved the performance of the learning
agent and hindered the performance of the random player, it is clear that the
learning agent has learned something useful. This allowed the learning agent to
consistently outscore the random selecting agent.

These results make clear that a feedforward multilayer perceptron is able to
approximate the value function for a reinforcement learning agent, in the robotic
soccer domain, in a fast and reliable way.

6 Related Work

The work presented in this paper is inspired by Tesauro's TD-Gammon [11], an
(ANN) that is able to teach itself to play backgammon solely by playing against
itself and learning from the results.

The domain of backgammon, like robotic soccer, is a domain where decisions
are made in stages, with a huge number of possible states, making it impossible
to use a supervised learning approach for the neural network. Both domains
involve playing against an unknown opponent.

Many researchers have been using learning methods in the robotic soccer
domain. Among the more common methods are genetic algorithms [7], genetic
programming [1], case-based reasoning [5] and reinforcement learning [3].

7 Conclusion and Future Work

Our agent learned to choose its actions using solely the rewards it obtained
while interacting with the environment. It is important to stress that it did not
have any previous knowledge about the robotic soccer domain in any form. It
is an (ANN) that learned to play just by observing the rewards gathered while
playing.

One important aspect to be emphasized is that the learning is naturally
focused on the state trajectory followed by the learning agent. This greatly
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reduces the space state complexity, explaining the fast learning that allowed our
agent to win every match in the third experiment, even having started with
random weights in its neural network.

The �rst phase of the development of our research, described in this paper,
intended to assess an (ANN) as an action evaluator in the robotic soccer domain.
The results are encouraging. Our research continues with the development of a
team of eleven agents that learn by being rewarded solely when they score a goal
and being punished when the opponent team scores a goal. In the next step, the
agents will be controlled by a version of Richard Sutton's Sarsa algorithm [10],
improved with an augmented version of the ANN used in the present work, to
approximate the value function.

Robotic soccer demands that the agents learn and act in real time. The
output of each action is not fully predictable due to random noise imposed by the
RoboCup Soccer Server. The environment changes are inuenced by the actions
of both teams of agents. This combination of features makes this a very complex
and realistic domain. This complexity allows us to assert that the technology
we have been developing can be applied to real tasks that demand learning
of a control policy in dynamic huge state space environment. Good examples
of real tasks are dynamic channel allocation in cellular telephone systems and
elevator dispatching[10]. These two applications show the importance of a good
value-function approximation architecture.
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Abstract. Creating complex agents for simulation environments has

long been the exclusive realm of AI experts. However it is far more de-

sirable that experts in the particular application domain, rather than AI

experts, are empowered to specify agent behavior. In this paper an ap-

proach is presented that allows domain experts to specify the high-level

team strategies of agents for RoboCup. The domain experts' speci�ca-

tions are compiled into behavior based agents.

The 1999 RoboCup World Cup provided an interesting basis for evalua-

tion of the approach. We found that for RoboCup it is not necessary to

allow a user to change low level aspects of the agents' behavior in order

for them to create a range of di�erent, interesting teams. We also found

that the modular nature of behavior based architectures make them an

ideal target architecture for compiling enduser speci�cations.

1 Introduction

Simulation environments where intelligent agents play the roles of humans are
used for training and testing in domains such as air combat training, �re �ghting
command training and large scale military simulations. The development of in-
telligent agents for such environments has been, and continues to be, a challenge
for AI researchers. However over the years a wide range of techniques have been
developed to meet many of the challenges faced. Nearly all of the developed
techniques rely on the availability of agent experts to program the agents. This
is highly undesirable in cases where there is either a large body of expert knowl-
edge that needs to be incorporated into the agent or when the agent behavior
needs to be changed often. Either case implies a large amount of work, better
o� done by a domain expert, being done by an agent expert. In this paper an
approach is presented aimed at bridging the gap between domain experts and
agent programming for one particular domain, namely RoboCup[3].

Our approach is to provide a graphical editor, resembling a coach's white-
board, with which a domain expert can specify the high level strategies of a
team in a manner similar to the way he might explain strategies to a real soccer
team. For example, Figure 1 shows a diagram explaining one professional soccer
strategy taken from the Internet. The diagram seems to be typical of the way
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complex, high level strategies are explained by humans for humans. The strategy

editor presented here attempts to mimic this explanation style.

In our system a strategy is speci�ed by drawing circles for player positions and

arrows for the directions to pass and dribble the ball. The whiteboard style editor

allows a wide range of options and exibility providing the ability to specify

complex strategies without knowledge of the underlying agent architecture. The

speci�cation, done at a team level, is subsequently compiled into eleven separate

behavior-based agents, one for each player.

Fig. 1. A diagram from the Internet explaining a particular team soccer strategy to a

human audience.

Although the system described here is intimately tied to the RoboCup do-

main it is hoped that lessons learned from the system can be applied generally

to the problem of empowering domain experts to program agents for complex,

agent-populated simulations. In particular an evaluation of the system provides

insight into two questions. Firstly, are behavior based architectures good target

architectures for compiling end user behavior speci�cations? Secondly is it su�-

cient in some domains to give endusers only the ability to specify the high level

behavior of the agents?
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2 The Editor

The heart of this approach to domain expert speci�cation is a exible, visual
editing tool called the strategy editor. A soccer expert (henceforth referred to
as the designer) indicates positions of players and intended ball movement in a
style similar to drawing on a whiteboard. To create a particular team strategy
the designer places all players on an image of the playing �eld. For each player
the designer can specify an arbitrary number of positions to pass to, an arbitrary
number of directions in which to dribble and directions to watch for incoming
passes. The compiled agent will use its knowledge of the world (e.g. relative
positions of other players) to choose at runtime which option to take when it
gets the ball. Because all the players are simultaneously shown in the editor,
and the designer is working on them all concurrently, it is trivial to ensure that
players pass to positions where team mates are likely to be (and correspondingly
that players move to positions where passes are likely to come). Soccer experts
can place players and design passing and dribbling formations that lead to good
RoboCup teams. Notice that once players are compiled any team behavior that
occurs is \emergent", i.e. there is no explicit communication or explicit repre-
sentation of passing patterns. In e�ect the strategy editor provides a means to
visualize and specify \emergent" team behavior.

As well as control over what the players do, i.e. where they pass and dribble,
a designer has some control over how the player does something. For each player
the designer may choose the style with which the player will play (the available
styles are determined from the player skeleton { see below). Some general styles
are normal play or shooter, while more specialized styles are crosser (always
tries to kick the ball to the middle) and wait (just watches ball, useful when
referee stops play, etc.) The styles inuence how the player ful�lls its part of the
designer's strategy. For example, the shooter style results in a player that will
chase the ball in a fairly large area around its assigned position and will shoot
if at all reasonable. Apart from selecting styles of play the designer has no low
level control over the behavior of the players. The details of the players' behavior
come from a template created in a low level individual player strategy editor.

The process of designing formations and selecting styles is repeated for each
of the di�erent game \modes" (or situations) that the player will distinguish
between. Example modes are kicko�, deep defense and transition to attack. The
modes of play that the player knows about are determined from a player \tem-
plate" created in a lower level individual strategy creation tool (see below and
[4]). For RoboCup99 there were about 15 di�erent modes. At runtime the player
determines the current mode mainly by the position of the ball on the ground
but also considers factors such as referee calls and which team is nearer the ball.
It is possible to view the strategies more than one mode at once, hence it is
possible to see how a player must move when the team switches from o�ense to
defense or vice versa.

Figure 2 shows a designer speci�cation of how a particular defensive strategy
should work. Circles represent players. Arrows with double lines indicate the
direction that the player should dribble when it has the ball. Arrows with single
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Fig. 2. A diagram of a team's defensive strategy. A player is represented by a circle.

An arrow with a double line represents a direction to dribble. An arrow with a single

line represents a direction to pass.
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lines indicate where the player should pass when it has the ball. Priorities are
not shown on this diagram. The main idea behind this particular strategy is that
from defense the ball should be cleared via the sides of the ground. Notice that
many of the players have multiple options when they have the ball. At runtime
the agent will choose the most appropriate action that is applicable, e.g. when
the player has the ball and there are opponents close the action chosen will be
the pass that a teammate is most likely to receive. Notice also how the pass
directions for one player are easily speci�ed to match the positions where other
teammates are likely to be situated.

3 Compiling Team Speci�cations to Behavior Based

Trees

attack

defend

kick

move-to-ball

move-to-position

intercept-ball

play-on

priority
User defined

Environmental

Committment

stimulation

Total

Fig. 3. A snap shot of an agent's reasoning. The grey boxes show the contributions of

di�erent components of the activation function to the total activation of the behavior.

The strategy editor is \con�gured" with a \skeleton" agent. The skeleton is
a hierarchy of parameterized behaviors that can be subsequently instantiated
into an agent. The skeleton agent can be thought of as a generic player. Three
keywords are embedded in the speci�cation of the generic player: MODE; ATTR
(attribute) and ACTION. The team strategy editor uses the template (especially
the keywords) to con�gure itself, i.e. by creating a panel for specifying each
MODE, a menu item for each style (i.e. ATTR) in the mode and the ACTIONS
the player can take with the style. This mechanism makes the strategy editor
very exible, quite di�erent skeletons can be used to create teams with quite
di�erent abilities.

Once a team has been speci�ed, partially or completely, it is compiled into a
layered behavior-based agent. The process of compiling a team strategy speci�ca-

454 P. Scerri and J. Ydrén



www.manaraa.com

tion consists of instantiating parameters and groups of behaviors in the skeleton
hierarchy. A separate skeleton is instantiated for each player.

The architecture of the resulting agents is described in more detail in [4].
An agent is composed of a hierarchy of behaviors. At each level of the hierarchy
a single behavior is chosen to act. The behavior chosen is the one with the
highest activation where the activation is a function of the behavior's priority,
commitment and the prevailing environmental conditions. Behaviors at higher
levels of the hierarchy act by setting appropriate lower level behaviors and the
lowest level behaviors act by turning on or o� simple skills. Figure 3 shows a
snapshot of part of a behavior hierarchy, indicating the way that activation is
calculated and how it e�ects which behavior is selected to act.

Play 

Offense_MODE

Always

Always Defensive PositionAttacking Position

Defense_MODE Neutral_MODE

Agressive_ATTR Shooter_ATTR

Pass_ACTION

Have ball Near Ball Far from ball

Fig. 4. Parts of the generic player's behavior hierarchy. Boxes represent behaviors.

Each behavior is labeled with its name. Next to each box is the activation condition

associated with the behavior.

Each team formation, i.e. one for each game mode, corresponds to one group
(usually a hierarchy) of behaviors in the agent. Figure 4 shows the top part of
an agents hierarchy of behaviors. Notice that there is one branch for each game
mode (indicated by the keyword MODE). Appropriate conditions are associated
with each hierarchy to ensure that the correct hierarchy is activated at the correct
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time in the game, for example the defensive strategy will be activated when the
ball is in the back third of the �eld. A designer need not know the condition
associated with the strategy.

Depending on the style chosen for the player a slightly di�erent generic tree
(indicated by keyword ATTR) is selected (by the compiler) for the agent. The
hierarchies vary only slightly, mainly in terms of the functions for activating dif-
ferent behaviors. For example in a cautious style hierarchy behaviors for checking
the location of the ball are more readily activated.

The details of the speci�ed strategies are then used to instantiate the de-
tails of the style hierarchies. The speci�ed position of a player on the �eld in a
strategy is directly translated into parameters for a corresponding behavior that
moves the player to a position. Figure 5 shows how one speci�ed position has
been instantiated to parameters in a behavior hierarchy. Each pass or dribble
action speci�ed for a player results in a dedicated behavior (or possibly behavior
hierarchy { indicated with the keyword ACTION in the player skeleton) being
added to the overall agent hierarchy. Figure 6 shows the resulting instantiated
tree after behaviors for two di�erent pass behaviors and a single dribble behavior
have been added.

Far from ball

Watch ball

Haven’t seen

ball lately

Go to position

X = 25

Y = 0

Always

Not in position X, Y

Fig. 5. This diagram shows how the position parameters of a player are incorporated

into the tree. The X and Y values for the behavior and for the activation condition are

taken directly from the speci�cation.

4 Discussion

A number of di�erent approaches have been, and continue to be, taken to meet
the challenge of empowering end users to program. An evaluation of this proto-
type serves as an evaluation of two ideas. The �rst idea is that behavior based
systems serve as a good target architecture for compiling end user speci�cations.
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Team mate 

near X, Y

Pass-to

X = 40

Y = -10

Far from ball

near X, Y
Pass-to

X = 40

Y = 10

Go to position

Team mate 

X = 25

Not near X, Y

Dribble-to

X = 50

Y = 0

Clear path to

X, Y

Watch ball

Haven’t seen

ball lately

Y = 0

Always

Fig. 6. This diagram shows how the behaviors have been added for two user speci�ed

pass directions and one user de�ned dribble direction.

The second idea is that for this domain, which we do not believe is unique, it
is su�cient to give users only the ability to change the high level behavior of
agents. The system described here tests both these ideas.

The �rst idea, that behavior based systems are an appropriate target archi-
tecture for end user programming is supported by the intuitive idea that end
users describe behavior in the same way as behavior is implemented in a behavior
based system. Loosely speaking, users seem to think about behavior as concur-
rent tasks that one switches between depending on environmental conditions.
For example a soccer expert may talk about defense and attack, or dribbling
and passing. In a behavior based system each of the described behaviors would
be implemented as a separate logical unit (i.e. a behavior). An end user also
assumes that other tasks such as maintaining situational awareness and con-
tinually evaluating whether the current behavior is most appropriate are done
continuously in parallel with the current task { in a behavior based system this
is standard functionality (i.e. by switching between low level behaviors).

Because the speci�cation method of the editor is close to the usual explana-
tion method of the designer the "translation" required by the designer is minimal.
Any act of communication, even from human to human, results in some loss of
information or ambiguity. The more di�cult the task of communication the more
the information loss and ambiguity. Hopefully by minimizing the translation re-
quired the information loss can be minimized. As a contrast consider having a
user describe soccer behavior in terms of, say, hierarchical plans or beliefs and
desires. Clearly an average user would need to do considerable translation from
their normal way of describing what a soccer player does to express his ideas
in such a formalism. Surely, it follows, that a large amount of expert knowledge
would be lost in translation.
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The second idea tested by our system, that a successful end user programming
environment need not give programmers low level control over the behavior
of agents, is perhaps less contentious. Regardless of the particular high level
strategy the basic behavior of the agents does not change substantially, e.g.
they still dribble, pass, run etc. in much the same way. For this reason it does
not seem essential that the strategy designer be given low level control. In other
domains, such as mobile robotics, the low level behavior of the agent may change
dramaticallywith changing high level tactics rendering a high level only approach
inapplicable. However simulated soccer is not the only domain where di�erent
high level strategies use the same low level behaviors, computer games and air-
combat simulation being two other examples.

Unlike in domains such as manufacturing, where design, implementation and
testing time may be measured in tens of man years, it is desirable that the
design and implementation time of RoboCup strategies be measured in hours if
not minutes. In order to support development times of this order of magnitude,
the user cannot be required to make too many decisions. Even considering only
high level strategies a virtually in�nite design space exists. Considering that
reasonable design times are unlikely to be achieved if users delve into low level
behavior speci�cations of agents and also that at a high level there are a large
range of options it seems reasonable that an end user programming system not
allow the user to change the low level behavior of the agents.

During the RoboCup World Cup competition undergraduate computer sci-
ence students, relatively inexperienced with agent technology, speci�ed the be-
havior of HCIII and changed it (sometimes markedly) for nearly every game.
Although the students became relatively experienced with the strategy editor
they made very few accommodations for aspects of the underlying agent behav-
ior and felt as though the players they speci�ed would do as they intended. The
players performed as the students intended indicating the transformation from
team speci�cation to individual agents was faithful to the designers intentions.
This supported our hypothesis that behavior based architectures are a good tar-
get architecture for compiling high level speci�cations. The students developed a
surprising range of di�erent team strategies tailored to di�erent oppositions. The
most critical result was that the agent template rarely needed to be modi�ed,
even though the team behavior varied greatly. The students seemed more than
happy to work within the con�nes of the team editor and managed to produce
a wide range of team well tailored to particular opponents. That fact supported
the hypothesis that end users did not need to specify low level aspects of the
agents in order to achieve results they were looking for.

During the competition itself there was very little time for modi�cations of
teams. However even in the shortest periods (as little as �ve minutes!) di�erent
team strategies, tailored to the upcoming opposition, were developed. In fact
the World Cup provided a fantastic opportunity to assess the rapid development
capabilities of the strategy editor and the results supported the claim that very
rapid, yet e�ective development was possible.
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5 Conclusion

In this paper we described a high level, end user programming environment for
specifying team level strategies for RoboCup. The system allows a soccer expert
to specify team positions and ball movement in a manner analogous to drawing
on a whiteboard. The strategy editor was designed to evaluate two hypotheses,
�rstly that behavior based architectures were a good target architecture for com-
pilation of high level strategies and secondly, that end users needed only high
level speci�cation capabilities when specifying complex teams. The system was
put through rigorous \real-life" testing during the RoboCup World Cup. Both
hypotheses were supported by the experience. Students, relatively inexperienced
with agent technology, speci�ed strategies very quickly and the resulting teams
executed the strategies in accordance with the students intentions. This expe-
rience leads us to believe that the idea of high level speci�cation by a domain
expert followed by compilation into behavior based agents is worth considering
in other domains.
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Abstract. The annual robot soccer competition (RoboCup) provides an excellent
opportunity for research in distributed robotic systems. A robotic soccer team de-
mands integrated robots that are autonomous, efficient, cooperative, and intelligent.
In this paper, we introduce the concept of Purposeful Behavior, to tackle the problem
of achieving reactive and coordinated behavior in a team of autonomous robots. We
are building a new control framework for autonomous robots to reason about goals
and actions, react to unexpected situations, learn from humans and experience, and
collaborate with teammates. Building such robots may require techniques that are
different from those employed in separate research disciplines. We describe our ex-
perience in building these soccer robots and highlights problems and solutions that
are unique to such multi-agent robotic systems in general. These problems include a
framework for multi-agent programming, agent modeling and architecture, evalua-
tion of multi-agent systems, and decentralized skill composition.

1   Introduction

The robot soccer competition (RoboCup) confronts teams of fast-moving robots that coop-
eratively play soccer in a dynamic environment [1]. Since individual skills and teamwork
are fundamental factors in the performance of a soccer team, Robocup is an excellent test-
bed for integrated robots. Each soccer robot (or agent) must have the basic soccer skills—
dribbling, shooting, passing, and recovering the ball from an opponent, and must use these
skills to make complex plays according to the team strategy and the current situation on
the field. For example, depending on the role it is playing, an agent must evaluate its posi-
tion with respect to its teammates and opponents, and then decide whether to wait for a
pass, run for the ball, cover an opponent’s attack, or go to help a teammate.

Building these mobile autonomous robots that can function effectively in a soccer game
raises a number of interesting challenges. First, autonomous robots must have an intelli-
gent control system so that they can accomplish missions without constantly requiring

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 460−470, 2000.
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humans to supply detailed instructions. This calls for the ability to not only deliberately
reason about goals and plan for actions, but also reactively deal with situations and events
that are not expected. Previous work on purely deliberative control systems or purely re-
active control systems was limited in this respect. A purely reactive system, although fast
and robust, cannot reason about actions and goals during a mission. Consider a reactive
robot that is controlled by two basic behaviors, GB (go to the ball) and AO (avoid obsta-
cles), in a goal-scoring task. When seeing the ball through an impassible gap between two
idle opponents, this robot will repeatedly go back and forth on this side of the opponents
without making any progress. This is because the robot is pulled back by the AO behavior
to avoid the opponent robots (obstacles), but at the same time, attracted by the ball due to
the GB behavior. It does not know that the correct solution in this situation is to introduce
a new sub-goal to bypass the opponent robots. In a similar situation, a deliberative system,
although capable of reasoning about goals, would require a detailed model of the situation
in order to make a successful plan. Such a model may not be always available and there is
no guarantee that any given model is complete and accurate. For example, an incomplete
model may neglect the fact that the gap is impassible for the robot and thus cause the
planned actions to fail in reality.

In the following sections of this paper, we will address the above issues in detail. The
discussion will be organized in two parts: the description of the novel concept of purpose-
ful behaviors, and our robot team implementation, with highlights on key components and
challenges. The related work will be discussed at the end.

2   The Purposeful Behavior Approach

We are building a new control framework for autonomous robots to reason about goals and
actions, react to unexpected situations, learn from humans and experience, and collaborate
with teammates. Based on current research on reactive and deliberative systems, the key
idea behind this approach is to make behaviors purposeful. Specifically, we propose a con-
cept called Purposeful Behavior (PB) by extending a standard behavior (i.e., a pair of state
fi actions) with a set of purposes (i.e., state fi actions fi purposes). Instead of a complex
mixture of heterogeneous reactive and deliberative systems, our approach is based on a
uniform, and hence simpler, representation to allow a behavior-based control system to
flexibly reason about goals and dynamically construct complex behaviors based on given
tasks. The state in a PB is sensor-mediated so that a PB is still reactive. To ensure delib-
eration, the purposes of a PB are symbol-mediated so that they can serve as the desired
effects of the behavior. In terms of representation, a purpose of a PB is a symbolic expres-
sion, containing a set of symbolic features that are either abstracted from the sensor data or
constructed from the internal mental states. PBs differ from the operators used in tradi-
tional planning frameworks because effects directly model all the changes in the world
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that occur when the operator is executed. In contrast, a PB’s purpose only describes the
goal that the action achieves. A purposeful behavior provides a natural link between sen-
sor-mediated and symbol-mediated data and integrates reactivity with deliberation without
relying on separate and distinct layers of control.

The purpose of a PB can be interpreted in two ways, depending whether forward or
backward reasoning is used. In the forward sense, a purpose can be interpreted as a pre-
diction that specifies what is expected to be true at the end of each execution of the be-
havior. For example, a reasonable prediction for the GB behavior in the above example
would be “reduce the distance to the ball” and it is abstracted and calculated from the sen-
sor data on object distances. Similarly, a prediction for the AO behavior would be “in-
crease the distance to obstacles.”

The second interpretation of a purpose, when reasoning backward, is an internal mental
desire of the robot. This is similar to the notion of desire used in the Desire-Belief-
Intention (DBI) architecture. Here a desire may or may not correspond to any external
state in the environment. For example, consider the desire of “staying safe” which is very
difficulty to qualify in terms of descriptions of external states, but it is natural to have such
an internal mental desire in order to activate a number of reactive behaviors to ensure the
safety of the robot. In this light, the “staying safe” should be one of the purposes of the AO
behavior. In some sense, this is similar to “goals of maintenance” (in contrast to “goals of
achievement”).

Fig. 1. Autonomous Soccer Robots

With the notion of Purposeful Behavior, a plan of behaviors to accomplish a given task
is a sequence of purposes or desires (not actions) that leads and guards the accomplish-
ment of the task. Our execution mechanism is straightforward and shares many similarities
with existing execution systems. When a sequence is executed, each purpose in the se-
quence triggers a set of PBs that share the same purpose. These behaviors are applied
reactively and in parallel until the purpose is accomplished. Upon the termination of a pur-
pose, the next purpose in the sequence is activated, and a different set of behaviors comes
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into play. In this sense, behaviors are organized and played in stages and complex behav-
iors can be accomplished. There can be multiple sequences of purposes depending on the
nature of the task. For example, the purpose of “staying safe” (avoid collisions) may be
activated in parallel with other sequences of purposes so that the safety-related behaviors
will be constantly active to keep the robot safe while the robot is achieving the given task.

3   Soccer Robot Implementation

The ultimate evaluation of any control software should be real autonomous robots physi-
cally functioning in the real world. In the particular case of our Purposeful Behavior ap-
proach, soccer games provide a real setting where a group of robots must cooperatively
work together in a highly dynamic and unpredictable environment that contains active
adversarial agents. To be able to test our ideas on the RoboCup soccer field, we have to
build autonomous physical robots (see fig.1) that can function robustly in such a chal-
lenging environment.  Obviously, this implies two things about our robots:

Requirement 1: They must be autonomous.
Requirement 2: They must be robust.

These requirements have significant implications on the methodology we use to build
and program our robots.  In particular, Requirement 1 implies that processing must be dis-
tributed and on-board. No remote computing or centralized control is allowed. Require-
ment 2 implies that algorithms and hardware must be simple enough to guarantee reliabil-
ity. Indeed, a guiding philosophy in building these robots is to favor robustness over so-
phistication. Furthermore, our design philosophy for the system architecture is that we
view each robot as a complete and active physical entity, which can intelligently maneuver
and perform in realistic and challenging surroundings. In order to survive the rapidly
changing environment in a soccer game, each robot must be physically strong, computa-
tionally fast, and behaviorally accurate [2]. Considerable importance is given to an indi-
vidual robot’s ability to perform on its own without any off-board resources such as
global, birds-eye view cameras or remote computing processors. Each robot’s behavior
must be based on its own sensor data, decision-making software, and eventually commu-
nication with teammates.

3.1   Hardware Architecture

The base of each robot is a modified 4-wheel, 2x4-drive DC model car. The wheels are
independently controlled, allowing in-place turning and easy maneuverability. Mounted
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above the base is an on-board computer.  It is an all-in-one 133MHz 586 CPU board ex-
tensible to connect various I/O devices.  Attached to the top of the body are twin commer-
cial digital color QuickCam cameras made by Connectix Corp.  One faces forward, the
other backward.  Also, we have affixed fish-eye lenses to each camera to provide a wide-
angle view of the environment.  The two drive motors are independently controlled by the
on-board computer through two serial ports.  The hardware interface between the serial
ports and the motor control circuits are custom built by our team. The images from the
cameras are sent into the computer through two parallel ports.

3.2   Software Architecture

Our robotic soccer team consists of four identical robots.  They all share the same general
architecture and basic hardware.  However, they differ in their programming. We have
developed three specialized roles: the forward role, the defender role and the goalie role.
Each role consists of a set of behaviors organized as a state machine. For example, the
forward role contains a shoot_ball behavior, dribble_ball behavior, a search_for_ball be-
havior, etc.  The state transitions occur in response to percepts from the environment.  For
example, the forward will transition from the search_for_ball behavior to the shoot_ball
behavior if it detects the ball and the goal from its sensory input.  At game time, each robot
is loaded with the program for the role it has been assigned.  Note that each robot has the
integrated physical abilities to play any role (i.e. detect_ball, move_forward, turn, etc.)

Vision
Module

Drive
Controller

Decision Engine

Internal
Model

Manager

Strategy
Planner

Fig. 2. The System Architecture

The software architecture of our robots is illustrated in Figure 2.  The three main soft-
ware components of a robot agent are the vision module, the decision engine, and the drive
controller. The task of the vision module is to drive the camera to take pictures, and to
extract information from the current picture. Such information contains an object’s type,
direction, and distance. This information is then processed by the decision engine, which is
composed of two processing units - the internal model manager and the strategy planner.
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The model manager takes the vision module’s output and maintains an internal represen-
tation of the key objects in the soccer field. The strategy planner combines the internal
model with its own strategy knowledge, and decides the robot’s next action. Once the ac-
tion has been decided, a command is sent to the drive controller that is in charge of prop-
erly executing. Notice that in this architecture, the functionality is designed in a modular
way, so that we can easily add new software or hardware to extend its working capabili-
ties.

3.2.1   The Decision Engine
The Decision Engine receives input from the vision module and sends move commands to
the drive controller.  Decisions are based on a combination of the received sensor input,
the agent’s internal model of its environment, and knowledge about the agent’s strategies
and goals.  The agent’s internal model and strategies are influenced by the role the agent
plays on the soccer field. There are three types of agent roles or playing positions: goal-
keeper, defender, and forward.  The team strategy is distributed into the role strategies of
each individual agent. Depending on the role type, an agent can be more concerned about a
particular area or object on the soccer field, e.g. a goalkeeper is more concerned about its
own goal, while the forward is interested in the opponent’s goal. These differences are
encoded into the two modules that deal with the internal model and the agent’s strategies.

In order to play a successfully soccer game, each robot must react appropriately to dif-
ferent situations in the field. This is accomplished by the strategy planner that resides in
the decision engine on each robot. Internally, a situation is represented as a vector of visual
clues such as the relative direction and distance to the ball, goals, and other players. A
strategy is then a set of purposeful behaviors mapping situation to actions. For example, if
a forward player is facing the opponent’s goal and sees the ball, then there is a mapping to
tell it to activate a Shoot@Goal  PB.

3.2.2   Execution of Purposeful Behaviors
To illustrate the execution of a PB plan, consider a simple soccer task of clearing a ball out
of the goal area. Assume that there exists a PB “hit ball towards opponent side” whose
purposes include “push ball from own goal”. To accomplish the task, a plan of desires will
be set up. In this case, a single desire of “clearing ball from own goal area” will be in
place. Since all PBs whose purposes match the desire will be activated, the behavior of
“hit ball towards opponent side” will be triggered and applied repeatedly until the purpose
is served. Compared to the traditional or augmented planning systems (e.g. [3],[4]), the
advantage of this approach is that the planner does not need to specify how many times the
ball needs to be hit. This relinquishes the need to have a detailed world model in order to
describe how much a ball will be pushed out from the goal with one bumping action.

The purposes of PB allow the dynamic addition of new behaviors and adjustment of
existing behaviors. For example, to serve the purpose of “push ball from own goal”, an-
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other behavior “use kicker towards opponent goal” may be added to the system (e.g., by
learning).  To mediate PBs when multiple alternatives can be applied, we rely on a system
of explicit preferences. These preferences are produced by the learning system, and they
are constantly refined by the robot as new PBs are added. This control approach allows
behaviors to be flexibly planned, grouped, and staged, as well as dynamically added or
deleted. Compared to previous hybrid systems, our approach avoids the complexity inher-
ent in programming a mixture of heterogeneous control layers. Yet it enables PBs to be
dynamically activated, terminated, or prioritized during plan execution.

3.2.3   Planning
PBs can also be used to construct a plan of desires and purposes for a given task. For this
objective, PBs are treated as continuous operators that have preconditions, actions, and
postconditions. The state of a PB is the precondition of the corresponding operator, the
action of the PB is the action of the operator, and the purpose of the PB is the postcondi-
tion of the operator. When a task is given, a plan of desires is constructed by reasoning
about the purposes of individual PBs and back-propagating the goal of task through PBs’
purposes (postconditions) and states (preconditions).  Consider the ball-clearing example
above. When the task is given, the goal of “clearing ball from own goal area” is back-
propagated through the “hit ball towards opponent side” PB, whose state specifies the con-
dition of “facing opponent goal” and “ball close ahead”. If there is no ball close ahead,
then the condition becomes a new purpose so a new plan is constructed with two sequen-
tial desires: “ball close ahead” and “hit ball towards opponent side”. Please notice that
goal-regression is only one of the existing planning methods that can be used here. In fact,
most other planning methods are just equally applicable. For example, one can use a for-
ward planner [5] and then a plan of desires is not a static sequence. In that case, the stages
of desires are set up dynamically by a set of forward operators (can be implemented as a
set of PBs) at the run time.  We do note that the planning capabilities of our system are
somewhat limited because our PB representation is simpler than traditional planning op-
erators (not all effects may be modeled). Specifically, the system will not consider all pos-
sible behavior sequences that could accomplish a task.

The explicit representation of the purpose of a PB also enables replanning to be in-
cluded in our framework.  Specifically, an active PB may contribute to the decision for the
next action based on the matching degree between the state description of the PB and the
state of the environment. This is similar to a sub-goal mechanism used in existing planning
and execution systems. It enables the robot to dynamically replan in the face of unexpected
circumstances. Consider the example at the beginning where the robot fails to make any
progress when seeing the ball through an impassible gap between two opponent robots. In
that situation, a third PB, say ChangeTarget, may be activated because the conflict be-
tween the GB and AO behaviors (i.e., every time one behavior’s purpose is satisfied, the
other’s purpose is violated). The ChangeTarget behavior will conclude that continuous
execution of GB and AO behaviors in the current situation will not lead to any progress,
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thus it proposes a new desire/purpose to shift the robot’s attention. This ability to dynami-
cally modify a plan during execution is a powerful control mechanism. It is much more
flexible than those fixed composition and selection methods (such as sequential, parallel,
hierarchical, bidding, or arbiter) used in previous behavior-based systems. Compared to
the standard behavior-based approach, where the number of complex behaviors are limited
by pre-determined selection and composition methods, PB-based plans are dynamic, flexi-
ble, goal-oriented, and can be constructed and modified at the run time.

StayingSafe

DivideField GotoRegion SearchBall DribbleBall Shoot@Goal

Fig. 3. The sequences of desires for a multi-robot attack mission

3.2.4   Experimental Scenarios
To illustrate the entire picture of the PB-based control architecture, let us consider a com-
plete scenario of a simple attack mission with a group of autonomous robots. When given
a specification of the designated area to be searched in the soccer field, all attack robots
will construct the sequence of purposes (or stages of desires) illustrated in Figure 3.

As we can see here, the plan for the attack mission consists of two sequences of pur-
poses, the first one has only one stage, StayingSafe, and the second one has five stages:
DivideArea, GotoRegion, SearchBall, DribbleBall, and Shoot@Goal.

Each stage will have a set of PBs that are activated by their purposes. For example, at
the DivideArea stage, a set of behaviors will work together to divide the area into a num-
ber of regions according to the number of robots in the team, compute the boundary of the
regions, assign regions to individual robots, and so on. At the GotoRegion stage, another
set of behaviors will work together enabling each robot to navigate and move into its own
region, at the same time avoiding interference with other robots. At the SearchBall stage, a
set of behaviors will allow robots to search for the ball in a certain pattern and get into its
proximity. At this stage, behaviors such as GB mentioned above should be active. (The
AO behavior is constantly active because it has the purpose of StayingSafe.) Note that
some of the stages may also involve sub-stages (not shown in the picture). For example,
the active behaviors at the Shoot@Goal stage may propose new (sub)purposes such as
aligning ball and opponent goal, and hitting the ball as hard as possible. After shooting at
goal, a robot will again enter the stage of SearchBall, and resume its search pattern.
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4   Related Work

Our current approach follows an earlier, integrated system called LIVE [6] for prediction,
learning, planning and action and a theory of autonomous learning in general [7]. This
work also shares ideas with many cognitive architectures published in [8] that integrate
planning and reacting for mobile robots, as well as recent progress in Agent research [2].
The unique feature of our approach is that a robot uses the internal model and the closed-
loop control to guide its actions based on visual feedback. Our earlier work of this type
includes a silver medal winner robot called YODA in the 1996 AAAI Robot competition
[9].

Our approach is also closely related to behavior-based robots as described in [10]. The
main difference between the PB approach and other ongoing work for autonomous robot
control is that we use purposes and predictions as an explicit part of the knowledge for
control. Specifically, the related ongoing work for autonomous robot control can be cate-
gorized into three basic groups in term of the structure of their control architecture: the
layered, the flat, and the intermediate. The layered control architectures, see for example
[11] [12] [13], use different knowledge representations to allow slower abstracted reason-
ing at the higher levels and faster sensor-mediated computations at the lower levels. The
behaviors at the lower levels are basically black-box procedures that are not open for ex-
amination and improvement. In comparison, we use PB as a unified representation for
control knowledge thus avoid the distinction between layers, and allow flexible addition,
removal, and modification of control knowledge.  In contrast to the flat behavior control
architectures, where a fixed mechanism, such as a composer or an arbiter, is used to select
or combine behaviors based on numerical values [14][15], we rely on internal desires and
behavioral purposes to activate, terminate, and switch behaviors. This can avoid any built-
in goal knowledge and allow reasoning and planning for goals at the run time.  Compared
to the intermediate approaches, where behaviors are imposed with a partial order based on
the closeness to the world [16], our PBs have equal authorities so that they can decide and
act on their own as long as their purposes match the current desires. This allows asynchro-
nous and parallel execution of behaviors. Our PB approach does bear many similarities
with the Soar production systems [5]. However, the major difference is the PB-based ar-
chitecture allows more than one active PBs at a time, and the structures of PBs are open
for examination and modification. Finally, compared to probability-based approaches [17]
[18], our PB approach utilizes symbol-mediated representation for reasoning about action
purposes.
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5   Conclusions and Future Work

In building integrated robots that are autonomous, efficient, collaborative, and intelligent,
we have demonstrated a simple but effective approach. Instead of a complex mixture of
heterogeneous reactive and deliberative systems, we are introducing a new uniform, and
hence simpler, representation to allow a behavior-based control system to flexibly reason
about goals and dynamically construct complex behaviors based on given tasks. Moreover,
it seems that the most effective approach to implement the PB concept for soccer robots is
to build integrated robots using the least-sophistication to achieve the most robustness. At
the present time, we are trying new sensors and we are working to improve our set of be-
haviors to include passing and assisting ball dribbling, and we are also adding communi-
cation to increase the robots’ ability to collaborate in a wide range of situations.
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Abstract. We developed an Autonomous Information Indication Sys-

tem for the RoboCup simulation league. This delivers and displays a

three-dimensional view of the game to an audience using low-speed net-

works such as the Internet. Moreover, the audience has the ability to

select a favorite shot from four di�erent ones that are positioned on

the �eld. Recenltly, our system performed succesfully at the RoboCup

Japan Open 99. This paper outlines the feasibility and e�ectiveness of

our system based on our evaluation of various experiments.

1 Introduction

The research into an infrastructure for the RoboCup simulation league has de-
veloped rapidly. Its initial motivation was to create a system that can indicate
the situation of the simulation league more attractively. This research can be
divided into two kinds. The �rst is research into a commentator system that
appreciates a situation of a soccer game and makes comments similar to a on
the spot broadcast in real-time[4][5]. The MIKE, developed by ETL team and
demonstrated at the RoboCup-98[6] is a typical system of this type. The other is
research into a three-dimensional viewer system that describes three-dimensional
situations of a soccer game in real-time. Our proposal was to develop the sys-
tem, actually developing two kinds of three-dimensional viewer systems, and
demonstrated these systems at the RoboCup-97 and the RoboCup-98[1][2]. Sev-
eral three-dimensional viewers such as RoboMon and Virtual RoboCup were also
developed after our initial demonstrations[9][7].

The creation of these systems, the �rst stage of infrastructure domain, was
demonstrated at the RoboCup-98. Each system was able to provide a vivid
picture of the game situation. The infrastructure domain must be challenge to
go to the next stage. The goals for this next stage are the followings:

{ Using several techniques, the system can indicate the information (scene
data) in several environments in real-time.

{ The system can cope with the various choices of an audience in real-time.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 469−480, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000



www.manaraa.com

{ The system can indicate the most suitable scene data based on a prediction
of the indicated situations and an evaluation of scene data.

These factors turn the infrastructure system into an information indication sys-
tem for a digital broadcasting environment. An audience can watch a particular
situation of a game anyplace that is connected to computer network. Further-
more, an audience does not have to control the indication system while using it.
Based on these architectures, this system will be the ideal information environ-
ment for an audience.

We already started to develop an autonomous information indication system
(AIIS) as a support system for personal information environments. The AIIS
transmits and displays the information to each person using those methods that
it has predicted as the most e�ective. Based on this, we developed an AIIS for the
RoboCup simulation league that possessed the above features. This development
has also been guided by our evaluation and analysis of our two three-dimensional
viewer system. As �rst, we mounted two mechanisms. One was a scene data
delivery mechanism that supports data delivery using low-speed networks such
as the Internet. This mechanism was able to cope autonomously with rapid
changes in the data delivery rate. The other was a view selection mechanism. An
audience can select a favorite shot from four di�erent cameras, including zoom.
After selection, the system can indicate the scene data to several audiences. We
experimented with this system at the RoboCup Japan Open 99 that held in
May.

In this paper, we describe the basic concept of AIIS, and discuss its potential.

2 Autonomous Information Indication System (AIIS)

As noted above, we developed the AIIS for the RoboCup simulation league.
Figure 1 shows its system architecture. The Following is a description of each
part of the system.

Communication mechanism: This mechanism contains two mechanisms, a scene
data deliverer and a network's tra�c detector. This unit measures the imme-
diate amount of network tra�c, and continually informs the \scene selection
mechanism" of its condition.

There are several methods for measuring the amount of network tra�c. After
evaluating the results of previous experiments, we selected one of these at the
RoboCup Japan Open 99. A detailed description of each method is described in
the next chapter.

Scene selection mechanism: This selects scene data for delivery based on an
evaluation. First, the mechanism receives a scene request from each client system,
checks the \evaluation value" added and sent by a \game condition mechanism",
and receives the current scene delivery rate which has been determined by a
\communication mechanism". Second, this mechanism selects the scene data
based on an analysis of it.
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Fig. 1. The AIIS for the RoboCup.

Game condition analyzing mechanism: This mechanism evaluates the conditions
of the game based on the situation of the camera and each player's positions,
the formation, and the score, and adds an evaluation value to each scene. The
evaluation value shows each scene's value.

3D-rendering mechanism: This renders a three-dimensional scene on the screen.
This is part of a 3D-viewer client. A 3D-viewer client is composed of this and
the communication mechanism. Our AIIS for the RoboCup simulation league
has two 3D-viewer clients. Each client uses a di�erent 3D-rendering mechanism.
Though its detailed descriptions of a three-dimensional world are very e�ective
in showing the situation, it needs a great deal of rendering power. As a result,
this mechanism limits the number of running environments.

To cope with numerous running environments, the system adopts the two
3D-rendering mechanisms, and o�ers two 3D-viewer clients that use each of the
mechanisms. One is a VEGA version (Figure 2). VEGA is one of the major
applications of virtual reality systems for real-time processes, and supports an
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Fig. 2. 3D-viewer client: VEGA version.

OpenGL library under Irix and WindowsNT environments. This version needs a
VEGA runtime application. The representations of this system are quite detailed,
and each player's movements are very smooth. However, this system needs a
high-end graphic accelerator board with a high-performance CPU.

The other 3D-rendering mechanism is DirectX (Figure 3). This version runs
under Windows95, 98, NT, and needs a DirectX library only3. Its description
is very simple, and it can run smoothly using a mid range personal computer.
This client system has six buttons for the audience to use when selecting camera
positions.

3 Experimentation

3.1 Prototype 1

We developed a prototype of the AIIS for the RoboCup simulation league that
has a delivery mechanism that selects the most suitable scene data that is sen-
sitive to the network tra�c. This system has the following two functions:

1. The system detects the network tra�c autonomously, and controls the amount
of scene data transmission corresponding to the network tra�c.

2. The system selects the most suitable scene for the extraction of the \delivery
scene data" in real-time.

In terms of the �rst function, the communication condition is judged auto-
matically, and the scene data is selected and delivered at the appropriate rate to

3 This library can be downloaded from Microsoft Web site
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Fig. 3. 3D-viewer client: DirectX version.

the three-dimensional viewer client. This function corresponds to the communi-
cation mechanism and the scene selection mechanism in Figure 1.

As for the second function, the scene data from soccer server is analyzed. If
additional scene data is required to display a game situation, this data is also
selected. This function corresponds to the game condition analyzing mechanism
and scene selection mechanism in Figure 1.

A basic mechanism of a tra�c control At this time, we have adopted three
kinds of methods that may be more e�ective for network control from many
methods that we would have selected.

These methods are based on the following fundamental mechanism. (Figure
4)

1. When scene data is received from the soccer server, the three-dimensional
viewer server adds a sequential number to each scene to distinguish each
unit of scene data, and delivers this data to each client.

2. When each client receives the scene data, it makes an acknowledgment
(ACK) which contains the scene data's sequential number, and returns it
to the server. In one method, the client calculates the scene delivery rate,
and includes it in the ACK.

3. The server or the client decides the scene delivery rate based on the return
rate of the ACK or the receiving rate of the scene data.

4. The server decides whether a scene should be delivered or not, in accordance
with the determination of delivery rate. Then, only after the delivery of the
current scene has been decided on, does the server send scene data to the
client.
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Fig. 4. The basic mechanism of tra�c control.

Thus, there are two kinds of methods for deciding the scene delivery rate.
The server uses one, and the client uses the other. In this prototype system,
\type 1" and \type 2" adopt a method when the server decides a scene delivery
rate, and \type 3" adopts a method when the client decides a scene delivery
rate.

Type 1 In this method, the three-dimensional viewer server sends one scene
data to the client(Please check Figure 4.). Then, the server sends a new scene
data after an ACK of the scene is returned from the client.

This method is limited in that the server can't deliver the next scene before
the server receives the ACK from the client. Because this situation leads to
an interruption of delivery, a server sends scene data when the interval time is
timed-out.

Type 2 In this method, the server calculates the delivery rate based on the
rate of the ACK that is sent back from the client. The average ACK return
rate is measured per \unit time". This measurement method is calculated in the
following way:

{ The server sends the all scene data during the �rst \unit time".
{ When unit time has expired, the server calculates the average ACK return

rate. Based on this, the server then calculates the delivery rate of the scene
data for the next \unit time".

{ The server delivers the scene data at a calculated delivery rate before this
\unit time" has expired.
The same procedure is then repeated.
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Type 3 In this method, the client calculates the received scene data as the
received scene dates rate, and then sends this data rate to the server. Based on
this rate, the server determines the delivery rate.

This method adopts the two kinds of measurement methods also utilized by
\type 2"

The suitable scene selection mechanism The scene data to deliver is only
selected with a de�nite interval depends on the delivery rate, when the tra�c
control mechanism is used.

To select and deliver the most suitable scene data, we implemented the fol-
lowing mechanism into the three-dimensional viewer server.

{ The server checks the scene data that was received from the soccer server.
It then determines what the next scene data should be delivered when game
conditions change a free kick, a goal, etc.

{ The server delivers both scene data selected by the suitable scene selection
mechanism and scene data selected by the tra�c control mechanism.

The server judges the change in the game conditions using the \play mode
ag" of the scene contained in the scene data.

3.2 The result of experimentation with the \Prototype 1"

The implementation and the method of measurement The prototype
system was implemented by using a three-dimensional viewer server for UNIX,
and the two-dimensional monitor that complies with the three-dimensional viewer
server for UNIX and MS-Windows.

The followings are test environments.

{ Substituting a logplayer for UNIX for a soccer server.
{ A three-dimensional viewer server for UNIX.
{ One two-dimensional monitor that complies with a three-dimensional viewer
server for MS-Windows.

{ A PPP connection circuit via a modem connected at 28.8 Kbps.
{ A log data of the �nal game of the RoboCup-98 simulator league.

The measurement of the non-implemented viewer For comparison sake,
we studied the case where above mentioned tra�c control mechanism and a
suitable scene selection mechanism were not mounted. The results of our mea-
surements are as follows. (Table 1)

{ One ACK was returned on an average of 3 - 4 scenes (0.3 - 0.4 seconds).
{ After the client received 20 scenes, further scene data failed to reach to the
client, and ACK wasn't returned.
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Table 1. The behavior of the non-implemented viewer. (rate=scenes/sec.)

sec. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

rate 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

sent 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ACK 1 2 3

Table 2. The behavior of \type 1". (mode: k=free kick, p=plan on)

sec. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

rate { { { { { { { { { { { { { { { { { { { {

mode k p p p p p p p p p p p p p p p p p p p

sent 1 2 9 13 17

ACK 1 2 9

Type 1 When the method of \type 1" is implemented into a server client sys-
tem, then the resulting measurements occurred. (Table 2)

{ The system approaches stability, and works.
{ The RTT (Round Trip Time) of one scene data is about 0.8 - 0.9 seconds

(about 8 - 9 scenes).

When game condition was unchanged due to a longer delivery time of the
scene data and ACK rate, compared with real possible rate (calculated by hand,
so only potentially), the calculated average scene delivery rate is about 1/2.

However, when the game condition was changed, the scene data is still de-
livered to the client by the suitable scene selection mechanism even when ACK
wasn't return to the server. Because of this behavior, the scene delivery rate
increases and the game is displayed more smoothly.

Type 2 When the method of \type 2" is implemented, the following measure-
ments result (Table 3):

1. When the unit time is 2 seconds (20 scenes), the ACK comes to a halt after
about 200 seconds.

2. When the unit time is 1 second (10 scenes), the system becomes virtually
stable and works.

The situation where \unit time is 2 seconds" was very similar to the situation:\non-
implementation". Based on a calculation of the delivery rate of the scene data,
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Table 3. The behavior of \type 2". (\unit time" = 1 sec.)

sec. 66.1 66.2 66.3 66.4 66.5 66.6 66.7 66.8 66.9 67.0 67.1 67.2 67.3 67.4 67.5 67.6 ...

rate 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 ...

mode k k k k k k k k k p p p p p p p ...

sent 663 668 670 673 676 ...

ACK 600 603 606 609 ...

the server changed the delivery rate after 2 seconds. However this subtle dif-
ference is accumulated at the clients step by step, until the client is unable to
transmit the ACK to the server.

In this measurement, when the \unit time is 1 second", the situation becomes
stable, because this unit time is quite e�ective for thie environment. However,
when the measurement environment changed, and the speed of the connection
circuit slowed down, the system had to choose a shorter unit time to deal with
this environment.

Therefore, to work the system at every circuit speed, it is necessary to mount
a mechanism that can �nd the proper delivery rate based on the measurement
of the ACK information. This must be done before the system cannot handle
the situation.

Type 3 In most cases, it showed the same result as \type 2".
However, when the server did not receive an ACK, the server delivered the

scene data on the basis of the received scene data rate calculated by the client.
Therefore, the server would not cope with changes in situation.

3.3 Prototype 2

The implementation Based on a result of the study of the Prototype 1, we
developed a prototype of a system where a three-dimensional viewer client can
send a request about the form of a display.

On the client side, the following items are available for selecting the position
and movement of the camera. Once a selection is mode, a request is then sent
to the server.

{ The movements of each camera:
� A camera positioned behind the goal of \team A".
� A camera positioned behind the goal of \team B".
� A camera that is moved along the side lines.
� A camera that is moved freely around the ground.

{ The motion of the camera:
� Zooming in.
� Zooming out.
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A server has two modes to select and deliver the scene data. One mode selects

a scene individually in response to each request from the clients, creating and

sending the data of each scene to the clients. The other mode selects one scene

as a result of a majority decision, however also creating and sending the data of

the scene to the clients.

The mechanisms In this prototype system, the following methods are adopted

for each mechanism in Figure 1.

A mechanism for analyzing a game condition: Any change of the game's condi-

tion is decided by the play mode ag of the scene.

A learning mechanism: Requests for a particular position or a movement of a

camera concerned in response to the position of the ball or a change in the game

are recorded for each client.

A scene selection mechanism: The method of prototype 1 is used for a decision

about whether current scene data should be sent or not.

The decision to select a camera position and movement is made on a request

from each client, and trends perceived by the learning mechanism.

The decision about which mode will be used to select and to deliver scene

data is determined from out side of the system by an operator.

A mechanism for scene construction: Basically, individual scene data is created

for each client. However, when a mode to select one scene for all clients is chosen,

only one scene is created.

A communication mechanism: The function that adds a request from a client to

the ACK data and sends it to a server is included in the mechanism implemented

in the prototype 1.

3D-rendering mechanism: This mechanism rendered each scene using OpenGL

or DirectX graphics library.

3.4 The result of experimentation with the \Prototype 2"

We performed an experiment of the delivery capabilities of prototype 2 using

the Internet. This was a public experiment, open to everyone, was held at May

2 - 3, 1999 as a part of the RoboCup Japan Open 99. This experiment was

not a replay of past simulation leagues, but an actual broadcasting of games in

real-time. This experiment occurred in the following environment:

{ Delivery data: The �nal and semi-�nal game of the RoboCup Japan Open

99 simulator league.

{ The number of 3D-viewer clients: 10 - 20.

{ The number of client machine: 10 - 20.
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{ Connection speed: 1.5Mbps (From conference center to the Internet)
{ Operating system of clients: Not determined (MS-Windows95, 98, or NT)

Because there was a long holiday in Japan during this period, the maximum
number of client accessing at same time was 20. However, in this experiment,
each number of the audience could connect to a communication mechanism in low
speed network environment such as 28.8Kbps. Moreover, some of there members
were able to use the scene selection mechanism such as switching and zooming
of cameras.

The AIIS was succeesful in managing each connection, and delivered scene
data according to each client's request. Based on an analysis of this experiment,
we decided to expand the \communication mechanism" and \scene selection
mechanism", as well as the architecture that supports very low speed network
connection such as 9.6Kbps. As you may know, this is the connection speed of
mobile telephones in Japan.

4 Conclusion

In this paper, we described the basic concept of the AIIS for the RoboCup
simulation league. We also showed its e�ectiveness and feasibility through an
evaluation of the results of several experiments. Through our evaluations, we
learned what areas need to be improved. We also decided to develop an AIIS for
the RoboCup-rescue. The purpose of this system is to create an ideal wearable
information environment for disaster rescue. Later, we will describe our develop-
ing concept of \Wearability Design", a concept of an ideal individual information
environments[3].
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Abstract. In this paper, we present a multi-layered architecture for spatial
agents. The focus is laid on the declarativity of the approach, which makes agent
scripts expressive and well understandable. They can be realized as (constraint)
logic programs. The logical description language is able to express actions or
plans for one and more autonomous and cooperating agents for the RoboCup
(Simulator League). The system architecture hosts constraint technology for qual-
itative spatial reasoning, but quantitative data is taken into account, too.
The basic (hardware) layer processes the agent’s sensor information. An interface
transfers this low-level data into a logical representation. It provides facilities to
access the preprocessed data and supplies several basic skills. The second layer
performs (qualitative) spatial reasoning. On top of this, the third layer enables
more complex skills such as passing, offside-detection etc. At last, the fourth
layer establishes acting as a team both by emergent and explicit cooperation.
Logic and deduction provide a clean means to specify and also to implement
teamwork behavior.

1 Introduction

Naturally, tasks to be solved by a team of autonomous agents are many-sided and com-
plex. In order to achieve a goal, a single agent has to use a set of complementary sub-
tasks. On the one hand, some of these actions can be performed in a purely reactive
manner, meeting real-time requirements. On the other hand, tasks may require a certain
amount of planning and reasoning. So, we were led to the idea of combining both the
advantages of procedural and logic programming and decided on a hybrid system with
a layered architecture.

1.1 Implementing Agents in Logic

In contrast to other approaches that provide an architecture for (multi-)agent systems
(see e.g. [16, 24]), we use different logical and deductive formalisms not only as a spec-
ification language but also as an implementation language. Widespread in this context
is the use of a Belief-Desire-Intention (BDI) architecture (see e.g. [7]), which has been
originally specified by means of modal logics. A first-order axiomatization has been
proposed for this kind of architecture only recently [24]. However, it seems that it is not
actually used as implementation language there.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 481−494, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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We will now describe our system architecture and show how different deductive
processes—including constraint solving—can be used for the RoboCup [20]. The sys-
tem combines the BDI approach with a multi-layered architecture, allowing multiple
agents to perform collective actions. Nevertheless, each agent is autonomous and can
be implemented in a manner similar to (Constraint) Logic Programs (CLP) [15]. This
combines the advantages of being declarative and efficient to a certain extent.

The major goals of the RoboLog project, undertaken at the University of Koblenz,
Germany, are the following:

– A flexible, modular system architecture should be established, meeting the various
requirements for RoboCup agents. For example, on the one hand, agents have to
be able to react in real-time. But on the other hand, it is also desirable that more
complex behavior of agents can be programmed easily in a declarative manner.

– It should be possible to handle different representation formats of knowledge about
the environment. Information may be quantitative or qualitative in nature. There-
fore, we propose a deductive framework, that is expressible in plain first-order
logic (possibly plus constraint technology components), that integrates axiomatic
approaches in geometry, spatial constraint theories, and numerical sensor data.

– Agents should not only be able to act autonomously on their own, but also to coop-
erate with other agents. For this, we develop a multi-agent script language for the
specification of collective actions or intended plans that are applicable in a certain
situation. These scripts can be translated into logic programs in a straightforward
manner.

1.2 Outline of the Approach

In the following, we discuss our layered system architecture and the functionality of
the respective layers. Fig. 1 shows the complete architecture of RoboLog. The lowest
layer—the RoboLog kernel, which is implemented in C++—essentially is the interface
between the SoccerServer [9] and Prolog, since all other layers are implemented in this
logic programming language.

The basic layer hosts reactive behavior. It is implemented in the RoboLog Prolog
extension [21, 22]. This extension is an enhanced RoboCup SoccerServer interface for
ECLiPSe-Prolog [14]. Time critical tasks are handled within the RoboLog module, as
well as the exchange of data. The module provides the atomic SoccerServer commands
and some more complex actions. Hence already at this level, logic (programming) for-
malisms are available. Also position determination is settled in this layer (see Sect. 2.1).
It also provides more specific facilities, e.g. dribbling and ball interception. For these
actions, (almost) no spatial cognition is required.

Spatial cognition is the contents of the second layer. For example, players have to
recognize when passing the ball is possible or a player is offside. Many approaches
(see e.g. [8, 26]) propose purely qualitative reasoning, i.e. disregarding quantitative
information after it has been transferred into a qualitative representation. But this may
be too inexact and too vague sometimes. Since we use logic as connecting formalism
in all layers, we can access low-level data at all levels of abstraction. This implies,
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reasoning can be as exact as required. We will present our approach in more detail in
Sect. 3.

The last two layers host complex situations, possibly requiring teamwork, i.e.
single- or multi-agent plans. Nevertheless, the question remains whether teamwork
should be invoked explicitly by communication or whether it is sufficient and more
robust just to have implicit (emergent) teamwork. The current implementation implic-
itly exploits knowledge on other implementation of agents. With the exception of the
goalkeeper, they are clones of each other. Cooperative behavior may be required even
if the implementation details are different or not known. The problem is then, what
communication language can be used in this case. See also Sect. 5.2 on this topic.

Spatial Reasoning
Qualitative

Abilities
Higher, Complex

Basic Skills
and Perception

Behavior
Cooperative

RoboLog

Prolog

SoccerServer

Fig. 1. System Architecture of RoboLog.

2 Basic Abilities and Actions (Layer 1)

The lowest layer in our system architecture handles basic skills and perception of the
environment. The basic skills may be actions that can be performed immediately by the
agent, e.g. turning around, dashing, kicking the ball etc. In addition, we will allow more
complex actions in this layer, that do not need (qualitative) spatial reasoning.

Depending on the hardware used, perception of the environment, including self and
object localization is a complex task, requiring more or less processing. In the sim-
plest case, perception just means reading off the data from one of the agent’s sensors.
Note that we aim at having a (first-order) logic presentation for each agent. The logical
description language we are going to introduce allows agent programs (scripts) to be
written and interpreted in a manner similar to CLP.
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Following the lines of [24], we distinguish two classes of predicates: ACTIONS a
and PERCEPTIONS p. When executed successfully, a perception predicate p returns the
requested data. We will assume, that this data is quantitative, i.e. some arguments of
the predicate are (real) numbers. For example, a perception predicate p may return the
distance to a certain landmark, measured in meters and given as a real number. The
main matter of an action a is its side-effect, i.e. the performed action. Nevertheless, an
action predicate (except the primitive actions of the SoccerServer) also is assigned a
truth value, depending on the success or failure of the action. Note that the truth value
for all predicates is dependent on the actual time t, when the action or request for data
is executed.

In summary, the RoboLog interface provides the following functionality:

– For each agent, it requests the sensor data from the SoccerServer. By this, the
agents’ knowledge bases are updated periodically. If some requested information
about a certain object is currently not available (because it is not visible at the
moment), the most recent information can be used instead. Each agent stores infor-
mation about objects it has seen within the last 100 simulation time steps.

– This low-level data is processed in such a way that more complex and more pre-
cise information becomes available, such as global position information (see also
Sect. 2.1) or direct relations between objects with or without reference to the actual
agent. The relation is le f t(Ob j1,Ob j2), e.g., depends on the relative position of the
agent, whereas is between(Ob j1,Ob j2,Ob j3) is an agent independent property.

– Last but not least, Prolog predicates are provided that can be used to request the
current status of sensor information on demand. The data should be synchronized
with the SoccerServer, before an agent’s action is initiated.

2.1 Position Determination

An important piece of information for an agent is to know its own position. Therefore,
the RoboLog system provides an extensive library that makes precise object localization
possible. The whole procedure implemented in the RoboLog kernel is able to work
even when only little or inconsistent information is given. In particular, we employ the
method for mobile robot localization using landmarks stated in [4].

2.2 Basic Skills

Agents have to be able to move in their environment without collision. This is a ba-
sic requirement for many practical robot multi-agent systems. In the RoboCup scenario
agents should also be able to handle the ball. This means they must be able to run and
kick to a certain position, dribble with the ball etc. Another important task is ball inter-
ception. For this, an agent has to recognize and compute the ball trajectory in advance,
compute and go to the point where ball interception is possible, and stop the ball. This
is a macro task, which could be executed in a certain situation without any qualitative
reasoning.

A large set of low-level abilities for the RoboCup scenario is stated in [25]. There,
kicking, goal-tending and—as a sub-task—getting sight of the ball among others are
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considered as part of the low-level architecture of an agent. Of course, such tasks may
require deep computation. However, only quantitative data is used for these actions.
This is the reason why it is reasonable to classify these actions as basic skills. Never-
theless, more complex actions will require (deductive) reasoning. That is the contents
of the next layer (see Sect. 3).

In our system, the following basic skills (among others) are implemented (see also
[18] that also describes special skills of the goalkeeper):

– The agents can search for the ball, taking into account their knowledge about the
last time the ball was seen.

– Dashing and kicking to a certain position, regarding the agent’s condition and
avoiding obstacles is possible and (based upon these skills) also dribbling.

– Extrapolating the ball trajectory to a given time in the future enables the agents to
intercept opponent passes and block shots.

3 Qualitative Spatial Reasoning (Layer 2)

During a match, a human soccer player will enter a lot of different situations, in which
he has to decide what to do. In most of the cases, he will decide regarding former
experience, i.e. comparing his situation to situations he already handled before. Hence,
if we want to build a client, we have to provide the client with some situations and
connected actions. We decided to model situations with the help of qualitative relations
for two main reasons.

– The agent’s situation will almost never fit exactly into a stored situation pattern
(identified by its set of preconditions), so we have to parametrize and abstract the
patterns. A basic set of qualities can be very easily abstracted from the visual data
sent by the SoccerServer (see below). Thus the step from describing situations by
quantities with tolerances to using qualitative data is easily taken.

– We think that qualitative spatial reasoning reflects the thoughts of a human player
more clearly than the use of quantitative data. Consider a human soccer player
who tries reaching the ball. He will think something like: the ball is close enough,
or: a team-mate is nearer to the ball. Based on these qualitative perceptions he
decides whether to run towards the ball or stay where he is. He will not calculate
the trajectory of the ball and determine a set of coordinates at which he can intersect
it.

What we need in order to identify situations is the abstraction of quantitative data
onto a qualitative level. Therefore, we have another class of predicates—in addition to
the classes mentioned in Sect. 2—, namely QUALITIES q. Qualitative predicates are
defined upon the quantitative perceptions via logical rules and constraints, e.g. the in-
front-of relation (1) (see below). But it may also be the case that there are qualitative
predicates or relations based on each other. In the latter case we speak of purely qual-
itative predicates or reasoning, e.g. the relation left and in-front-of can be reduced to
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the qualitative predicates left and in-front-of (2).

in- f ront-o f ← Dist > 0. (1)

le f t ← Dir < 0.

le f t in- f ront-o f ← le f t ∧ in- f ront-o f . (2)

For example, concerning the distance of an agent to the ball in the RoboCup scenario
only a few (qualitative) aspects are interesting. Thus, in RoboLog we only distinguish
few distances: close (the ball is in the kickable area), near (the agent is able to detect
much detail by its sensors), short (maximal shooting distance), far away (sensor data
become unreliable from this distance), remote (out of reach). Quantitative distance in-
tervals can be mapped to qualities. Concerning the other direction, chosen plan schemes
must be instantiated with quantitative data for the actual execution. A related work is
presented in [8]. There, reasoning on the qualitative level (alone) is provided. Fig. 2
illustrates the correspondence between quantitative and qualitative distances.
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Fig. 2. Distances – quantitative and qualitative.

3.1 Constraint Reasoning

In the literature, many approaches for qualitative spatial reasoning are proposed. Most
of them rely on the Region Connection Calculus (RCC), see e.g. [3, 23]. On the one
hand, the advantage of qualitative information certainly is, that seemingly complex sit-
uations can be reduced to a few patterns of situations, and concentration on the relevant
portion of information is possible. On the other hand, a qualitative description may be
a too rough approximation of the reality, such that reasoning on a purely qualitative
level may become too vague. So the question remains, how can we make use of both
quantitative and qualitative information.

In most cases, if sensor data is available, it is a good idea to make use of the quanti-
tative data by just abstracting it to a qualitative level. Only in some cases, when no more
precise quantitative information is available, purely qualitative reasoning is necessary.
More precise knowledge should be preferred. So, we combine real-time quantitative

486 F. Stolzenburg et al.



www.manaraa.com

reasoning with qualitative spatial reasoning, that can be implemented as a constraint
system (in the formal sense) and integrated in a more general deductive framework for
constraint logic programming (CLP).

The process of spatial reasoning has to be seen in the context of its purpose, that
is laying the basis for what action should be performed next. There are (at least) two
decision problems in this context:

– If there are different sources of information (e.g. numerical sensor data, derived
qualitative knowledge or conclusions thereof), there must be some control mecha-
nism for deciding how the requested information should be obtained. In our current
implementation, quantitative data is preferred: it is simply converted into a qualita-
tive presentation. There are only very rare cases where purely qualitative reasoning
is performed. This could mean applying the transitivity rule to topological relations
such as between.

– In addition, it may be difficult to decide what should be done next in a situation
where we have several options (e.g. dribbling, passing, kicking). In the current
implementation, we simply make use of the backtracking facilities of Prolog for
this purpose. However, it might be a good idea to employ defeasible reasoning in
this decision process [11].

3.2 An Axiomatic Approach

We are also investigating the problem of modelling certain situations as patterns by
means of logic programs and the full first-order theorem proving system Protein [2]. For
example, passing the ball is possible in a situation where one player has the ball, another
player can be reached and there is no player (of the opposite team) in between. We
modelled these situations on top of the logical relations left, right and between. Since
we use logic, the properties of the qualities have to be axiomatized. Two possibilities
come into mind: we can model between on top of general geometric axioms [5], or use
collinear as basic concept [12]. We believe that it is more natural to use (an ordered
version of) between as base relation, since we can assume that the sensor data provides
information about order anyway. In addition, the order information may be required for
planning certain actions in detail.

However, for axiomatic approaches in general, there is one problem: how can the
negative information be deduced, e.g. if we want to know that there is no opponent in
between. With Prolog alone this is not possible: the built-in negation as failure some-
times causes problems if used in complex queries. So we were led to use full first-order
logic with the Protein theorem prover [2]. As example for this, let us consider the prob-
lem of determining whether passing is possible. This could be checked by the following
logical rule with negation in the rule body:

Passing←¬∃Opp : Between(Me,Opp,Partner)

The intended meaning of this rule is as follows: passing is possible, if there is no op-
ponent between the agent and one of its partners. The question is: how should negation
(¬) and existential quantification (∃) be interpreted? Protein provides classical negation
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as usual in first-order theorem proving. Existential quantification causes problems, if
treated by Skolemization, i.e. replacing existentially quantified variables by new con-
stant or function symbols, because then we have potentially infinitely many players.

Since we need real-time behavior, we just considered the finite domain of play-
ers visible for the agent in our implementation. This is closed world or constraint do-
main reasoning. By this, we get a complete and terminating system. Possibly, more
sophisticated kinds of non-monotonic negation can be used here in this context of
decision-finding. Note that, currently, this component is not yet integrated into the ac-
tual RoboLog Koblenz implementation, but has been used for axiomatizing situations
(see [6]).

4 Higher Abilities (Layer 3)

Many tasks require deeper reasoning, which can be expressed within a BDI agent ar-
chitecture [24]. In our context, a BELIEF b is a qualitative predicate q, its negation ¬q
or a conjunction of beliefs b1∧b2. A GOAL g is either an achievement goal !q or a test
goal ?q, where q is a qualitative predicate. A DESIRE (or event) d is a goal or an action.
Now we can build rules for a certain SITUATION in form of scripts, written d : b− i,
where d is a desire, b is a belief (identifying the precondition of the situation), and i is
the INTENTION (or, strictly speaking, the intended plan).

4.1 Intended Plans

The intended plan is a tree of desires. Edges outgoing from test goals are labeled with
yes or no and possibly a time-out delay. They realize alternatives in the plan. Depend-
ing on the truth value the agent follows different paths. Edges labeled with a time-out
serve to delay the predicate. The agent only follows the labeled edge, if the respective
truth value holds at a time within the time-out interval. An achievement goal has to be
performed actively by the actor. The actual execution of an intended plan sometimes
makes it necessary to leave the abstract level of qualitative reasoning and operate on
quantitative data.

If an action or achievement goal fails or an external interruption occurs (e.g. a ref-
eree message in the RoboCup scenario), the agent has to return to a default plan, which
must be applicable without precondition.

4.2 Example 1: The Goalie Runs Home

Let us now consider an example for such an agent script. When the ball is in the oppo-
nent half of the field, the goalkeeper of RoboLog Koblenz moves to his home position
and waits there in order to regain stamina. This means, if the goalie believes that the
ball is in the opponent half, his desire is to be at his home position. So he executes the
intended plan to run there. Figure 3 (a) shows the respective script. In order to execute
this script, the agent has to further decompose the desire Run to(home) as shown in
Figure 3 (b).

Let us now take a deeper look at the three desires of the second intended plan in
Fig. 3 (b). Each of them shows a different aspect of the language.
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(a)
d : goalie go home
b :← in opponent hal f (ball)

Run to(home)

no

?Location(Sel f ,home)

yes

∗

i :

(b)
d : Run to(pos)
b :← pos = home

Get dist and dir(pos)i :

turn(dir)

Run(dist)

Fig. 3. Scripts for the goalkeeper.

– Get dist and dir(home): The satisfaction of this desire realizes the transition from
the qualitative level to the quantitative. It takes a quality (home) as input and returns
quantitative values, namely the relative distance and direction of the home position
from the agent. The other desires operate on these quantities.

– turn(dir): This action belongs to the lowest level of our architecture. It is atomic in
the sense that it can be sent to the SoccerServer directly.

– Run(dist): This, finally, is a complex action. From the point of view of our agent
language, it is assumed to be atomic, too. But for actual execution, it has to be
decomposed into a series of dash commands.

5 Cooperative Behavior (Layer 4)

The description language introduced in Sect. 4 is only suitable for modelling single-
agent plans. But as we want to describe situations in which several agents have to coop-
erate, we will now extend the language to allow for the description of collective actions
and multi-agent plans.

In this context a DESIRE d is a goal or an action, indexed by a list of agents—the
actors—, which must satisfy the desire by performing some actions. Now the intended
plan i becomes an acyclic graph of desires with a designated start node. Its edges are
labeled with actors which must be a subset of the actors in d. Consider now all possible
subgraphs wrt. edges for a certain actor. It is required that this still is a tree with the start
node as root, where binary branching is only allowed after test nodes. These subgraphs
represent the ROLE for the respective actor. Achievement goals are performed by the
indexed actors, while non-actors wait for the achievement until a certain time limit. So
for the latter such an achievement goal automatically becomes a test goal, normally
labeled with a certain time-limit.
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Fig. 4. Double Passing Situation.

5.1 Example 2: Double Passing

Let us now consider an example for a collective action of agents, namely double pass-
ing. There are two actors in this situation: actor 1 kicks the ball to actor 2, then actor 1
runs towards the goal, and expects a pass from actor 2. This is illustrated in Fig. 4.
In order to initiate such an action, two agents simultaneously have to recognize their
respective roles in the current situation in their belief state. The belief b for a double
passing situation can be described as follows: 1 and 2 are nearest neighbors belonging
to the same team, and player 1 has the ball. Player 2 must be clear, whereas an opponent
is near to 1 such that 1 cannot dribble straight on. The intended plan i is then, that 1
passes the ball to 2 at first, then 1 runs towards the goal, and finally 2 passes the ball
to 1. The respective rule can be expressed as shown in Fig. 5.

d : DoublePassing1,2
b :← NearestNeighbor(1,2),

Close(1,ball),
Clear(1,2),
Between(1,Opp,goal)

2

21

1

no [Time-Limit]1,2yes

Run(1,goal)1 Dribble2

!Location(ball,1)2

?Between(Opp,1,goal)

!Location(ball,2)1i :

?

Fig. 5. Double Passing Script.
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While experimenting with an implementation of double passing, we noticed that the
main problem is that both actors simultaneously have to recognize their role, because
one of the agents possibly does not see the other agent. In this context, communication
(i.e. telling the other agent one’s desire) helps a lot. A cooperating partner could tell its
coordinates or even its whole own belief state. We made similar experiences with an
even simpler kind of action, namely simple passing.

5.2 Communication

As we stated earlier, it makes sense to allow communication between agents. It helps
them to recognize situations or their roles in them and thus reduces the complexity of
the agents’ reasoning and decision processes. But then another implementation decision
has to be made, namely which communication language to use.

A general approach for the exchange of knowledge between agents is the Knowl-
edge Query and Manipulation Language (KQML) [17]. However, if the domain of ap-
plication is restricted, KQML may be too general. But it allows reliable communication
between agents, even if their internal architecture is quite different or unknown for the
other agent, by providing a common syntax. Instead, we communicate Prolog predi-
cates directly. The advantage of this approach is, that no meta-logical interpretation of
received information is necessary. A disadvantage is that for a successful communica-
tion the agents have to know each other’s internal structure exactly. But this drawback
can be overcome by specifying a subset of the available predicates together with their
intended functionality as the communication language.

Thus, communication between the agents can be done by transmitting these predi-
cates together with the action the recipient is expected to take on them, i.e. execute them
as function. The goalkeeper, for example, could communicate his uniform-number to
his teammates by saying assert(goalie nr(1)). The language is by its definition specific
to the domain, thus enabling efficient communication while maintaining the flexibility
of a more general language like KQML.

5.3 Translating Rules into CLP

We may distinguish several types of plans: basic plans with only one actor and complex
plans where there are more than one actors. The former plans implement higher abilities
(layer 3), while the latter realize teamwork (layer 4). Each BDI script can be translated
into a CLP rule in a straightforward manner. For each achievement or test goal we
introduce new symbols: !P and ?P. For each rule some default recipes are introduced:

P(x1, . . . ,xn)← !P(x1, . . . ,xn).
?P(x1, . . . ,xn)← P(x1, . . . ,xn).

The former and external events update predicates; this is the main difference to
CLP. An approach that can handle external events and concurrency is ConGolog [10].
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For each situation and for each role in it, a BDI script can be translated directly into a
logic program rule, possibly with concurrent constraints (belief conditions):

d← b∧ i

The reader may have noticed that a situation with n roles corresponds to n CLP
rules. These rules are identical wrt. their heads d. The preconditions b for the actions
are also very similar; they only differ in their actor role. The last (but not least) part i is
really different, because each actor plays a different role in the respective situation. For
example, the instantiated plans for both actors of the double passing rule (see Fig. 5)
are as follows:

Role 1 Role 2
!Location(ball,2) ?Location(ball,Sel f )
Run(Sel f ,goal) Dribble
?Between(Opp,Sel f ,goal) ?Between(Opp,1,goal)
?Location(ball,Sel f ) !Location(ball,1)

Recall that achievement goals are converted into test goals for non-actors. In addi-
tion, the control sequence for giving up after some time-limit is not shown here. Clearly,
the translation into several CLP rules increases the time complexity for deciding which
action or role therein is performed next. This problem can at least be partially over-
come by communicating the next action directly to partners. In fact, we do this in our
implementation by sending calls to Prolog predicates. But nevertheless, robustness of
the whole system (of agents) has to be guaranteed in the case of failing actions or failing
communication.

6 Conclusions

We presented a logical description language for multi-agent systems, following the lines
of [24]. This language can be understood as a generalization of CLP. Both, quantitative
and qualitative spatial reasoning can be built-in. With the script language proposed
here, it is possible to express multi-agent plans. The RoboLog system provides a clean
means for programming soccer agents declaratively. We conducted several test games
with different scores on our local network—a 100 MBit Ethernet—and participated in
RoboCup-99 (see also the team description RoboLog Koblenz in this volume).

6.1 Other Approaches with Logic Programming

Despite of the fact, that there are many logic-based approaches to agent programming in
the literature, there are only few systems that are implemented with logic programming
and that participated in the RoboCup. So, it seems that almost no team employs one
of the well-known planning techniques in artificial intelligence (e.g. with the situation
calculus [10]). CS Freiburg—the world champion of the middle-size league in 1997—
makes use of path planning [13], but emphasizes the need of reliable basic skills. In this
approach, path planning is restarted again every few milliseconds.
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As mentioned in the introduction (Sect. 1), [24] proposes a framework that allows
agent programs to be written and interpreted in a manner similar to that of Horn-clause
logic programs. Nevertheless, only single-agent actions can be specified within this
approach. The team described in [16] participated in RoboCup-98. The architecture
of this system is layered (as ours) and hosts a behavior-based, a local planning, and a
social planning layer. The system is implemented with Oz, a concurrent constraint logic
programming language.

Another interesting approach is presented in [19]. There, an architecture for intel-
ligent agents (with application to the RoboCup simulation league) is described, using
the so-called organic programming language Gaea. It provides dynamic rearrangement
of programming modules and multi-threading among other features. This, of course, is
needed in a dynamic context as robotic soccer: when the system predicts or detects a
change in the environment, it can swap some portion of its program accordingly.

6.2 Future Work

Further work should concentrate on the real-time requirements in exceptional situations
and the concurrency of different mechanisms for information acquisition. The robust-
ness of the decision process can be improved by means of defeasible reasoning [11]
and/or organic programming [19]. Another area of research is how far logical mecha-
nisms can be used within the lower levels of our approach. Deduction could be used
to build a more complete view of the agent’s world model. The application of these
techniques to real robots is one of the next steps of our research activities. Finally, the
specification of a flexible communication language should also be investigated.
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Abstract. RoboCup was introduced as a challenge area at IJCAI-97.
We have been actively pursuing research in this area and have par-
ticipated in the RoboCup competitions, winning the RoboCup-98 and
RoboCup-99 simulator competitions. In this paper, we report on the
main technical issues that we encountered and addressed in direct re-
sponse to the learning and teamwork challenges stated in the IJCAI-97
challenge paper. We describe “layered learning” in which off-line and on-
line, individual and collaborative, learned robotic soccer behaviors are
combined hierarchically. We achieve effective teamwork through a team
member agent architecture that encompasses a “flexible teamwork struc-
ture.” Agents are capable of decomposing the task space into flexible roles
and can switch roles while acting. We report detailed empirical results
verifying the effectiveness of the learned behaviors and the components
of the team member agent architecture.

1 Introduction

The RoboCup Synthetic Agents Challenge 97 [4] specifies three challenges within
the simulated robotic soccer server [5]: (i) learning of individual agents and
teams; (ii) multi-agent team planning and plan-execution; and (iii) opponent
modeling. Many researchers are working towards these and other challenges in
the robotic soccer domain [3, 1], some specifically on learning, e.g. [2], and some
specifically on teamwork structures, e.g. [11]. In conjunction with our own work,
these pursuits have contributed to the success of the RoboCup challenge. In
particular, we have addressed and successfully met the first two of the three
specific challenges. Most of our specific contributions have been described in
detail elsewhere. This paper serves to summarize our broad course of research
within the context of the specific IJCAI challenge.

In the context of learning (challenge i), we have created three different
learned behaviors and combined them hierarchically following the layered learn-
ing paradigm [8]. Given a hierarchical task decomposition, layered learning allows
for learning at each level of the hierarchy, with learning at each level directly
affecting learning at the next higher level.

As called for in the challenge, the three learned behaviors represent off-
line skill learning by individual agents; off-line collaborative learning by teams
of agents; and on-line collaborative and adversarial learning. First, individual

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 495−508, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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agents learn to intercept a moving ball by training a neural network off-line.
Second, they use the learned ball-interception behavior as part of the training
procedure for learning to evaluate whether a pass to a particular teammate will
succeed or fail. This collaborative skill is trained off-line using the C4.5 decision
tree training algorithm [6]. Third, the team of agents collectively learns an effec-
tive passing and shooting policy against a particular opponent using the on-line
TPOT-RL multi-agent reinforcement learning method [7].

Within the context of the teamwork challenge (challenge ii), we characterize
simulated robotic soccer as an example of a periodic team synchronization (PTS)
domain [9]. PTS domains are domains in which periods of limited communication
and time-critical action are interleaved with periods of safe, full communication.
During the limited communication periods, agents need to act autonomously,
while still working towards a common team goal. Time-critical environments
such as robotic soccer require real-time response and therefore eliminate the
possibility of heavy communication among team agents. However, in PTS do-
mains, agents can periodically synchronize in a safe, full-communication setting.

We implement and test a team agent architecture suitable for PTS domains.
Our team member agent architecture includes a flexible teamwork structure
which allows agents to decompose the task space into flexible roles and allows
them to smoothly switch roles while acting. Team organization is achieved by the
introduction of a locker-room agreement as a collection of conventions followed
by all team members. It defines agent roles, team formations, and pre-compiled
multi-agent plans.

The remainder of this paper is organized as follows. Section 2 presents our
learning experiments within the simulated robotic soccer domain. Section 3 pro-
vides details of our solution to the teamwork challenge. Section 4 describes our
complete robotic soccer team which incorporates both learning and teamwork
and concludes.

2 Learning Challenge

To address the learning challenge, we have created three different learned behav-
iors and combined them hierarchically following the layered learning paradigm.
Section 2.1 describes layered learning and Section 2.3 presents our implementa-
tion within robotic soccer.

2.1 Layered Learning

Table 1 summarizes the principles of our layered learning paradigm.

Principle 1 Motivated by robotic soccer, layered learning is designed for do-
mains that are too complex for learning a mapping directly from an agent’s
sensory inputs to its actuator outputs. Instead, the layered learning approach
consists of breaking a problem down into several behavioral layers. At each layer,
a concept needs to be acquired. A machine learning (ML) algorithm abstracts
and solves the local concept-learning task.
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1. A mapping directly from inputs to outputs is not tractably learnable.
2. A bottom-up, hierarchical task decomposition is given.
3. Machine learning exploits data to train and/or adapt. Learning occurs sepa-
rately at each level.
4. The output of learning in one layer feeds into the next layer.

Table 1: The key principles of layered learning.

Principle 2 Layered learning uses a bottom-up incremental approach to hi-
erarchical task decomposition. Starting with low-level behaviors, the process of
creating new ML subtasks continues until reaching high-level strategic behaviors
that deal with the full domain complexity. The appropriate behavior granularity
and the aspects of the behaviors to be learned are determined as a function of the
specific domain. The task decomposition in layered learning is not automated.
Instead, the layers are defined by the ML opportunities in the domain.

Principle 3 Machine learning is used as a central part of layered learning to
exploit data in order to train and/or adapt the overall system. ML is useful for
training behaviors that are difficult to fine-tune manually. It is useful for adap-
tation when the task details are not completely known in advance or when they
may change dynamically. In the former case, learning can be done off-line and
frozen during actual task execution. In the latter, on-line learning is necessary:
since the agent needs to adapt to unexpected situations, it must be able to alter
its behavior even while executing its task. Like the task decomposition itself, the
choice of machine learning method depends on the subtask.

Principle 4 The key defining characteristic of layered learning is that each
learned layer directly affects the learning at the next layer. A learned subtask
can affect the subsequent layer either by:
• pruning the set of training examples;
• providing the features used for learning; and/or
• determining the actions available;

All three possibilities are illustrated in our simulated robotic soccer implemen-
tation described below.

2.2 Formalism

Consider the learning task of identifying a hypothesis h from among a class of
hypotheses H which map a set of state feature variables S to a set of outputs O
such that, based on a set of training examples, h is most likely (of the hypotheses
in H) to represent unseen examples.

When using the layered learning paradigm, the complete learning task is
decomposed into hierarchical subtask layers {L1, L2, . . . , Ln} with each layer
defined as

Li = (Fi, Oi, Ti,Mi, hi)

where:
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Fi is the input vector of state features relevant for learning subtask Li. Fi =
<F 1

i , F
2
i , . . .>. ∀j, F j

1 ∈ S.

Oi is the set of outputs among which to choose for subtask Li. On = O.

Ti is the set of training examples used for learning subtask Li. Each element of
Ti consists of a correspondence between an input feature vector f ∈ Fi and
o ∈ Oi.

Mi is the ML algorithm used at layer Li to select a hypothesis mapping Fi 7→ Oi

based on Ti.

hi is the result of running Mi on Ti. hi is a function from Fi to Oi.

As set out in Principle 2 of layered learning, the definitions of the layers Li

are given a priori. Principle 4 is addressed via the following stipulation. ∀i < n,
hi directly affects Li+1 in at least one of three ways:

– hi is used to construct one or more features F k
i+1.

– hi is used to construct elements of Ti+1; and/or

– hi is used to prune the output set Oi+1.

It is noted above in the definition of Fi that ∀j, F j
1 ∈ S. Since Fi+1 can

consist of new features constructed using hi, the more general version of the
above special case is that ∀i, j, F j

i ∈ S ∪i−1
k=1 Ok.

Again, in layered learning, the task decomposition is assumed to be given
a priori. Layered learning can, however, be combined with any algorithm for
learning abstraction levels. In particular, let A be an algorithm for learning task
decompositions within a domain. Suppose that A does not have an objective
metric for comparing different decompositions. Applying layered learning on the
task decomposition and quantifying the resulting performance can be used as a
measure of the utility of A’s output.

2.3 Layered Learning in Robotic Soccer

Table 2 illustrates our set of learned behavior levels within the simulated robotic
soccer domain. We identify a useful low-level skill that must be learned before
moving on to higher-level strategies. Then we build upon it to create higher-level
multi-agent and team behaviors.

Layer Behavior type Learned behavior Learning method Training type

1 individual ball interception neural network off-line

2 multi-agent pass evaluation decision tree off-line

3 team pass selection TPOT-RL on-line

Table 2: Examples of different behavior levels in robotic soccer and the learning meth-
ods used for the implemented layers in the simulated robotic soccer layered learning
implementation.
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L1: Ball Interception — an individual skill. First, the agents learn a
low-level individual skill that allows them to control the ball effectively. While
executed individually, the ability to intercept a moving ball is required due to
the presence of other agents: it is needed to block or intercept opponent shots or
passes as well as to receive passes from teammates. As such, it is a prerequisite
for most ball-manipulation behaviors. We chose to have our agents learn this
behavior because it was easier to collect training data than to fine-tune the
behavior by hand1.

L1 is defined as follows.

F1 = {BallDistt, BallAngt, BallDistt�1}: The agent learns what action
to take based on the ball’s current distance and angle from the defender,
and the ball’s distance a fixed time (250 msec.) in the past.

O1 = {TurnAng}: The agent chooses an angle to turn such that it will be
likely to intercept the ball.

T1: The training procedure for ball interception involves a stationary forward
repeatedly shooting the ball towards a defender in front of a goal. The de-
fender collects training examples by acting randomly and noticing when it
successfully stops the ball. Test examples are classified as saves (successful
interceptions), goals (unsuccessful attempts), and misses (shots that went
wide of the goal).

M1 = a neural network: Ball interception is trained with a fully-connected
neural network with 4 sigmoid hidden units and a learning rate of 10−6. The
weights connecting the input and hidden layers use a linearly decreasing
weight decay starting at .1%. We use a linear output unit with no weight
decay. The neural network was trained for 3000 epochs.

h1 = a trained interception behavior: Table 3 shows the effect of the num-
ber of training examples on learned save percentage. With about 750 training
examples, the defender is able to stop 91% of shots on goal (saves + goals:
misses are omitted), a comparable save rate to that achieved when using an
analytic ball interception behavior [8].

L2: Pass Evaluation — a multi-agent behavior. Second, the agents use
their learned ball-interception skill as part of the behavior for training a multi-
agent behavior. When an agent has the ball and has the option to pass to a
particular teammate, it is useful to have an idea of whether or not the pass will
actually succeed if executed: will the teammate successfully receive the ball? Such
an evaluation depends on not only the teammate’s and opponents’ positions, but
also their abilities to receive or intercept the pass. Consequently, when creating
training examples for the pass-evaluation function, we equip the intended pass
recipient as well as all opponents with the previously learned ball-interception
behavior, h1. Again, we chose to have our agents learn the pass-evaluation capa-
bility because it is easier to collect training data than to construct it by hand.

L2 is defined as follows.
1 The learning was done in an early implementation of the soccer server (Version 2)

in which agents did not receive any velocity information when seeing the ball.
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Training Saves

Examples Saves(%) Goals(%) Goals+Saves(%)

100 57 33 63
200 73 18 80
300 81 13 86
400 81 13 86
500 84 10 89
750 86 9 91
1000 83 10 89
4773 84 9 90

Table 3: The defender’s performance when using neural networks trained with different
numbers of training examples.

F2 = a set of 174 continuous and ordinal features: There are many fea-
tures that could possibly affect pass evaluation. We encode a large set of
attributes representing the relative positions of teammates and opponents
on the field as well as statistical counts reflecting their relative positioning [8].

O2 = [−1, 1] : A potential pass to a particular receiver is classified as a success
with a confidence factor ∈ (0, 1], a failure with a confidence factor ∈ [−1, 0),
or a miss (= 0).

T2: The training procedure for pass evaluation involves a passer executing passes
to randomly-placed teammates interspersed with randomly-placed oppo-
nents. The training scenario is illustrated within a screen shot of the soccer
server in Figure 1. The dashed line indicates the region in which the team-
mates and opponents are randomly placed. The intended pass recipient and
the opponents all use the learned ball-interception behavior, h1. Trials are
classified as successes (a teammate intercepts the ball), failures (an oppo-
nent intercepts the ball), and misses (no player intercepts the ball). When
passing to a random teammate, 51% of passes are successful.

M2 = C4.5: To learn pass evaluation, we use the C4.5 decision tree training
algorithm [6] with all of the default parameters. Decision trees are chosen
over neural networks because of their ability to ignore irrelevant attributes.

h2 = a trained pass-evaluating decision tree: During testing, the trained
decision tree returns a predicted classification as well as a confidence factor,
resulting in a value between−1 and 1. Table 4 tabulates our results indicating
that the trained decision tree enables the passer to choose successfully from
among its potential receivers. Overall results are given as well as a breakdown
by the passer’s confidence prior to the pass. In this experiment, the passer is
forced to pass even if it predicts failures for all 3 teammates. In that case, it
passes to the teammate with the lowest likelihood of failure. 65% of all passes
and 79% of passes predicted to succeed with high confidence are successful.

L3: Pass Selection — a collaborative and adversarial team behavior.
Third, the agents use their learned pass-evaluation capability h2 to create the
input space and output set for learning pass selection. When an agent has the
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1

2

4
3

1 Passer: 3 Teammates: 4 Opponents:

Fig. 1: The training scenario for pass evaluation. The dashed line indicates the region
in which the teammates and opponents are randomly placed prior to each trial.

Success Confidence:
Result Overall .8–.9 .7–.8 .6–.7

(Number) (5000) (1050) (3485) (185)

SUCCESS (%) 65 79 63 58
FAILURE (%) 26 15 29 31

MISS (%) 8 5 8 10

Table 4: The results of 5000 trials during which the passer uses the DT to choose the
receiver. Results are given in percentages of the number of cases falling within each
confidence interval (shown in parentheses).

ball, it must decide to which teammate it should pass the ball2. Such a decision
depends on a huge amount of information including the agent’s current loca-
tion on the field, the current locations of all the teammates and opponents, the
teammates’ abilities to receive a pass, the opponents’ abilities to intercept passes,
teammates’ subsequent decision-making capabilities, and the opponents’ strate-
gies. The merit of a particular decision can only be measured by the long-term
performance of the team as a whole. Therefore, we drastically reduce the input
space with the help of the previously learned decision tree, h2: rather than con-
sidering the positions of all of the players on the field, only the pass evaluations
for the possible passes to each teammate are considered.

L3 is defined as follows.

F3 = {PlayerPosition,O2, O2, O2, . . .}: The input representation consists
of one coarse geographical component and one action-dependent feature [10]
for each possible pass. The action-dependent features are precisely the result
of h2 executed for each possible receiver.

2 It could also choose to shoot. For the purposes of this behavior, the agents are not
given the option to dribble.
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O3 = {shoot} ∪ {Teammates}: The result of a pass selection decision is
either a shot on goal or a pass to a particular teammate.

T3: Training examples are gathered on-line by individual team members during
real games. Each individual agent learns in a separate partition of F3 accord-
ing to its position on the field. Agents learn based on the observed long-term
effects of their actions [7]. For each particular action decision, the eligible
members of O3 are pruned based on h2: only passes predicted to succeed are
considered.

M3 = TPOT-RL: For training pass selection, we use TPOT-RL [10], an on-
line, multi-agent, reinforcement learning method motivated by Q-learning
that is applicable in team-partitioned, opaque-transition domains such as
simulated robotic soccer. We use the default parameters as reported in [10].

h3 = a distributed pass-selection policy: We test the pass-selection learn-
ing by directly comparing two teams with identical behaviors other than their
pass-selection policies. Agents on both teams begin by passing randomly, but
agents on one team adjust their behavior based on experience using TPOT-
RL. The other agents continue passing randomly. Figure 2 demonstrates the
effectiveness of the learned passing policies.
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Cumulative Goals vs. Game Number

Learning
Random

Fig. 2: Total goals scored by a learning team playing against a randomly passing team.
The independent variable is the number of 10-minute games that have elapsed.

The learning methods used for each of the above behaviors are summarized
in Table 2.

The three learned layers described above illustrate the principles of the lay-
ered learning paradigm as laid out in Section 2.1:
• The decomposition of the task into smaller subtasks enables the learning of

a more complex behavior than would be possible if learning straight from
the agents’ sensory inputs.
• The hierarchical task decomposition is constructed in a bottom-up, domain-

dependent fashion.
• Machine learning methods are chosen or created to suit the subtask in ques-

tion. They exploit available data to train difficult behaviors (ball interception
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and pass evaluation) or to adapt to changing/unforeseen circumstances (pass
selection).
• Learning in one layer feeds into the next layer either by providing a portion

of the behavior used for training (ball interception – pass evaluation) or
by creating the input representation and pruning the action space (pass
evaluation – pass selection).

3 Teamwork Challenge

To address the teamwork challenge, we characterize simulated robotic soccer as
an example of a periodic team synchronization (PTS) domain and we create a
general team member agent architecture suitable for PTS domains. Section 3.1
defines PTS domains and Section 3.2 lays out the agent architecture. Section 3.3
summarizes our implementation of a locker-room agreement in the robotic soccer
domain. For the domain-independent formulation, see [9].

3.1 Periodic Team Synchronization (PTS) Domains

We view robotic soccer as an example of a periodic team synchronization (PTS)
domain. We define PTS domains as domains with the following characteristics:

– There is a team of autonomous agentsA that collaborate towards the achieve-
ment of a joint long-term goal G.

– Periodically, the team can synchronize with no restrictions on communica-
tion: the agents can in effect inform each other of their entire internal states
and decision-making mechanisms with no adverse effects upon the achieve-
ment of G. These periods of full communication can be thought of as times
at which the team is “off-line.”

– In general (i.e., when the agents are “on-line”):

• The domain is dynamic and real-time meaning that team performance
is adversely affected if an agent ceases to act for a period of time: G is
either less likely to be achieved, or likely to be achieved farther in the
future. That is, consider agent ai. Assume that all other agent behaviors
are fixed and that were ai to act optimally, G would be achieved with
probability p at time t. If ai stops acting for a random period of time
and then resumes acting optimally, either:
∗ G will be achieved with probability p′ at time t with p′ < p; or
∗ G will be achieved with probability p at time t′ with t′ > t.

• The domain has unreliable communication, either in terms of transmis-
sion reliability or bandwidth limits. In particular:
∗ If an agent ai ∈ A sends a message m intended for agent aj ∈ A,

then m arrives with some probability q < 1; or
∗ Agent ai can only receive x messages every y time units.

In the extreme, if q = 0 or if x = 0, then the periods of full communication
are interleaved with periods of no communication, requiring the agents to act
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completely autonomously. In all cases, there is a cost to relying on communica-
tion. If agent ai cannot carry on with its action until receiving a message from
aj , then the team’s performance could suffer. Because of the unreliable commu-
nication, the message might not get through on the first try. And because of the
dynamic, real-time nature of the domain, the team’s likelihood of or efficiency
at achieving G is reduced.

The soccer server provides a PTS domain since teams can plan strategies
before the game, at halftime, or at other breakpoints; but during the course of
the game, communication is limited.

3.2 Team Member Agent Architecture

At the core of our agents’ coordination mechanism is the locker-room agree-
ment [9]. Based on the premise that agents can periodically meet in safe, full-
communication environments, the locker-room agreement specifies how they
should act when in low-communication, time-critical, adversarial environments.
agreement can be hard-wired or it can be the result of deliberative automatic
planning during the off-line phase of PTS domains. In our work so far, the
locker-room agreement is hard-wired: we focus instead on the on-line phase.

Our team member agent architecture is suitable for PTS domains. Individ-
ual agents can capture locker-room agreements and respond to the environment,
while acting autonomously. Based on a standard agent paradigm, our team mem-
ber agent architecture allows agents to sense the environment, to reason about
and select their actions, and to act in the real world. At team synchroniza-
tion opportunities, the team also makes a locker-room agreement for use by all
agents during periods of limited communication. Figure 3 shows the functional
input/output model of the architecture.

World
State

Internal 
State

Real
World

Internal
Behaviors

External
Behaviors

Predictor

ARCHITECTURE

Sensor Information

Interpreter

Action Primitives

TEAM MEMBER
Agreement
Locker-Room

Fig. 3: A functional input/output model of the team member agent architecture for
PTS domains.

The agent keeps track of three different types of state: the world state, the
locker-room agreement, and the internal state. The agent also has two different
types of behaviors: internal behaviors and external behaviors.
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The world state reflects the agent’s conception of the real world, both
via its sensors and via the predicted effects of its actions. It is updated
as a result of interpreted sensory information. It may also be updated
according to the predicted effects of the external behavior module’s cho-
sen actions. The world state is directly accessible to both internal and
external behaviors.

The locker-room agreement is set by the team when it is able to pri-
vately synchronize. It defines the flexible teamwork structure and the
inter-agent communication protocols, if any. The locker-room agreement
is accessible only to internal behaviors.

The internal state stores the agent’s internal variables. It may reflect
previous and current world states, possibly as specified by the locker-
room agreement. For example, the agent’s role within a team behavior
could be stored as part of the internal state. A window or distribution
of past world states could also be stored as a part of the internal state.
The agent updates its internal state via its internal behaviors.

The internal behaviors update the agent’s internal state based on its
current internal state, the world state, and the team’s locker-room agree-
ment.

The external behaviors reference the world and internal states, and se-
lect the actions to send to the actuators. The actions affect the real
world, thus altering the agent’s future percepts. External behaviors con-
sider only the world and internal states, without direct access to the
locker-room agreement.

3.3 Flexible Teamwork Structure

Within the team member agent architecture, our agents are equipped with a
flexible teamwork structure that allows agents to decompose the task space into
flexible roles and allows them to smoothly switch roles while acting. The team-
work structure consists of flexible positions (roles), dynamically changeable for-
mations, and pre-defined, multi-agent set-plays. The structure is “flexible” in
that agents can dynamically change their collective strategy and individual be-
haviors within this strategy in response to changing conditions. This section
summarizes the robotic soccer implementation of our general flexible teamwork
structure [9].

Flexible Positions In our multi-agent approach, the player positions itself
flexibly in anticipation of where it will be useful to the team, either offensively
or defensively. The definition of a position includes home coordinates, a home
range, and a maximum range, as illustrated in Figure 4(a). The position’s home
coordinates are the default location to which the agent should go. However, the
agent has some flexibility, being able to set its actual home position anywhere
within the home range.

Two ways in which agents can use the position flexibility is to react to the
ball’s position and to mark opponents. When reacting to the ball’s position, the
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agent moves to a location within its range that minimizes its distance to the
ball. When marking opponents, agents move next to a given opponent rather
than staying at the default position home.

Dynamically Changeable Formations A formation consists of a set of po-
sitions and a set of units. The formation and each of the units can also specify
inter-position behavior specifications for the member positions. Figure 4(b) il-
lustrates the positions in one particular formation, its units, and their captains.
Here, the units contain defenders, midfielders, forwards, left players, center play-
ers, and right players. The captain of a unit may have privileged decision-making
responsibilities, for example to assign players to “mark” (stay close to) specific
opponents.

Home Coordinates

Max Range

Home Range

Center

Midfielder,
Left

Goalie,

= Unit = Unit Captain

(a) (b)

Fig. 4: (a) Different positions with home coordinates and home and max ranges. (b)
Positions can belong to more than one unit.

We implemented several different formations, ranging from very defensive
(8-2-0) to very offensive (2-4-4).3 The full definitions of all of the formations are
a part of the locker-room agreement. Therefore, they are all known to all team-
mates. However during the periods of full autonomy and low communication, it
is not necessarily known what formation the rest of the teammates are using.
Two approaches can be taken to address this problem:

• static formation - the formation is set by the locker-room agreement and
never changes;
• run-time switch of formation - during team synchronization oppor-

tunities, the team sets globally accessible run-time evaluation metrics as
formation-changing indicators.

In the RoboCup simulator competitions, our agents switched formations
based on the amount of time left relative to the difference in score: the team
switched to an offensive formation if it was losing near the end of the game and
a defensive formation if it was winning. Since each agent was able to indepen-
dently keep track of the score and time, the agents were always able to switch
formations simultaneously.

3 Soccer formations are typically described as goalie-defenders-midfielders-forwards.
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Since the players are all autonomous, in addition to knowing its own position,
each one has its own belief of the team’s current formation along with the time
at which that formation was adopted, and a map of teammates to positions. The
players maintain consistent beliefs as to the team’s state via communication and
via conventions encoded in the locker-room agreement [9].

Pre-Planned Set Plays The final implemented improvement facilitated by our
flexible teamwork structure is the introduction of set plays, or pre-defined special
purpose plays. As a part of the locker-room agreement, the team can define multi-
step multi-agent plans to be executed at appropriate times. Particularly if there
are certain situations that occur repeatedly, it makes sense for the team to devise
plans for those situations.

In the robotic soccer domain, certain situations occur repeatedly. For exam-
ple, after every goal, there is a kickoff. When the ball goes out of bounds, there
is a goal-kick, a corner-kick, or a kick-in. In each of these situations, the referee
informs the team of the situations. Thus all the players know to execute the
appropriate set play. Associated with each set-play-role is not only a location,
but also a behavior. The player in a given role might pass to the player filling
another role, shoot at the goal, or kick the ball to some other location.

3.4 Results

To test our flexible teamwork structure, we played a team using flexible positions
and set-plays against one using rigid positions and no set-plays. Otherwise, the
agents behaviors on the two teams were identical. Table 5 shows the results
which clearly indicate the effectiveness of our teamwork structure.

(Game = 10 min.) Flexible and Set-Plays Default

Games won 34 1

Total goals 223 82

Avg. goals 5.87 2.16

Ball in own half 43.8% 56.2%

Table 5: Results when a flexible team plays against a rigid team. The flexible team
won 34 out of 38 games with 3 ties.

To compare the different formations, we played each formation against ev-
ery other several times. We used the results to help construct the formation-
switching strategy used by our agents in competitions [7]. The cues for switch-
ing formations are functions of globally accessible variables (time remaining and
score of the game) as defined in the locker-room agreement.

4 Conclusion

Layered learning and the team member agent architecture address the learning
and teamwork components of the RoboCup Synthetic Agents Challenge 97. We
leave the opponent modeling portion of the challenge as future work.
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As well as being tested individually as reported above, our learning and
teamwork techniques have been combined into a complete team of robotic soccer
agents4. This team became the champion of the RoboCup-98 simulator competi-
tion, winning from among a field of 34 teams. Our team out-scored its opponents
by a total of 66–0. Our subsequent team entered in RoboCup-99 also won that
competition, which included 38 teams, outscoring its opponents by a total of
110–0 [7].
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Abstract. In recent years, many researchers in AI and Robotics pay
attention to RoboCup, because robotic soccer games needs various tech-
niques in AI and Robotics, such as navigation, behavior generation, local-
ization and environment recognition. Localization is one of the important
issues for RoboCup. In this paper, we propose a method of robot’s lo-
calization by integrating vision and modeling of the environment. The
environment model that realizes the robotic soccer filed in the computer
can produce an image of robot’s view at any location. In the environ-
ment model, the system can search and appropriate location of which
view image is similar to the view image by the real robot. Our robot
can estimate location from goal’s height and aspect ratio on the camera
image. We search the most suitable position with hill-climbing algorithm
from the estimated location. We programmed this method, and tested
validity. The error range is reduced from 1m∼50cm by robot’s estima-
tion from 40cm∼20cm by this method. This method is superior to the
other methods using dead reckoning or range sensor with map because
it does not depend on the field size on precision, and does not need walls
as landmark.

1 Introduction

In the domain of the robotic soccer, there are various classes of problems; nav-
igation, behavior generation, recognition of the environment, and localization.
In these problems, localization is especially indispensable technique for robotic
soccer. In order to generate cooperative behavior, an agent needs to know its
position within the environment. Therefore, the problem of estimating the posi-
tion of a mobile robot is one of the fundamental problems in the field of mobile
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robots. In this paper we propose a method of localization by integration of im-
precise vision and a 3D environmental model. We will show that this method is
also effective to identify opponent robots.

Dead reckoning and range finder are often utilized to the localization prob-
lem [7] [5] [3]. Dead reckoning uses odometry (i.e. counting wheel rotations) to
determine the robot’s position. Since, errors from slip of wheels accumulate over
time, estimation of its position becomes increasingly inaccurate. The range find-
ers such as sonar and IR sensors are not useful in the environment in which
there are no walls which reflect the ultrasonic wave and infrared rays. In order
to overcome this problem we need to use the method of localization there are
less dependent on its environment.

In this paper we propose the system which uses both visual sensor and the
soccer field model. By making comparison between images from the visual sensor
and provided by the field model, the robot can estimate its position.

In the domain of vision-guided mobile robot research, there are a lot of tech-
niques of localization using visual sensors. There have been various methods
which use 3D model of environments to estimate the robot’s position and orien-
tation. In this approach, 3D model is employed to generate an expected image
and it is compared with an image captured by the robot [2] [9] [6] [4] [1].

If the 3D model of environment is already known and we can measure several
feature points of an object in a captured 2D image, the distance to object may
be derived by geometrical model. However, it is hard to measure such feature
points because of the following two reasons. One reason is that if there is an
unknown object in the captured image and it obstructs the view, these feature
points would not be observed. The other is that the image processing system
is often confronted with change of lighting, therefore accurate measurement is
impossible. In order to overcome this problem, we add a method of matching
two images to distance estimation from several feature points.

2 System Architecture
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Fig. 1. Our soccer robot.
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Our robot consists of four major hardware components; a portable PC (Li-
bretto 50 or 60, 100, Toshiba), a vision system including a camera and a video
capture card, a tactile sensor system, and a chassis including motors and a motor
drive board. The detail of our system is described in [8].

An image captured by the vision system is processed by the vision module.
The vision module provides information about objects in the field and the image
is segmented into 7 colors (See Table1) regions in the vision module which runs
on PC on the robot.

Table 1.

object color

ground green

one goal yellow

another goal blue

wall white

ball red

outside of field black

robot gray

Every pixel in an image is classified to 6 colors except gray by means of a
discrimination rule which uses the Mahalanobis distance, and this rule is learned
by sample color data. A pixel which does not classified to any colors labeled to
gray.

3 localization

The procedure of our method of localization consists of the following two steps;
1) Estimate the current position by calculating distance to a landmark from
an image which is sent from camera on the robot, 2) Revise the position by
comparing the camera image and vision images that are generated by the field
model.

We select a goal as a landmark to estimate the position. The reasons of
selecting the goal as a landmark are as follows. 1) The robot can always see
either goal everywhere in the soccer field. 2) The robot can always see a complete
view of either goal since it can rotate its camera.

3.1 Estimation of the position

We use distance and angle from the goal estimate position of the robot in the
field. Distance and angle are calculated from width and height of the goal that
are identified in an image captured by the camera on the robot. The relations
between distance, angle and width, height of the goal are as follows;
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– The height of a goal in the image is inversely proportional to the real distance
to the goal.

– The angle to the goal concerns to the ratio of the width to the height of goal.

The former relation can be easily formulated;

d =
a

h
(1)

Where the h is height of the goal in the image. We select the constant a by
calculating the mean value from the real data. The latter is derived from the
geometrical model of the relation between a goal and a robot(See Figure 2).

G
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Fig. 2. The geometrical model of the relation between a goal and a robot

According to this model, angle to the goal is;

θ = 90 − arcsin(d
g
sin(arctan(

m

d
)))− arctan(m

d
) (2)

We define the origin of the coordinate axes as center of center circle in the
soccer field. The position of robot is;{

x = 4110− d cos(θ)
y = d sin(θ)

The position calculated this method has about 60cm error in average. This
error is caused by limit of image precision (64 × 48 pixels) and error of color
segmentation. Image precision is limited because all kinds of processing including
image processing are done in a single computer in our robot and it requires real-
time response.

In order to reduce this error, we revise the position with the field model.
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3.2 Position Revision

The position revision system consists of a server which revises the position, and
clients each of which is on a robot and send estimated positions to the server.
The server communicates with multiple clients and holds the position of each
robot. Figure 3 shows the client-server system applied in our work.

Server

robot

Client

Shared memory

position info.
image info.

position
(x,y,   )

robot name,
position info.,
image info.

position
(x,y,   )

Environment model

position image

θ

θ

Fig. 3. Server Client System

The role of the server and the client is described as follows. Server receives
both data of the position which is estimated in the computer on the robot, and
images captured by the camera on the robot through wireless ethernet. The
server then revises the position by comparing the two images; one is captured
by the robot, another is generated in the server by means of a 3D field model.

3.3 Field Model

The server has a 3D field model. The features of this model are;

1. The size of every part of field such as wall and goal can be changed.
2. This model can generate any image of view that the robot ought to see from
coordinates (x, y) and angle θ.

3. We can place multiple robots in the field.
4. The shape of every robot can be changed.

3.4 Method of Position Revision

We use two types of images for position revision. One type of images that is
captured by the camera on a robot. The image is segmented to 7 colors region
by the vision module on the robot and sent to the server through ethernet. The
other type of images is an ideal image of the field. This image is generated by the
server and is calculated from value of position; (x, y, θ) that is sent from a client
to the server. The strategy of position revision is to find an optimal point in the
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field model. In this point the field model generates the most similar image to the
captured image. The method of finding this point is to search the neighborhood
point of starting point which is estimated from geometrical model. We use the
hill-climbing algorithm as a search algorithm.

The evaluation function is;

func(a, b, c) =
2c

a+ b
(3)

a is the number of pixels of the goal area in an image which generated by the
3D field model. b is the number of pixels of the goal area in an image which is
captured by camera on the robot. c is a number of intersection pixels of both
areas when two images are overlapped in order to fit center of gravity of both
areas.

By means of hill-climbing algorithm search of optimal point is carried out by
the following steps.

y 7a

12

3

4 5 6

8

x

Fig. 4. Neighbor point of (i, j)

1. Step1: Evaluation of beginning of search.
(a) Calculate the value of beginning point pt(i, j) by evaluation function.

2. Step2: Calculate the value of the next candidate points
(a) Select the neighbor 8 points of pt(i, j) (See Figure 4).
(b) Generate the image of each point and calculate a value by the evaluation

function.
(c) Select the point pt+1(i, j) in which the evaluation value is the greatest

of 8 points.
3. Step3: Comparison.
(a) If the value in pt(i, j) is greater than that in pt+1(i, j), finish searching.
(b) If the value in pt(i, j) is greater than 0.99, finish searching.
(c) If the value in pt+1(i, j) is the same as that in pt−1(i, j), finish searching.
(d) If the value in pt+1(i, j) is greater than that in pt(i, j), return Step2.
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4 Experimental result

We had experiments on the proposed method. We put the robot on the point
of the field that is randomly selected, and executed the program. Experimental
results are shown in Table 2.

Table 2. Comparison of errors

position estimated revised

(2000.0) 659mm 206mm

(1850,0) 639mm 308mm

(1300,0) 1113mm 320mm

(1150,0) 1111mm 381mm

(1000,0) 927mm 335mm

(1000,1000) 279mm 260mm

(0,1000) 486mm 172mm

(-1000,1000) 606mm 243mm

(1000,-1000) 341mm 141mm

(0,-1000) 258mm 215mm

(-1000,-1000) 404mm 295mm

The mean value of the error before revision is about 600mm and it is reduced
to 260mm after revision. While the error before revision becomes larger with the
robot goes away from the goal, the error after revision becomes less sensitive
to the distance. This fact suggests that our proposed method is tolerant of the
changing position in the field. But, the error after revision becomes also smaller
when the robot is closer to the goal. The reason for this is that we use the
number of pixel in an image as a parameter of evaluation function. Since error
rate does not depend on the amount of these pixels, the larger amount of these
pixels contributes to make position more accurate.

5 Identification of Opponent Robots

In this section we explain a method of identification of opponent robots. This
method is realized by our proposed localization method and field model. To
distinguish team mate robot from opponent robot is important ability for soccer
robot. An innocent robot may pass the ball to an opponent robot. Without
explicit mark, to do that is considerably hard.

Our basic idea is that there are only team mate robots in the field model
constructed in the server. The server know all positions of each team mate robot
by communicating with each robot, and can generate an image in which there
are only team mate robots. The procedure of distinguishing a team mate from
opponent robots is follows.
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1. Preparation of two images; one is generated by the server, and another is
sent from one of the robot in the field.

2. Counting the pixels which are colored gray. Each image is segmented to 7
colors and the robot is colored gray in each image.

3. Calculation of remainder of each number of pixels; r.
4. If r is greater than a threshold, we define that there is at least an opponent
robot in the image which is captured by robot. We select the threshold as
100 pixels.

Fig. 5. There are no robots.

Fig. 6. There is only opponent robot.

4 experimental result are shown in Figure 5 ∼ Figure 8. In each figure, (a)
is captured by a camera on a robot and (b) is generated by server. In figure (b)
a team mate robot is expressed by a gray cone.

In Figure 5(a), the number of gray pixels is 66 and in Figure 5(b) 0. Therefore,
the server decides that there are no robots. In Figure 6(a), the number of gray
pixel is 184 and in Figure 6(b) 0. Therefore, the server decides that there is a
team mate robot. In Figure 7(a), there is a robot in the left side of the goal and
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Fig. 7. There is only a team mate robot.

Fig. 8. There are both a team mate and an opponent robot.

the number of gray pixel is 155. In Figure 5(b) there is a corn as a team mate
robot. The server know each position of each team mate robot, and can generate
an image in which there is a team mate robot. The number of gray pixel is 104.
Therefore the server decides that there is a team mate robot. While in Figure
8(a), there are two robots, in Figure 8(b), there is one robot, the server decides
that there are both a team mate and an opponent robot.

6 Conclusions

In this paper, we propose a method of robot’s localization by integrating vision
and modeling of the environment. We also propose a method of identification of
opponent robots by using vision and the field model. By means of our method,
accuracy of the localization of the robot in the soccer field is improved.

In the method of using geometrical model and image’s feature points, a noise
of image prevents sampling of the feature value and directly effects the accuracy
of the localization. On the other hand, in the method of comparing an image
captured by robot and an image generated by the field model, starting point
of search is important to reduce the computational cost. Combining these two
methods, we reduced the cost of search and improved the accuracy of localization.
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There are two advantages of our localization method against the other method
such as a method utilized sonar or IR sensor and a method of dead reckoning.
One is that our method does not depend on the size of the field. We utilize the
view of goal in order to estimate and revise the position of the robot, therefore
if only the goal is visible, localization is possible. If the size of the field become
greater, errors from dead reckoning are proportionally increased. The other is
that our method does not depend on the structure of the field. In the method
utilized sonar or IR sensor, if there are no walls, the robot could not know its
position.

In the method of identification of the opponent robot, we compare an image
of a field model in which there are only a team mate robot to an image captured
by the robot in order to distinguishing a team mate robot from opponent robots.
Our experimental result shows that we can identify the opponent robot without
explicit marking.

In our approach a problem still exists; If the robot can not see landmark, the
estimation of position bymatching two images is impossible. In order to overcome
this problem we can use multiple landmarks and multiple images captured by a
camera while the camera is rotating.
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Abstract. An est,ended value fiinct,ion is discussed in t,he cont,est, of 
niult,iple beliavior coorclinat,ion. especially in a dynamically clianging ~~ 

niultiagent environnient. Unlike the t,radit,ional weighted siini of several 
reward fiinct,ions. we define a vect,orizecl value fiinct,ion wliicli evaluat,es 
t,he current, act,ion st,rat,egy by int,roducing a discount,ed niat,ris t,o in- 
t,egrat,e several reward fiinct,ions. Owing t,o t,he est,ension of t,he value 
fiinct,ion. t,lie learning robot, can est,iniat,e t,lie fiit,ure niult,iple rewarcl- 
s froni t,lie environment, appropriat,ely not, suffering froni t,lie weiglit,ing 
problem. The proposed iiiethod is applied t,o a simplified soccer game. 
Coniput,er siniulat,ions are shown and a discussion is given. 

1 Introduction 

Rccciit,ly, t,hc rcaliza.t,ioii of coopcra.t,ioii a.inoiig inult,iplc robot,s ha.s bccii st,ud- 
ice1 by ina.iiy rcsca.rchcrs. RoboCup [3]  is a.ii iiicrca.siiigly successful a.t,t,cinpt, t,o 
proinot,c t,hc full iiit,cgra.t,ioii of A1 a.iid robot,ics rcsca.rch, a.iid ina.iiy rcsca.rchcrs 
a.rouiid t,hc world h a w  bccii a.t,t,a.ckiiig a. wide ra.iigc of rcsca.rch issues, cspccia.1- 
ly inultjia.gciitj problcins iii a. clyiia.inically clmiigiiig ciiviroiiinciit,. Ainoiig t,hcin, 
behavior 1ca.riiiiig iii a. inult,ia.gciit, ciiviroiiinciit, ha.s bccii a.t,t,a.ckcd ba.scd 011 rc- 
inforcenieiit, learning [Y. 11, 121. One of the issues in applying reinforcement 
1ca.riiiiig t,o t,his doina.iii is t,ha.t, t,hc a.gciit, ha.s t,o cope wit,h inult,iplc t,a.sks a.iid is 
iiccdcd t,o ina.kc a. dccisioii a.iiy t,iinc which behavior should be t,a.kcii. 

Thcrc a.rc t,wo t,ypical coorcliiia.t,ioii a.pproa.chcs of inult,iplc lxhaviors. The 
first, oiic is t,o coordiiia.t,c inult,iplc behaviors iii scc~uciicc [G, 91. Rccciit,ly, t,hc 
inultji-critjcria. sccluciit,ial clccisioii ina.kiiig problcins a.rc coiisiclcrccl 11a.sccl 011 t,hc 
vect,orizecl value funct,ioii [a]. However, it, seeins difficult to determine the order 
of behaviors ba.scd 011 t,hc va.luc of t,hc ut,ilit,y bcca.usc it, dcpciids 011 t,hc discouiit, 
fa.ct,or a.iicl t,hc st,a.t,c spa.cc 1iot)li of which shoulcl lie ca.rcfully clcsigiiccl iii real 
robot, a.p plica.t,ioiis . 

The sccoiicl a.pproa.ch is a. incclmiiisin of clccisioii ina.kiiig which lxhavior 
shoulcl lie pcrforinccl a.ccorcliiig t,o t,hc currciit, sit,ua.t,ioii, but, it, sccins clifficult, 
t o  dccidc bcforc encountering the sit,ua,tioiis. A t,ypical cxa.inplc is a. ta.sk of 
s1ioot)iiig a. liall iiit>o t,hc goal avoicliiig collisioiis wit,li ot)licr robot>s. The robot, 
ha.s t,o coiisidcr a. t,ra.dcoff bct,wccii shoot,iiig a.iid avoidiiig behaviors bcca.usc it, 
clcpciicls 011 t,hc sit,ua.t,ioii which lxhavior 1ia.s higher priorit>y t,o ot>licr oiic. To cope 
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wit, li such a. t,ra.cl co ff. scvcr a1 in0 clu1a.r a.r chi t,cc hi rcs h avc 11 ccii prop osccl 11 a.sccl 
011 the iiidcpciidciit,ly a.ccluircc1 results of rciiiforccinciit, 1ca.riiiiig. For cxa.inplc, 
a.ii a.rbit,cr coordiiia.t,cs behaviors ba.scd 011 t,hc ina.jorit,y [In]. While inodu1a.r 
rciiiforccinciit, 1ca.riiiiig [ 111 1ia.s 11ccii proposed t,o coorcliiia.t,c Iichaviors iii a. ca.sc 
t,ha.t, t,hc behaviors iiit,crfcrc wit,h ca.ch ot,hcr. However, t,hcsc inct,hods iiccd t,o 
scpa.ra.t>cly a.pply t,hc 1ca.riiiiig a1gorit)hin iiit>o subt>a.sks iii a.clva.iicc. 

As oiic altjcriia.tjivc t,o coorcliiia.t,c behaviors which a.chicvc inu1t)iplc t,a.sks si- 
inult,a.iicously, t,hc cxt,ciisioii of t,hc rcwa.rd fiiiict,ioii sccins promising. Siinplc 
rcaliza.t>ioii is 11a.sccl 011 t,hc wcightjccl siiin of inu1t)iplc rcwa.rcls [4]. Iii t)liis ca.sc, 
fuiida.inciit,al behaviors h a w  bccii cinbcddcd a.s a. forin of subsuinpt,ioii a.rchit,cc- 
t,urc, which ina.kcs 1ca.riiiiig it,sclf simple. However, t,hc inct,hods of t,hc wcight,cd 
siiin of rcwa.rcl fuiict>ioiis a.rc fa.cccl wit,li t,hc cssc1it)ia.l problem of wcight,iiig it,sclf, 
t,ha.t, is, how t,o dccidc t,hc wcight,s. 

Iii t,liis pa.pcr, we propose a. vcctjorizccl value fuiict,ioii t,o cope wit,li inu1t)iplc 
t,a.sks. Iii ot,licr words, t,hc values of inu1t)iplc behaviors a.rc cstjiina.tjccl by t,hc 
scpa.ra.t,c value fuiict,ioiis. We iinplcinciit, a.ii a.rchit,cct,urc of a.ii a.ct,or-crit,ic t,ypc 
a.s a. 1ca.riiiiig inccha.iiisin. The crit>ic is a. st,a.t,c value fiiiict,ioii. Aft,cr ca.ch a.ct,ioii 
sclcct,ioii, t,hc crit,ic cvalua.t,cs t,hc iicw st,a.t,c t,o dct,criniiic whct,hcr it, ha.s bccoinc 
11 c t, t, cr or wor sc t)lia.ii cxp cc t,ccl. 

2 Vectorized Reinforcement Learning 

2.1 Temporal Difference 

Bcforc explanation of the proposed incthod, we show Tcinporal Diffcrciicc (hcrc- 
after, TD) incthod [8] briefly for the reader's understanding. lye coiisidcr the 
state-outcome scc~uciiccs of the forin xt.  xt+l,  . . . .  xt+,, r .  whcrc each x t  is a 
state vector a t  tiinc t iii the scyuciicc, aiid r is the outcoinc of the scyuciicc. 

The givcii task is to predict the fiiturc reward to rcccivc a t  each state. TD(X) 
[S] maximizes (or iniiiiinizcs) scalar cuinulativc discouiitcd win 

n=O 

whcrc e t  is a. cliscouiit) fa.ct,or lIctjwccii 0 a.iicl 1. 

2.2 Problems of Scalar-valued Reward Function 

Iii ca.sc of realizing coopcra.t,ivc behaviors iii a. inultjia.gciitj ciiviroiiinciit,. t,hc 1ca.rii- 
iiig robot, ha.s t,o coiisidcr t,hc t,ra.dcoff bct,wccii t,hc iiidividual a.iid t,hc t,ca.in pur- 
poses a.s inuch a.s possible. Suppose t,lia.t, t,hc 1ca.riicr 1ia.s N t,a.sks t,o a.ccoinplish. 
The inult,iplc rcwa.rds froin t,hc ciiviroiiinciit, a.rc givcii t,o t,hc robot, a.s follows: 

T T  = [ r l  r 2  . . . r!\'] . 

whcrc r' c1ciiot)cs t,hc rcwa.rcl for t,hc i-t,li t,a.sk. 
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Iii orclcr to cope with inultiplc rcwarcls, oiic of the siinplcst iinplcinciitatioii 
of thcin is a wcightcd coinbiiiatioii of the rcwarcls like 

w 

i = l  

where 1 ~ : ~  is a weight for t,he reward r i .  The objectjive is t,o niaxiinize (or minimize) 
t,hc wcight,cd siiin. ‘This inct,hod reduces t,hc problcin t,o t,hc ca.sc of sca1a.r-ducd 
rciiiforccinciit, values. However, t,liis coinbiiia.t,ioii 1ia.s t>lic followiiig c1cficit)s. 

~ The cliscouiit) fa.ct,or ;( is coininoii t,o t,hc a.11 t,a.sks. 
- The cst,iina.t,cd va.luc fuiict,ioii is uiist,a.blc whcii we give bot,h t,hc positjive a.iid 

iicga.t,ivc rcwa.rds. 

Siiicc ;( coiit>rols t,o wlia.t, clcgrcc rcwa.rcls iii t,hc clist,a.iit, fiit,urc a.ffcct, t,hc t,ot,al 
value of a. policy, it, is desirable t,o set, ;(I� t,o t,hc a.ppropria.t,c va.lucs for t,hc cor- 
rcspoiidiiig t,a.sks, rcspcct,ivcly. A t,ypica.l cxa.inplc is “collisioii a,voida.iiccn which 
1ia.s cliffcrciit, propcrt,y (iicga.t,ivc rcwa.rc1) froin t,lia.t, of goal clircct,ccl behaviors 
(positjive rcwa.rd). T1ia.t) is, a.iiy a.ct,ioii ca.ii be allowcd t,o be t,a.kcii uiilcss it, ca.iiscs 
collisioiis wit,li ot,licr objcct,s. Iii orclcr t,o 1ca.rii such a. lxliavior, ;( slioulcl lie inuch 
sina.llcr so t,lia.t, t,hc ut,ilit>y for t,hc clist,a.iit, fut,urc ca.iiiiot> lie a.ffcctjccl. 

2.3 Extension to  the Vectorized Value Function 

Coiisidcriiig the above inciitioiicd issue, we cxtciid scalar value fiiiictioii to  a 
vcctorizccl value fiiiictioii. Tlic cliscouiitccl win of the vcctorizccl value fiiiictioii 
caii be cxprcsscd by 

n=O 

whcrc T is N x N ina.t,rix. We call T discouiit,cd ina.t,rix. If t,hc cigciivaluc of t,hc 
ina.t,rix r cxist,s wit>liiii t,hc uiiit, circle, t,hc value cxprcssccl by Ecl. ( 3 )  coiivcrgcs. 

It, is iinport,a.iit, t,o clcsigii r.  As clcscribccl above, t,hc behavior obt,a.iiiccl by 
rciiiforccinciit, 1ca.riiiiig dcpciids 011 t,hc value of t,hc discouiit, fa.ct,or. A1t)hough we 
discussed t>lie affect) of 7 in our previous work [Ill, it is not clear t>o design ?. So, 
we ut,ilizc t,hc priiicipa.1 a.iiglcs lxtwccii t,wo subspa.ccs iii order t,o iinplcinciit, T .  
Figure 1 shows a. lmsic iclca. t,o clcsigii r .  The incrit,s of t,liis inct,liocl a.rc rcga.rclcc1 
a.s follows: 

- If t,hcrc is a. 1ia.s whcii t,hc rcwa.rds a.rc givcii t,o t,hc robot,, we ca.ii rcducc t,hc 
diinciisioii of t,hc rcwa.rd spa.cc. 

~ ‘Ta,kiiig iiit>o a.ccouiit, t,hc rcwa.rc1 spa.cc, we ca.ii inoclify t>lic st,a.t,c spa.cc a.ppro- 
pria.t,cly. Iii LPM, t,hc st,a.t,c spa.cc is coiist,ruct,cd ba.scd 011 oiily t,hc scc~uciiccs 
of obscrva.t,ioii a.iicl a.ct>ioii. 
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Fig. 1. Basic idea t o  design the cliscountecl niatriv from the relation between two 
subspaces 

In order t,o calcula.tjc t,hc principal a.nglcs, we have t,o coinput,c t,lic following 
singu1a.r value dccoinposit,ioii 

Then, we set T as 

T = S ,  = diag [cos B1. cos 0,. . . . . cos B . (5) 

whcrc B (0 ,  5 0, 5 . . .  5 B y  5 ~ / 2 )  denotes the principal angle bctwccii two 
subspace5 ( S ( R )  and S ( X ) ) .  Furthermore, we modify the new reward and state 
spaces as follows: 

-I/,  
r ’ = ~ f E , ,  r and, 
2� = v, 2. T 

The robot learns its behavior liasccl on the iicw reward T’  and the iicw state 
vector 2�. Becaube the eigem-alues of T in Ey.(5) are less than one, the value 
cvprcsscd by Ey.( 3 )  converges. 

2.4 Behavior Learning 

In order to  acquire the policy ( the mapping function froin the state space to  the 
action space bascd on tlic vcctorizcd value function, we utilize tlic actor-critic 
incthocls [S] which arc TD ones that h a w  a separate memory structure explicitly. 
Let q t ( d .  u) be a vector a t  tiinc t for the inodifiablc policy. The TD error can 
lie usccl to evaluate the action u taken in the state 2�. Evcntually, the learning 
algorithin is shown as follows: 

2r

2x

1 1r

1x

3x

2

state space

reward space
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Initialization: 
1. Collect, the obscrva.t,ioii, a.ctioii, a.iid rcwa.rc1 (y. u, T). a.iid coiist,ruct, t,hc st,a.tc 
spa.cc by LPM. Coinput,c r by Ecl.(4). 
2. Iiiit,ializc t,hc value fiiiict>ioii �u(x�) a.iid t>lic policy fiiiict>ioii q(x�. u)  a.rbit>ra.rily 
a.iid a.ii cligibilit,y fiiiict,ioii r (  x�) = 0 for all st,a.t,cs. 
Repeat forever: 
1. Calcula.t,c t,hc currciit, st,a.tc xi by LPM a.iicl Ecl.(6). 
2. Exccut,c a.ii a.ct,ioii 11a.sccl 011 t,lic ciirrciit, policy. As a. result,. t,hc ciiviroiiinciit, 
ina.kcs a. st,a.tc t,ra.iisit,ioii t,o t,hc iicxt, st,a.tc xi+I a.iic1 gciicra.t,cs t,hc rcwa.rc1 r t .  
3. Calcula.t,c t,hc TD error by 

aiid update the eligibility b y  

wlicrc X is the t racr -drcay parameter. 
4. [Tpclatc the value fiiiictioii aiicl tlic policy fiiiictioii. For all xi E X ’  anel 
ut E u, 

(9) 
‘ut+l(x:) = v t (x : )  + 06trt(x;) 

!It+&::. ut) = Q t ( X : : ,  ut) + 36f, 
wlicrc 0 aiicl j3 (0  < 0 .  j3 < 1) arc lcariiiiig rate. 
5. Rcturii to 2. 

Iii t>liis a.lgorit,liin, ‘u a.iicl q a.rc rcprcsciit,ccl 11 a. look-up t,a.blc, wlicrc coiit,iiiu- 
011s st,a.t,c a.iid a.ct,ioii spa.ccs have t,o be yua.iit, cd a.ppropria.t,cly. So long a.s t,hc 
1ca.riiiiig robot, ut,ilizcs a. tja.bula.r a.ct,ioii value fiiiict>ioii which is scginciit,ccl by t,hc 
dcsigiicr, t,hc robot,s a.rc ha.uiit,cd by t,hc scginciit,a.t,ioii problcin of t,hc st,a.t,c a.iid 
a.ct,ioii spa.ccs. ‘To ovcrcoinc t,his problcin, several yua.iit,iza.t,ioii inct,hods such a.s 
Pa.rt,i ga.inc a1gorit)liin [5], Asa.cla.’s inct,liocl [l] a.iicl Coiit,iiiiious Q 1ca.riiiiig [lo] 
might, be proinisiiig. 

a.t,ioiis. Tlicii, we iisc 6-grcccly st,ra.t,cgy [8] .  inca.iiiiig t,lia.t> inost, of t,iinc t,hc robot, 
cliooscs a.ii opt,iina.l a.ct>ioii, but, wit,li proba.bi1itjy 6 it, iiist,ca.cl sc1cct)s a.ii a.ct,ioii a.t, 
r a.iidoin . We suinina.rizc t, he a.c t,ioii s t,r a.t,cgy a.s follows. 

The 1ca.riiiiig robot, ha.s t,o select, scvcra.1 a.ct,ioiis t,o explore t,hc uiikiiowii 

( a )  Execute the raiidoin action with probability 6. or goto step (13). 

(13) Iiiitializc r n n k ( u )  = 0 for all u E U .  For 1 = 1 , “  .LY. 
(1) Calculate tlic optiinal action corresponding to each qI ( q T  = [ q l . .  . . . q v ] ) .  

uf = arg inax q, (2�. u). 
U€U 

(a) Iiicrcinciit r n n k ( u f )  = r n n k ( u f )  + 1. 
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( 3 )  Execute the optiinal action. 

u* = arg inax r n n k ( u ) .  
U€U 

Aft,cr all. siiicc t,hc a.11 a.ct,ioiis a.rc ordered wit,h respect, t,o t,hc Pareto opt%m.al%ty, 
t,hc 1ca.riiiiig robot, ca.ii select, t,hc a.ct,ioii which sa.t,isfy t,hc optimal  a.ct,ioii a.s 
possible. 

3 Tasks and Assumptions 

3.1 Environment and Robots 

IYc apply the proposccl inctliocl to a siinplificcl soccer gainc iiiclucliiig tlircc lcarii- 
ing niobile robot5 in the contest of RoboCup [3 ] .  RoboCup is an increasingly 
successful attcinpt to  proinotc the full integration of XI aiid robotics research, 
aiid many researchers around the world have been attacking a wide range of 
research issues, especially inultiagciit problcins iii a dyiiainically chaiigiiig ciivi- 
ronnieiit . 

The ciiviroiiinciit consists of a ball aiid two goals, aiid a wall is placed arouiid 
tlie field except tlie goals (see Figure 2 ) .  The sizes of tlie ball, the goals and tlie 
field arc the sainc as those of the middle-size real robot lcaguc iii the RoboCup 
Iiiitiativc 

Each robot docs iiot kiiow the locatioiis, the sizes aiid the weights of the ball 
aiid tlic otlicr robot, aiiy caincra parainctcrs such as focal lciigtli aiid tilt aiiglc, 
or hiiicinatics/clyiiainics of itself. Each robot lias a siiiglc color TY caincra aiicl 
observes output vectors (image features) showii iii Figure 3 The diinciisioiis of 
the obscrvccl vectors for the 1x111. tlic goal, aiicl tlic otlicr robot arc 4, 11, aiicl 5, 
respectively 

Figure 2 ( e l )  shows the real robot usccl for inoclcliiig. Tlic robots h a w  tlic 
sainc body (power whcclcd stccriiig system) aiid the sainc sciisor (oii-board TY 
caincra). As inotor coininaiicls, each inobilc robot lias a 2 DOFs. The iiiput u is 
dcfiiicd as a 2 diinciisioiial vector: 

uT = [ I '  d ]  I,.d E {-1. 0, 1}. 

wlicrc I :  a.iicl d a.rc t>hc vclocitjics of tjra.iisla.t,ioii a.iicl rot)a.t,ioii of t,hc robot,. rc- 
spcctjivcly. Iii t>liis cxpcriinciitjs, I :  a.iicl d a.rc clua.iitjizccl iiit>o t,lircc lcvcls, which 
a.rc uiiiforinly dist)ribut>cd. 'Tot>a.lly, t>hc robot, ca.ii select, oiic froin iiiiic a.ct,ioiis a.t, 
ca.cl1 st>a.t,c. 

3.2 Experimental setup 

JTc show two cxpcriinciits t o  verify the proposed lcariiiiig adgorithin usiiig a 
siinplificcl soccer gainc. 
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Fig. 3. Image features of the hall. goal. and other robot 

- Shooting a ball into the goal without collisions with other robot (Figure 

In this cvpcriincnt, tlicrc arc two robots in the cnvironincnt. One is a shooter 
r O  which learns to  shoot a ball into a goal avoiding collisions with the other 
robot as possible, and the other r2 is a clcfciiclcr to disturb the learning 
robot. 

- Shooting and passing a ball without collisions with each other (Figure 2(b) ) :  
There are two learning agents (rO and '1) in the environnient. The setting 
of this cvpcriincnt is as the sainc as that  of one described our previous work 
[la] except that the role of each robot has not been pre-specified. That is to  
say, the reward fiiiictioii is coininoii lictwccn two learning robots. 

IYc pcrforin a simplified soccer gainc by tlircc learning robots. r O  and r l  arc 
teammates while r2 i5 a competitor against them. The diffcrciicc from the 
cvpcriincnts clcscribccl above is iiivolvcinciit of competition. 

2(a) ) :  

- Simplified game among three robots (Figure 2 ( c ) ) :  

One t>ria.l is tjcrinina.tjccl if one of t,hc ro1iot)s s1ioot)s a. ball iiit>o t,hc goal or 
the prc-specified time int,crval expires. The tria.1 dil l  continues cvcii if a. pa.ssing 
behavior is a.cliicvcc1, t,hc ro1iot)s ina.kc collisions, or t,hc robot, puslics t,hc ball. 

r2

r0

ball

goal

goal

r1

r0

ball

goal

goal

r1

r2

r0

ball

goal

goal

goalballother robot
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4 Experimental Results 

4.1 

Iii this cupcriinciit, the tashs for the lcariiiiig robot arc (i) to shoot a ball into 
the goal, (ii) to  avoid collisioiis with the other robot, and (iii) to  kick the hall. 
The clcfciiclcr r2 has a fiuccl policy of chasiiig the I d ,  aiicl its inotioii spcccl is a 
30 % of the niaxiinuin bpeecl of the learning robot. 

IYc assign the iicgativc reward r c ( =  -1.0) whcii rO inakcs a collisioii with 
r2. ~n acMitioii, we assign tlie positive rewarcis r s ( =  1.0) am1 r k ( =  1.0) wlieii rO 
shoots the ball into the goal aiid kicks the ball, respectively. Thcii, the reward 
fiiiictioii is dchiicd as a tlircc diinciisioiial vector. The other parainctcrs arc set to 
X = 0.4, a = 0.25 aiicl j3 = 0.25. respectively. Iii orclcr to coinparc the proposccl 
inctliod with the inctliod described iii Scctioii 2 . 2 ,  we prepare the followiiig liiicar 
wcightiiig rcwarcl fuiictioii 

Shooting a Ball into the Goal without Collisions 

(12)  h h  r = r c + r s + u  r .  

whcrc II = 1.0. The 
d i s c o i d  factor 7 is set to  0.9. 

Figure 4 shows that the robot with II‘ = 1.0 tciids to push the ball inorc 
frequently than other robots. Then, the buccebs rate of shooting behavior ib 
worse than the case of the proposed incthod aiid 110 weight. The rcasoii is that  
tlie reward fuiictioii used in Task (b) is a mixture of tlie positive and negative 
value. Thcii, the value fuiictioii based 011 Eq.( 12) may iiot cstiinatc the value 
appropriately Also, the problem of the estimator based on Eq.(12) is to  use the 
sainc cliscouiit factor ainoiig the givcii tashs. Suppose that the lcariiiiig robot 
inakcs a collidoii with other rohot. The learning robot rcccivcs T‘ iiiorc frcqucntly 
than r’. which inahcs the robot to acquire the avoicliiig behavior at  the lxgiiiiiiiig. 
As a result, the rohot can iiot scck the fcasihlc solutioiis to  acquire shooting 
behavior. 

is a weight. IYc chcch two values: ( a )  II = 0.0. (11) II 

4.2 

Iii this cupcriinciit, thcrc arc two lcariicrs The tasks for both lcariicrs arc (i) to 
shoot a ball into the goal, (ii) to avoicl collisioiis, (iii) to hich the I d ,  aiicl (iv) 
to pass the ball to the tcaininatc The first thrcc caii be regarded as cvaluatioii 
for iiicliviclual robot aiicl the fourth as cooperative oiic. Thcii, we test the coorcli- 
iiatioii of shootiiig, passing aiicl avoicliiig behaviors. IYc use the rcwarcl fuiictioii 
coininoii to thcin The reward fuiictioii is 

Shooting and Passing a Ball without Collisions 

T~ = [ r c  r s  rz’ r ’ L ]  . (13) 

whcrc r p  dciiotcs the rewards for passing the ball toward the tcaininatc. 
IYc assign the positive rcwarcl rJ’( = 1.0) whcii the pass behavior is accoin- 

plishcd. The dcfiiiitioii of the pass behavior iii this cupcriinciits is that  the agciit 
rcccivcs rJ’ after the other agciit touches the ball which is pushccl by itself iii 
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(a) the number of (1)) the number of ( c )  the success rate of 
collisions kicking the ball shooting 

Fig. 4. Experimental results of the acquired performance in a case of shooting and 
avoiding h chaviors 

a sliort time. 111 tlie same manner, otlier rewards r c ( =  -1.0). T ‘ ( =  1.0) and 
r’( = 1.0) arc givcii whcii the collisioiis happcii, the agciit hichs the ball, aiicl the 
agent shoots the ball into the goal, respectively 

Iii this cupcriinciit, siiicc thcrc arc inultiplc agciits that lcarii lxhaviors, si- 
inultaneous leariling inay cause poor performance, especially in t he early btage 
of lcariiiiig Thcii, we apply the lcariiiiig schedule as follows: 

- period A (trial iiuinbcr 0 N 2 5 x lo4) : rO is a lcariicr while r l  is statioiiary 
- period B (trial iiuinbcr 2.5 x lo4  N 5.0 x lo4)  : r l  is a lcariicr while rO 

- period C (trial iiuinbcr 5.0 x lo4 N 7.5 x lo4)  : rO is sclcctcd as a lcariicr 

~ period D (trial nuinber 7.5 x lo4 N 10.0 x l o4 )  : r l  construct the LPMs, 

inovcs arouiicl. 

agaiii while r l  inovcs arouiicl liasccl 011 the result of the pcriocl B, aiicl 

aiid lcarii the behaviors agaiii 

Figure 5 shows the lcariiiiig curves with respect to the frcquciicics of the 
rcccptioii of the rcwarcls r’ aiicl rJ’. As we caii scc froin Figure 5(a) .  the si~cccss 
rate of shootiiig behavior graclually iiicrcasccl through the iiitcractioiis. TTiitil the 
ciid of period A, only rO shot the ball into the goal bccausc r l  did iiot inovc iii 
this pcriocl. 

Froin Figure 5(h), mc can scc that  the frcquciicics of pasdiig hchal-iors also 
iiicrcascd The passing behaviors iiot oiily froin rO to r l  but also froin r l  to 
rO are reinforced in the period A. El-eii though r l  was stationary the ball was 
soinctiincs rim into r l  by accidciit Thcii, rJ’ was givcii to  r l  after rO pushed 
tlie ball. 

4.3 

Next, we pcrforin thrcc-rohots’ cxpcriinciits. This cxpcriinciit iiivolvcs 130th co- 
operative aiicl coinpctitivc tasks. rO aiicl r l  arc tcaininatcs. IYc aclcl iicw rcwarcls 

A Simplified Soccer Game among Three Robots 
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(a) shooting behavior (1)) passing behavior 

Fig. 5 .  Experimental results of the acquired performance in a case of passing and 

shooting behaviors 

Y'. r m  and rJ'. Tlie six dimensional reward vector is prepared for tliis game. JTe 
assign the iicgativc reward r ' (=  -1 0) whcii the tcain to which the robot bcloiigs 
lose tlie goal. Altliougli tlie positive reward F ( =  1.0) is given wlieii the robot 
passes tlic ball towarcl its tcaininatc, the rcwarcl r m ( =  -1.0) is givcii wlicii tlic 
robot passes tlie ball toward its opponents Other rewards r c ,  r s  and Y' are the 
sainc as before. The other parainctcrs arc set to X = 0.4, a = 0.25 aiicl j3 = 0.25. 
rc5pcctivcly 

IYc prepare the lcariiiiig schedule [12] to inakc lcariiiiig stable iii the early 
stage As described iii Scctioii 4 2 ,  each iiitcrval bctwccii cliaiigc of lcariiiiig 
robots is set to 2.5 x lo4  trials. Iii this cupcriinciit, we set up the followiiig thrcc 
lcariiiiig sclicclulcs, 

- c a w  (A) : rO + r l  + r2, 
~ case (B)  : r l  i r2 i rO, 
~ c a w  (C) : r2 + rO + r l .  

After each robot leariiecl the behaviors (all the robot was selected a t  once), we 
recorded the total scores iii each gainc IYc pcrforin 5 sets of the cupcriinciits, 
and show tlie liistories of tlie game in Figure 6. 

As we caii scc froin Figure 6, the result clcpciicls 011 tlic orclcr to lcarii. Al- 
though this gaine ib two-to-one competition. r2 won the game if we selected r2 
as the first robot to lcarii (case (C))  Otherwise, a tcain of rO aiid r l  dcfcatcd 
r2. Thib scheduling is a hind of teaching, help the agents to bearch the feasible 
solutioiir froin a vicwpoiiit of the dcsigiicr However, the dcincrits of this incthod 
is also rcvcalcd wlicii we apply it to  tlic coinpctitivc tasks. That is, tlic lcariiiiig 
sclicclulc oftcii lcacls tlic coinpctitivc gainc to the uiiclcsirablc results. Iii other 
words, siiicc oiic side ovcrwhclincd its oppoiiciits, both sides reached t o  oiic of 
stable but low shill lcvcls, aiicl tlicrcforc 110 cliaiigc liappciir after tliis set tlc- 
inciit Therefore, we iiccd t o  cutciid the lcariiiiig schedule to the oiic iiicludiiig 
coinpctitivc situatioiir. 
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( c )  avcragcd carncd scorcs (casc (C)) ( f )  a-cragcd lost scorcd (casc ( C ) )  

Fig. 6. Experimental results of the acquired performance in case of a simplified soccer 
game 

5 Conclusion 

This paper has showii how the lcariiiiig robots cope with the inultiplc tasks 
iii a inultiagciit ciiviroiiinciit. Iii order to realize cooperation, global cvaluatioii 
factors arc aclclccl to the reward fiiiictioii. Iii other words, the tash for the robot 
is to  coiisidcr the tradcoff bctwccii the iiidividual cvaduatioii aiid the global 
oiic. IYc h a w  applied the proposed incthocl to several siinplificcl soccer games, 
aiid dcinoiistratcd that  the lcariiiiig robots caii acquire the purposive behaviors. 
Now, we arc plaiiiiiiig to iinplcinciit real cvpcriinciits to chcch the validity of the 
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proposed incthocl aiicl the obtaiiiccl behaviors. 
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Abstract. This report discusses two major views on BDI deliberation
for autonomous agents. The �rst view is a rather conceptual one, present-
ing general BDI design principles, namely heuristic options, decomposed
reasoning and layered planning, which enable BDI deliberation in real-
time domains. The second view is focused on the practical application of
the design principles in RoboCup Simulation League. This application
not only evaluates the usefulness in deliberation but also the usefulness in
rapid cooperative implementation.We compare this new approach, which
has been used in the Vice World Champion team AT Humboldt 98, to
the old approach of AT Humboldt 97, and we outline our ideas for further
improvements, which are still under work.

Conditions faced by deliberation in multi agent contexts di�er signi�cantly
from the basic assumption of classical AI search and planning. Traditional game
playing methods for example assume a static well-known setting and a �xed
round-based interaction of players by a �nite set of actions. Additionally, play-
ers have a rather long time for deliberation. In contrary to that, many real-world
domains are characterized by a continuous action space and an environment that
is permanently changed not only by the agent itself, but also by parallel events
and actions of other agents. Domains with the need for real-time computing
demand in addition time-bounded deliberation processes. The RoboCup Simu-
lation League [9] is an arti�cal soccer testbed for the international evaluation of
approaches that aim at agent deliberation in such real-time dynamic domains.

The Belief-Desire-Intention (BDI) architecture founded on Cognitive Science
(refer e. g. to [1]) has been applied to deliberation in Arti�cial Intelligence by
several researchers (e. g. [3, 8, 14]). It claims to be highly suitable for domains
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that are characterized by a non-deterministic environment, competing desider-
ata, local information and bounded rationality. We have recently proven this
to be true in RoboCup [2, 11]. We have also reported that structuring agents
according to BDI is advantageous in the implementation process of RoboCup
teams [7].

This report discusses two major views on BDI deliberation for autonomous
agents. The �rst view given in section 1 is a rather conceptual one, presenting
design principles, that can help to structure deliberation in real-time domains.
In section 2, these design principles are directly evaluated by applying them
to RoboCup. The development of RoboCup agents does not only impose con-
straints and diÆculties on the deliberation design, but also on the implementa-
tion process. Usually, RoboCup development teams consist of several people with
heterogeneous skills. Hence, section 2 also gives a glimpse on time- and resource-
bounded software engineering, which is supported by the BDI design principles.
In the conclusions we briey evaluate and compare the BDI approach of AT
Humboldt 97 to the presented approach, which has been used for RoboCup 98.
Moreover, we outline our ideas for further improvements, which are still under
work.

1 BDI Design Principles

The presented principles examine the following design tasks: What options of
acting may an agent have in a given situation and what is their heuristic utility?
Which of these options shall a rational agent choose as desired and intended?
How can the intended options be pursued eÆciently? These tasks directly cor-
respond to consecutive phases in the deliberation design process.

1.1 Heuristic Options

As well as classical AI search is not suÆcient for real-time dynamic domains,
its set of terms, including \state" for the given situation and \operand" for
an atomic action, is not suÆcient to describe the agent's environment and its
abilities to act. We therefore have been inspired by the notions world and option

as introduced by Rao and George� in [13] to substitute these terms.

A world is a timed snapshot of all environmental information which may be of
use for the agent. Since we assume a situated agent's view on the environment,
a world represents always local and incomplete (and even partially incorrect)
knowledge about the real environment. Hence, our understanding of world is
equivalent to that of believed world. Since the agent has usually more than one
option to act, there are di�erent following worlds. Some of these worlds ful�ll
certain conditions to be desirable for an agent. This subset of possible worlds
is called desired worlds in classical BDI theory. Only a subset of these desired
worlds may be achievable and consistent with respect to the given circumstances,
and a rational agent may choose some of them to become intended worlds.
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The other important notion is \option". In terms of possible future worlds,
each option corresponds to a set of future worlds, where some conditions (e. g. ball
control by the player) are ful�lled. Some of these worlds may be reachable by a
related plan of the agent. But such a plan might also fail according to the non-
determinism mentioned above, e. g. it might end in a world, where the desired
condition does not hold.

The development of the world depends on the actions of others players, and
of the uncertainty of the environment, too. The actions of cooperating agents
are predictable to some extend. But the behavior of opponents is nearly unpre-
dictable: We might assume that they behave in their best way, but then again
we need to know about best plans (from opponents' view in this case). Thus,
the outcome of a plan is non-deterministic from an agent's point of view. In
[11] a theoretical model using Utility Theory (e. g. [12]) is used to describe this
situation. In any case, it is impossible to compare all available plans by related
calculations in a reasonable time.

This forces an approach according to the principles of \bounded rationality"
[1] in the spirit of BDI. Our approach is based on heuristic options, which are the
domain for desires and intentions (corresponding to a class option in object-
oriented programming). Heuristic options are chosen from typical short-term
goals, e. g. ball interception in soccer. It is important, that such goals consider
a planning horizon which is restricted, but not in a uniform manner (a ball
interception might e. g. last 3 or 30 steps). It is possible to enlarge this horizon
by medium-term goals.

Options are realized by skills, which are con�gurable plans | or parameteriz-
able procedures from the programming viewpoint, respectively. They implement
typical basic capabilities of the agent, e. g. running, kicking, dribbling of RoboCup
agents. As their names imply, they are in close relation to the options.

The task of deliberation is now the choice of a promising skill with appro-
priate parameters. This is basically the same problem as the above choice of a
best plan, but our BDI-setting allows for useful heuristics. At �rst, we choose
desires from the set of all available options: The options are ordered by approx-
imations of their utilities, and the best scoring are considered as desires. Then
it is proven, whether there really exists a plan for the achievement of such a
desire. If it does, then the desire is chosen as an intention, which is successively
re�ned by determining useful parameters for a related skill. According to BDI
theory, the intention sets a screen of admissibility for the re�nement of the plan,
and in some cases for the consideration of conicting future desires, too. Our
utility approximation tries to determine a useful option, for which suÆciently
reliable plans hopefully exist. When choosing such an option as a desire, we
can dramatically restrict our search in the space of plans resp. possible future
worlds. Further heuristics (including learning approaches) can be used for the
determination of the concrete plan.

In principle, we can deal with multiple concurrent intentions { and we will
use it in the future. Up to now additional intentions occur only in the special
form of constraints: Several options may have certain properties in common. This
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holds especially in the case of resource consumption, which could be interpreted
as costs for the execution of an option. Resource control is done by constraints,
which can be applied to the heuristic utility calculation of an option. Constraints
have also utilities. They can increase the overall expected utility of the option,
which considers to ful�ll them.

Concerning software technology, we state, that up to now agent oriented
programming | and especially the implementation of BDI | has been mostly
considered in the tradition of logic and rule based programming (e. g. [17, 6,
18]). Our approach uses agent oriented techniques as a structuring method in
an object-oriented environment. Traditional programs are related to well under-
stood control ows: The programmer knows in advance, which procedures with

which parameters are to be called under which concrete conditions. This is im-
plemented using the control structures of procedural languages. The situation
changes in the case of autonomous agents in highly dynamic and complex worlds:
The programmer does not know in advance all the conditions to call a procedure
with appropriate parameters. Only the criteria of such calls can be described to
some extend (as in a chess program: the programmer does not know about all
concrete moves, only some decision criteria can be implemented). Instead of a
�xed procedure control ow, an agent program has to implement a reasoning
process for the choice of procedures. We will discuss some more details on this
exibility of control in the following subsection.

1.2 Decomposed Reasoning

BDI reasoning means to us the rational choice of promising options to become
desires and intentions. This process should show the following properties, which
are related to bounded rationality inside the agent as well as to software tech-
nological requirements:

Time-boundedness | In a real-time environment the reasoning process is
bounded by time restrictions. Either the environment may enforce a timely
decision (e. g. in applications with security demands) or late decisions may
lead to suboptimal behavior (i.e. missing an opportunity to act).

Distinction of Control and Knowledge | The control of the reasoning
process itself should be generic, such that it is independent from the domain-
speci�c options and remains exible.

Independence of Options | Alternating, deleting or adding an option
should inuence the reasoning process and other options only marginally
or even not at all. This property could be called scalability.

The main idea that guarantees the ful�llment of the above mentioned de-
mands is the decomposition of the reasoning process into modular heuristic op-
tions. In our model, every option implements a standardized interface, which de-
�nes an eÆcient utility estimation, an attainability predicate, a layered planner
and a continuation enforcement predicate. This interface is used by the detached
reasoning process as shown by �gure 1. The concepts of decision points, continu-
ation enforcement and layered planning will be described in the next subsection.
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Determine Constraints

Determine Desires

Desire -> Intention

Desire
Remove

Choose best Desire

Is Desire
realizable?

Yes

No

Determine Intention

Decision Point:
Force Continuation

of Intention?

Plan Intention

No

Yes

WorldModel Data

Partial Plan

Fig. 1. BDI Reasoning Process

An initial reasoning process starts with the determination of applicable con-
straints. Given a domain-speci�c set of possible constraints PC and a utility
threshold MIN CONSTRAINT UTILITY, the set of currently applicable constraints
C can be determined by

C = fc 2 PC j c:utility > MIN CONSTRAINT UTILITYg:

Given a domain-speci�c set of possible options PO and a utility threshold
MIN DESIRE UTILITY, the set of current desires D can be determined by

D = fo 2 PO j o:utility (C) > MIN DESIRE UTILITYg:

When choosing only one intention from the desires, the current intention i can
be determined under consideration of the recent intention ri by

i = ( arg max
d2D

fd:utility (C) j d:isPossibleg)
| {z }

possible desire with maximal utility

:adapt (ri) :
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Usually there is only one desire with a maximal utility, which is then chosen
as intention. If there are two or more desires with the same maximal utility no
further destinction between the desires can be done, so the intention is chosen
arbitrary among these desires.

Let's look at the demanded properties of a BDI reasoning process in dynamic
environments. The time-boundedness of the presented reasoning process depends
on the eÆciency of the constraints' and options' utility estimations. The best
solution for utility estimations are approximation algorithms, which deliver the
better estimations, the more computing time is available. The control process
itself is highly eÆcient, since it follows a simple greedy approach and calculates
the costly isPossible method only in case of promising desires. Control and
knowledge is fully detached, because all utility and planning heuristics are encap-
sulated in options. This also supports the demanded scalability of the reasoning
process, since options estimate their utility independently from other options.

1.3 Layered Planning

In making a rational choice of a single intention from the given desires, the agent
has decided, what to do. The planning task is then to determine, how to do it.
In dynamic environments there is always a trade-o� between short-term reactive
control and long-term deliberative planning [4]. Reactive control has the advan-
tage of being always well-informed about the environment and the disadvantage
of a highly restricted horizon. Just the opposite holds for long-term planning.
To adjust the agent's planning horizon properly, we are experimenting with lay-

ered planning, which tries to incorporate the advantages of both reactivity and
planning (related to abstractions [10, 16] and Hierarchical Task Network (HTN)
planning [5, 15]). Figure 2 shows the di�erent layers of planning, which include
coarse-grained planning on the intention layer, �ne-grained planning on the skill
layer and execution on the atomic actions layer. Following the principle of de-
composed reasoning, all the functionality described here lies within the intention,
chosen by the reasoning process.

The topmost layer shows exactly one (abstract) intention that describes the
intended transition from the current world to a new world satisfying the in-
tended conditions. The coarse-grained planning horizon directly corresponds to
the estimated length of the intention. Thus, an intention corresponds to a single
compound task in HTN planning. There is always a special problem in choos-
ing the time points for monitoring the progress of intention execution and for
reconsidering the intention. Too few monitoring and reconsideration might lead
to a behavior, which is not appropriate to the current situation, too much of it
could overload the deliberation process. Our concept of monitoring and recon-
sideration involves the use of so-called decision points. They are time points, at
which the agent monitors the environment and reconsiders its choices.

Decision points usually enclose several steps for atomic actions. At this point,
�ne-grained planning is needed. Fine-grained planning is done by the agent's skill
that is associated to the chosen intention. Compared to HTN planning, a skill
is similar to a method leading to primitive tasks. Since the distance between
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decision points might be dynamic and non-deterministic, �ne-grained planning
must have an anytime-property. That means, that these short-term plans should
need no or only short initialization sequences. Otherwise, there would be much
initialization overhead in case of near decision points. The approach of �ne-
grained planning is domain-dependent and can vary from intention to intention.
For example it could use classical planning approaches, reactive planning or pre-
compiled plan skeletons. Additionally, it should regard the constraints put onto
the given intention. The action sequences planned by the �ne-grained planner
can directly be executed by atomic actions.

To guarantee stability of committed intentions we propose two di�erent
strategies, which inuence the whole layered planning approach. The �rst is
implicit persistence. Following this strategy, the agent considers all time points,
at which the environment's behavior (e. g. an input of sensory data) implies
reconsideration, as (heteronomous) decision points. In case of an environment,
that has changed as expected, the intention chosen at one of these decision points
will be most likely the same as the recent un�nished intention. In contrary to
that, explicit persistence means, that the agent chooses on its own, on what
time point to reconsider its intention. This is implemented by the intention's
continuation enforcement predicate, which is illustrated in �gure 1. In general,
all planning layers could be subject to protections against unwanted changes:
We might forbid a change of the intention while allowing a modi�cation of the
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related plan, and we might even forbid changes of the plan itself (which we call
\fanatism"), respectively.

2 Cooperative Implementation in RoboCup

Giving a brief example of a typical option in arti�cial soccer, in this section we
will apply the presented generic BDI principles to the development of RoboCup
agents. We will show, that these principles can not only be successfully used
for agent deliberation, but also for rapid cooperative implementation. A more
detailed report on this issue can be found in [7].

2.1 Constraints on Time and Sta�

Arti�cial soccer is very useful for practical exercises in the area of Distributed
Arti�cial Intelligence. Soccer is well-known and interesting for students. Results
of work can directly be seen. In a practical exercise attached to the course 'mod-
ern methods of AI' in summer semester 1998 several students had to be included
in the development process of AT Humboldt 98. In opposite to the year before,
there was only few time between the start of the practical exercise (April) and
the World Championship 98 (in the beginning of July).

Because of these hard time constraints, the project management was a critical
task in this project. The development team of AT Humboldt 98 consisted of one
core team including four persons and four feature teams with altogether eleven
developers. Additionally, one of the major aims was to establish a code base,
which is understandable, reusable and which can be extended and improved by
additional work of students.

Due to the short time amount, much work had to be done in parallel: The
students of the practical exercise had to be introduced into the new domain. Then
the students had to pick up one component of the agent to specify, implement
and test. After that, these components had to be integrated in the �nal agent and
to be tested again to stabilize the behavior of the agents. The design principles of
modular heuristic options and decomposed reasoning helped a lot in structuring
the implementation work and breaking up the deliberation into small and to
some degree independent pieces.

With AT Humboldt 99 we started to extend AT Humboldt 98 by improved
skills, new options and partly by a larger planning horizon. These extensions are
also subject to further improvements in the next versions of AT Humboldt.

2.2 Application of the BDI Design Principles: An Example

Our RoboCup agents know several active options, which may be only desired, if
the agent has possession of the ball. They include such options like GoalKick,
DirectPass, ForwardPass, Dribbling and so on. If the agent does not control
the ball, passive options will be desirable. They include CollectInformation,
InterceptBall, GoToHomePosition, DefendGoal and others. All these options
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have their own utility estimations, continuation enforcement predicates and plan-

ners. There are also two constraints, that have impact on the reasoning on option

as described above. They are ConserveStamina and AvoidOffside.

One of the passive options used for our agent team is the option Intercept-

Ball. If useful, it will represent the desire of intercepting the ball to gain ball

control. The utility of intercepting the ball directly depends on the expected

success in gaining ball control. The ball may be intercepted in di�erent ways.

Directly running into the way of the ball and waiting for it is secure but subop-

timal, since an opponent may reach the ball �rst. Otherwise, if the agent tries to

intercept the ball as fast as possible, it may miss the ball because of unforseen

delays in its run. For a complete analysis of such a problem all possible plans

have to be taken into account. As mentioned before, this seems impossible or

at least not manageable. Therefore, we use a heuristic to calculate the utility of

this option.

To estimate the utility of InterceptBall the agent calculates for itself and

every team mate, how many time steps it will need to gain ball control if it moves

optimally. For this calculation the agent uses the position of the team mate

and the position and the speed of the ball. Furthermore this utility estimation

can be inuenced by the constraint ConserveStamina, which may be put onto

InterceptBall. After having estimated the utility of this option, it may be

chosen as a desire or even as an intention by the decomposed reasoning process.

In the latter case, the rough area for intercepting the ball is already known

by the utility estimation. Hence, when �xing InterceptBall as intention, we

determine the precise destination region at which the ball can be intercepted

early but also relatively secure. The horizon of this coarse-grained plan corre-

sponds to the time needed to gain ball control. After that, the coarse-grained

plan has to be re�ned by a �ne-grained plan reaching to the next decision point,

which is done by a corresponding skill. While planning the �rst atomic actions

towards the destination region according to the �ne-grained planning horizon,

the skill also considers the ConserveStamina constraint and avoids obstacles in

the agent's path.

If an agent has chosen the option InterceptBall as intention and has de-

termined a corresponding region, it may loose sight of the ball, while running to

the destination region1. If the player reconsidered its intention every time a new

sensor information arrives, it might try to look for the ball again and as a con-

sequence loose time. To avoid this, the agent uses the continuation enforcement

predicate of InterceptBall. During the calculation of the destination region,

the agent also determines a \don't care" interval, in which no reconsideration

is allowed. This interval is given by the minimal time, the fastest player needs

to intercept the ball. Nevertheless, if the agent gets new information about the

ball without additional actions, it is able to successfully reconsider its intention.

In this case, the intention is not enforced to be continued. This behavior im-

1 Players can use necks in Soccer Server Version 5, thus they can now turn his neck

to observe the ball while running. Nevertheless, the example explains the idea of

intention stability.
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plements the mentioned explicit persistence and guarantees the stability of the

InterceptBall intention.

3 Conclusion

To give a brief conclusion and overall evaluation of the presented BDI principles

and their implementation, we compare them to the deliberation approach of the

former soccer team AT Humboldt 97.

The development of the deliberation process in AT Humboldt 97 was rather

intuitive. The team's knowledge of BDI design and implementation was just

evolving and did not directly guide the development. Due to this, the resulting

code did not precisely reect the use of mental categories like belief, desires or

intentions. For example, the choice of desires and intentions was done by a �xed

hard-coded decision tree, which mixed up control and domain-speci�c knowledge.

Hence, its development lay within the hands of only one person and it was hard to

maintain. Writing the papers published later, helped the team to theoretically

reconsider the techniques, which had been used informally. Ideas, which were

already present in 1997, like layered planning, implicit and explicit persistence

and others, underwent a strict review by a widened group of developers. This

reconsideration lead to a full re-implementation of AT Humboldt.

The presented BDI principles have supported this re-implementation. The

decomposition of control and knowledge has shown to be highly valuable for

transparency and for rapid cooperative implementation. The notion of a modu-

lar heuristic option has played a central role in this context. By encapsulating

the domain-speci�c knowledge, an option could be designed and realized almost

independently from other options. Though, this modularity has certain draw-

backs. The heuristic utility of a given option can not be found trivially. Another

serious problem is the global normation, such that the utilities of di�erent op-

tions remain comparable. We consider this to be a great challenge for learning

techniques in our future work.

Since the reasoner always chooses only one intention to be pursued, the team

had to introduce constraints to allow parallel inuences. This concept has not

fully paid o�, since only a few of them could be identi�ed in the real applica-

tion. A better approach for future work would be the introduction of parallel

intentions. In contrary to that, the principle of layered planning and persistence

showed encouraging results. It allowed to balance the trade-o� between adaption

and stability very well, especially in case of passive options.

The BDI deliberation process of AT Humboldt 98 has proven to be exible,

scalable and maintainable. It provides a useful base for further improvements,

which are still under work. The main goal is the introduction of longer planning

intervals. A \cascade of intentions" will be used to establish raw sequences of

subsequent future steps, which can be re�ned according to the development of the

environment. \Emergent cooperation" in AT Humboldt 98 and 99 resulted from

the programmer's knowledge about the implementation. Now we want to extend
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this behavior by explicitly plannable cooperation. On the lower level, additional
and improved skills are to be developed (e. g. using learning techniques).
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AT Humboldt in RoboCup-99
(Team description)�

Hans-Dieter Burkhard, Jan Wendler��, Thomas Meinert, Helmut Myritz, and
Gerd Sander

Humboldt University Berlin, Department of Computer Science,
Arti�cial Intelligence Laboratory, D-10099 Berlin, Germany

email: hdb/wendler/meinert/myritz/sander@informatik.hu-berlin.de,
WWW: http://www.ki.informatik.hu-berlin.de

1 Introduction

Our agent team AT Humboldt 99 (AT stands for \Agent Team") was developed
as extension of our former team AT Humboldt 98, which became vice champion
at RoboCup-98. We started to extend it by improved skills, new options and a
larger planning horizon, respectively. So the most features of our current team
were already part of AT Humboldt 98 which has been briey described in [3] and
extensive described in [5]. A description of our �rst soccer team AT Humboldt
97, which became world champion at RoboCup-97, can be found in [1].

We are interested in virtual soccer for the development and the evaluation
of our research topics in arti�cial intelligence which concern the �elds of

{ Agent oriented techniques,
{ Multi-Agent Systems,
{ Case Based Reasoning.

The results of our research in these areas can be found in [1, 2, 4, 7, 8]. Thus
many aspects of our soccer program are heavily inuenced by these �elds, but it
is important not to consider these �elds in isolation: to create our soccer agents,
we also needed a lot of contributions from other �elds of computer science (e.g.
programming techniques, synchronisation, concurrency) and from mathematics.
Thereby we gain deeper insights for integration AI techniques in software devel-
opment. This aspect is especially important for the education of our students.

2 Team Development

The virtual soccer teams \AT Humboldt" are implemented by our AI group at
the Department of Computer Science at the Humboldt University Berlin. The

? This work was partly sponsored by TecInno GmbH Kaiserslautern, Daimler Chrysler
AG Research & Technology Berlin and PSI AG Berlin

?? This work has been partially supported by the German Research Society, Berlin-
Brandenburg Graduate School in Distributed Information Systems (DFG grant no.
GRK 316).

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 542−545, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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work is done by groups of students in practical exercises during the summer
semester. A core group of up to three students maintains the coordination and
the programs. Besides the experiments with AI methods, the project is also a
challenge for software development by changing teams. The source code of AT
Humboldt 99 has about 28:000 lines of code. It is a non trivial task to maintain
the introduction of new ideas during extremly short time intervals by changing
teams. To support the concurrent development we use the freely available source
code management system CVS [9] and the documentation system doc++ [10].

Team Leader: Prof. Hans-Dieter Burkhard
Team Members:

Prof. Hans-Dieter Burkhard
{ leader of the AI group
{ did lead the development and did consulting
{ did attend the competition

Jan Wendler
{ PhD student
{ did consulting and some debugging
{ did attend the competition

Thomas Meinert, Helmut Myritz and Gerd Sander
{ undergraduate student
{ did the design, implementation and debugging of the new ideas
{ did attend the competition

Web page: http://
www.ki.informatik.hu-berlin.de/RoboCup/RoboCup99/index e.html

3 World Model

Our world model uses object representations of situations, implemented by a
class called Situation. For any given time an object of this class will be gen-
erated which consists of object representions for teammates, opponent players,
the ball and the agent itself. Flags are only used to determine the own absolute
object representation which consists of the absolute player position, speed, body
direction and of the relative face direction. With this data the absolute objects
representations of the other players and the ball are calculated. So the agent can
get a new Situation-object from sensor information. Another way to get a new
Situation-object is the simulation of the own actions of the agent, as it is done
in the SoccerServer. So after every sensor information we have two concurrent
Siuation-objects which are merged together by �nding correspondig player and
using the best information of both situations for the new one.

4 Communication

We have done only small e�orts into communication. For the cooperation among
the teammates no communication is neccessary because our agents model their
teammates and can predict their behaviour very well. The agents only use com-
munication to broadcast their world model among their teammates .
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5 Deliberation and Strategy

Our agent architecture uses a mental deliberation structure which is best de-
scribed by a belief-desire-intention architecture (BDI) [6]. Distinct from other
(e.g. logically motivated) approaches our approach is closely related to proce-
dural thinking, and we use object oriented programming for the implementation.

BDI reasoning means to us the rational choice of promising options to become
desires and intentions. The main idea of our reasoning process is its decomposi-
tion into modular heuristic options and a generic control process.

Our BDI structure uses a set of independent options which can be di�eren-
tiate into active and passive options. Each option returns a value of its utility
based on the current situation of the world and obeying certain constraints as
ConserveStamina and AvoidO�side.

When the agent has control over the ball one of its active options will have
the highest utility and therefore he will try to pass to a teammate or to dribble
in a pre�ered direction or to kick a goal. It depends on the utilities of the active
options which one of these behaviour is chosen by the agent.

If the agent doesn't have control over the ball the passive options are candi-
dates for the highest utility. The agent may decide to intercept the ball, or try
to get a good position to get a pass from a teammate, or go back to his home
region, or just collect data if already there.

Precise information about our deliberation structure can be found in our
paper \BDI Design Principles and Cooperative Implementation in RoboCup"
[7], which can be found in this book.

6 Skills

After a soccer agent has decided what to do, he can use its skills to full�l its
intention. All skills generate a plan which can be of any size up to the full�lment
of the intention. The most important skills are:

Goto Region: With this skill an agent is able to run to a destination region,
which is given by a circle. Because we are invoking all skills with a copy of
the current situation, obstacles will be avoided exactly. If a stamina limit is
set, the agent will never fall below this limit of stamina. This skill can be
also used to generate a plan to run backwards.
For the interception of the ball this method is used as well. The determination
of the target region is done in the corresponding option.

Kick Ball: Up to now this skill kicks the ball with a demanded power into
a demanded direction. Depending on the speed and the direction of the
ball, it is kicked several times to reach the demanded values. This skill was
implemented by using mathematical calculations.

Dribbling: We have implemented two kinds of dribbling. The simple dribble
method just kicks the ball with low power to the destination direction and
runs after the ball. In the second implementation, the agent puts the ball
beside his body and dribbles forward, never loosing control over the ball.
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Whereas the �rst method is stable against synchronisation problems it lacks
at safety over ball control. Just the opposite holds for the second method,
so we used the �rst one in defense and the other one in mid�eld and attack.

7 Conclusion

In this paper we gave a glimpse of our agent team AT Humboldt 99, which is
an extension of our team AT Humboldt 98. More information about our teams
can be found in [1{5, 7, 8].

Our main goals for further extensions are: the introduction of longer planning
intervals (we already introduced a longer planning interval, but only for the
option FreeKick), the extension of the \Emergent cooperation" of our agents by
explicitely plannable cooperation, the use of learning methods for ball kicking
and dribbling skills, and the modelling of opponents in the frame of the BDI
architecture to predict their behaviour in advance.

Furthermore we want to support our sony legged robot team, the Humboldt
Hereos, with techniques already used by our simulation team.
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Abstract. This paper describes a framework for formalising tactical reasoning in
dynamic multi-agent systems, populated by synthetic (software) agents. The pro-
posed framework is based on a hierarchy of synthetic agent architectures and is ex-
pressive enough to capture a subset of desirable properties from both the situated
automata and subsumption-style architectures, while retaining the rigour and clarity
of logic-based possible worlds semantics. This framework is successfully realised
in the RoboCup Simulation League domain. Not only did it provide a solid design
approach to object-orientation, but it also enabled incremental implementation and
testing of software agents and their modules. In particular, the framework allowed
us to correlate enhancements in the agent architecture with tangible improvements
in team performance. Cyberoos98 was 3rd place winner of the Pacific Rim series at
PRICAI-98. Cyberoos99 finished in the top 18 of the RoboCup-99.

1 Introduction

The principal aim of this paper is to illustrate how declarative agent specifications may
facilitate design and implementation of software agents capable of tactical reasoning.
Some of the architectures are well-known - for example, variants of tropistic and hys-
teretic agents, enabling typical perception-action feedback loop and behavioural sub-
sumption are discussed in [2, 5, 7]. We attempted to extend these results by including
new agent types (task-oriented and process-oriented agents), facilitating reasoning about
tactical activities in context of multi-agent teamwork. These agent architectures allow us
to capture a number of desirable properties (reactive plans, ramifications, task-oriented
and, potentially, goal-directed behaviour) by embedding them in situated behaviours.

2 Situated Agent Architecture

2.1 Tropistic Agent

Following [5], we formally describe a Tropistic agent as a tuple AT

<C, S, E, sense, tropistic-behaviour, response>,

where S is a set of agent sensory states, E is a set of effectors, and C is a communication
channel type. A sensory function is defined as sense: C fi S. Activity of a Tropistic agent
is characterised by tropistic-behaviour: S fi E. By allowing the set E to include compos-
ite effectors e1; e2, where e1 ˛  E, e2 ˛  E, we can implicitly account for the case of
reactive planning - when a situated agent reacts to stimuli S with an n-length sequence of

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 546−549, 2000.
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effectors. The Tropistic agent executes its behaviour as a sequence of commands encoded
by response: E fi C and sent to the simulator.

The Tropistic agent must manage two concurrent and asynchronous activities - one
corresponding to receiving sensory information from the Soccer Server, and the other
related to sending appropriate atomic commands to the Server. We chose to implement
the required parallelism via threads, as they appeared to be intuitively appropriate for the
requirements, and (assuming implementation in C or C++) have native support in the
Solaris operating system. Threads allowed us to use non-blocking I/O, eliminating the
necessity of timing the sensory thread. In addition, we were not limited by the number of
available signals, provided by the operating system. The nature of tropistic behaviour and
asynchronous character of client-server communication make precise timing imperative
but problematic. Some of the observed  difficulties arise due to 1) receiving outdated
sensory information and 2) sending too many commands in a given simulation cycle.
Non-blocking I/O network access complemented by an appropriate technique for proc-
essing of pending messages addresses the first challenge, rescuing the agents from the
"living-in-the-past" syndrome. The second difficulty can be rectified if the acting thread
independently schedules agent responses.

The most important examples of tropistic behaviour exhibited by a Cyberoos99 agent
are obstacle avoidance, ball chasing, and (a goalkeeper) catch.

2.2 Hysteretic  Agent

A Hysteretic agent is defined here as a reactive agent maintaining internal state I and
using it as well as sensory states S in activating effectors E; i.e. its activity is character-
ised by hysteretic-behaviour: I x S fi E. A memory update function maps an internal
state and an observation into the next internal state, i.e. it defines update: I x S fi I. A
Hysteretic agent reacts to stimuli s sensed by sense(c) and activates effectors e according
to hysteretic-behaviour(i, s). This class extends its superclasses by adding hysteretic-
behaviour and update functions, while retaining all previously defined functions (i.e., it is
a sub-class of the Tropistic agent). So the Hysteretic agent is defined as a tuple AH

<C, S, E, I,  sense, tropistic-behaviour, hysteretic-behaviour, update, response>

where the bold style indicates newly introduced functions.
The hysteretic-behaviour is implemented as a (temporal) production system (TPS).

Whenever the TPS fires a rule (a behaviour instantiation, expressed in terms of partial
sensory and internal states, ie., in the form similar to situated automata condition-action
pairs [3]), a sequence of atomic commands is placed into a queue for subsequent and
timely execution. Implementation of the TPS enables monitoring of currently progressing
actions, thus providing an explicit account of temporal continuity for actions with dura-
tion [7, 8], and allows us to embed actions ramifications and interactions [4, 6, 7]. For
example, a dribbling action will not be invoked during shooting or passing.

It is worth pointing out that the architecture AH can be viewed as a subsumption ar-
chitecture [1] as well. It allows us to easily express desired subsumption dependencies
between the Hysteretic and Tropistic levels. More precisely, resolution of a possible
conflict between behaviour instantiations e1 = tropistic-behaviour(s) and e2 = hysteretic-
behaviour(i, s) triggered by the same sensory input s, is dependent on the internal state i -
leading to inhibition of the simpler level behaviour, if necessary. For instance, tropistic
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chase is suppressed if a team-mate has possession of the ball. A Cyberoos99 agent dis-
plays quite a few interesting instantiations of hysteretic behaviour, eg., dribble around
opponents toward an enemy goal, intercepting a fast moving ball, controlling and turning
with the ball, resultant-vector passing, shooting at goal along a non-blocked path, etc.

3 Tactical Agent Architecture

3.1 Task-Oriented  Agent

The behaviour functions of the situated agents, described in the previous section, are
uniformly defined across their respective domains and ranges. This means that the set of
all behaviour instantiations H = {(i, s, e): e = hysteretic-behaviour(i, s)} is not partitioned
or structured otherwise. In other words, all agent’s behaviour instantiations (action rules)
are always enabled. Sometimes, however, it is desirable to disable all but a subset of
behaviour instantiations - for example, when a tactical task requires concentration on a
specific activity. The following agent class - Task-Oriented agent - is intended to capture
this feature, while retaining properties of the Hysteretic agent (i.e., it is a sub-class of the
latter). We define the architecture of a Task-Oriented agent as the tuple ATO

<C, S, E, I, T, sense, tropistic-behaviour, hysteretic-behaviour, update, decision, combination, response>

A Task-Oriented agent incorporates a set of task states T. It uses the functions deci-
sion: I x S x T fi T and combination: T fi 2H to decide which subset of behaviour in-
stantiations (a task) is appropriate at a particular internal state, given sensory inputs.

Implementation of task-orientation requires some adjustments to the TPS. The TPS
traces action rules whose actions may be in progress, and checks, in addition, whether a
rule is valid with respect to a current task. The hysteretic behaviour instantiations men-
tioned in the previous section (dribbling, intercepting, etc.) are combined in correspond-
ing tasks and can be selected by a Cyberoos99 agent in real-time. For example, sharp-
dribbling is implemented as a task, enabling relevant (hysteretic) twists and faint moves.

3.2 Process-Oriented  Agent

The Task-Oriented agent is capable of performing certain tactical combinations (“set
pieces”) in real-time by activating only a subset of its behaviour functions, and thus con-
centrating only on a specified task. Upon making a new decision, the agent switches to
another task. In general, there is no dependency or continuity between consecutive tasks.
This is quite suitable in complex and/or unexpected situations requiring a swift reaction.
However, in some cases it is desirable to exhibit a more coherent agent behaviour.

A new notion, a process, is intended to capture this kind of coherent behaviour - when
an agent is engaged in an activity requiring several tasks. A process constrains a set of
possible tasks without specifying an exact sequential or tree-like ordering - an appropri-
ate tactical scheme comprising a few tactical elements may simply suggest for an agent a
possible subset of decisions, leaving some of them optional. For example, a penetration
through centre of an opponent penalty area may require from agent(s) to employ a certain
tactics - a certain set of elementary tactical tasks (dummy-runs, wall-passes, short-range
dribbling) - and disregard for a while another set of tasks. It is worth noting that whereas
a team's tactical formation is typically a static view of responsibilities and relationships,
process-orientation is a dynamic view of how this formation delivers tactical solutions.
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The architecture of a Process-Oriented agent can be defined as the tuple APO

<C, S, E, I, T, P, sense, tropistic-behaviour, hysteretic-behaviour, update, decision, combination, engage,

tactics, response>

A Process-Oriented agent maintains a process state P. It uses the functions engage: I
x S x T x P fi P and tactics: P fi 2T  to select a subset of tasks, given current internal,
sensory, task and process states. Several tactical processes can be selected by Cyberoos99
agents in real-time: Advance, Dispatch, and Penetration. Importantly, tasks encapsulated
in a process are not temporally ordered - instead, they make up a (currently) relevant
tactical selection, arranged in appropriate decision-making order - for instance, an agent
engaged in the Dispatch process considers the passing task before dribbling tasks, while
the Penetration process prefers dribbling to crossing and disregards passing at all.

4 Conclusions

The notions of task and process specified for each agent open a way to formally intro-
duce a group of agents sharing the same task or the same process, and enable formal
tactical reasoning about multi-agent teamwork. It is important to realise that teamwork is
formalised on the system level. In other words, the overall team behaviour/tactics
emerges only as a result of agent interactions.

The described hierarchical framework provided a solid design approach to object-
orientation, and enabled rigorous incremental implementation and testing of software
agents and their modules. We used C++ as the implementation language; the develop-
ment environment was Solaris 2.5 and GNU g++ 2.8.2 on SPARC workstations. The
team took 3rd place at the PRICAI-98 Pacific Rim series. Cyberoos99 qualified for the
RoboCup-99 finals, where the team played 10 games (both qualification and consola-
tion), winning 5 of them with a total score 97:15.
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11Monkeys Description

Shuhei Kinoshita, Yoshikazu Yamamoto

Yamamoto Lab. Faculty of Science and Technology Keio University, J apan

1 Introduction

The major purpose of this research is to study cooperative planning for multi-

agent systems in time-critical environment. The RoboCup simulator league is

the most interesting target for our research.

In Arti�cial Intelligence, problem solving is to transit state from initial state

to goal state. There are two types of planning, namely deliberative planning and

reactive planning. The former is to �nd all series of action before it really acts.

So deliberative planning requires much computation resources. And it has also

a problem of poor adaptability to dynamic environment. On the other hand,

reactive planning has a good adaptability, but in many cases, it doesn't select

the best choice, and it needs more optimization. So there is a potent trade-o�

problem in this two types of planning.

To solve this problem, we propose three layers planning, Strategy, Group, and

Individual. Strategy Layer planninng determines global team strategy dependent

to opponent team model. For example agents select team formation and action

algorism, and it also determines a policy of management to use stamina. In Group

Layer, an agent makes cooperative planning among a few teammates. In this

layer agents are assigned a dynamic role, such as ball handler or support player.

Dynamic role change are triggered by their own recognition of the current state,

because of taking account robustness. The agent which �nds a chance becomes

a planner. In Individual layer, agents behave reactively according to upper layer

decision, such as team formation, dynamic roles or cooperative plans.

As a result, our 11Monkeys utilizes this three layers planning and we won

the championship of the simulator league Japan Open '99. And we �nished the

simulator league of the RoboCup'99 Stockholm in 4th place.

2 Team Development

Team Leader: Kinoshita

Team Members:

Shuhei Kinoshita

{ Keio University

{ Japan

{ Master Student

{ attend the competition
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3 Three Layers Planning Approach

In Arti�cial Intelligence, problem solving is to transit state from initial state to
goal state. There are two types of planning, namely deliberative planning and
reactive planning. The former is to �nd all series of action before it really acts.
So deliberative planning requires much computation resources. And it has also
a problem of poor adaptability to dynamic environment. On the other hand,
reactive planning has a good adaptability, but in many cases, it doesn't select
the best choice, and it needs more optimization. So there is a potent trade-o�
problem in this two types of planning.

To solve this problem, we propose three layers planning, Strategy, Group,
and Individual.

3.1 Strategy Layer

Strategy Layer covers all teammates. In this layer Agents select their formation,
tactics, and decide the policy of resource management. These must be decided
depending upon opponent model. Static role assignment is done in this layer.
Static Role is a role set, like Goalie, Defensive Half, etc. There are many types
of team styles, indeed. So we need to adapt them e�ectively, but this is not
implemented now.

3.2 Group Layer

Group Layer planning include about three or four teammates in local state
near ball. In group layer agents are assigned a Dynamic Role like, ball handler,
supporter.

A agent who �nds the chance, can be a reactive cooperative planner. If there
are no fatal condition to execute the plan, agreement will be done, and plan in
group level can be executed.

3.3 Individual Layer

Individual Layer planning covers only 1 vs. 1 state. Agent selects most suitable
pre-planned module. There are fatal condition, which agents withdraw his plan
in every simulation step. For example agent cannot �nd pass course in defense
area, he makes a decision of clearing ball.

4 System

The system of each agent is represented in Fig. 1. When an agent is created, he
gets a common formation and is assigned one of static role in Formation/Static
Role Module. In Interpreter Module he parses many sensor information from
soccer server[1]. And then he updates world model. Next in O�ense/Defense,
Dynamic Role Module he make a decision of o�ense or defense, and he get a
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Fig. 1. Agent system

dynamic role, like ball handler. Next he selects one of abstract plan out of coop-
erative plans and individual plans. Then the plan is transformed into a primitive
command in Plan Executor Module. At last in External Behavior Module the
primitive command is sent. We uses the low level skill of CMunited'98[?, cmu]

5 Dynamic Role Assignment

Role is necessary for autonomous agents. If agents don't have any role, agents
behave sel�sh. In many cases roles were allocated statically. It was not so exible.
We use dynamic role assignment system. We call dynamic roles as `Player with
ball" or \Player for support". In our team, dynamic role number is six. In o�ense
mode there are three roles, and in defense mode there are also three roles. At
�rst agents autonomously make a judgment of o�ense mode or defense mode.
Next agent most suitable player to catch ball is allocated "Player near the ball".
If in defense mode "Player near the ball" is named "First Defender". If in attack
mode "Player with ball" is named "First Attacker".

Offense Mode

First Attacker Player with Ball

Second Attacker Player who supports First Attacker

Third Attacker Other Players

Defense Mode

First Defender Player near ball
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Second Defender Player who supports First Defender

Third Attacker Other Players

That is agent selects autonomously the most suitable role of the six. He does

not depend on others in making the decision. In order to take into accounts

robust. The moment one player catch the ball, the others' roles automatically

change.

6 Reactive Planning Mechanism

There are little time for deliberative planning, because there exists an opponent

team. So an agent should select his plan reactively.

In this research, there are two steps in reactive planning.

{ abstract-planning
{ re-planning & plan-execution

7 conclusion

11Monkeys utilizes three layers planning and we won the championship of the

simulator league Japan Open '99. And we �nished the simulator league of the

RoboCup'99 Stockholm in 4th place.

Table 1. The Result of 11Monkeys in RoboCup '99 Stockholm
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Team Erika

Takeshi Matsumura

Department of Information and Computer Science, Waseda University

1 Introduction

Team Erika's main focus is on the facilatation of the design of agent behavior.
The behavior code is generated by a graph editor which process transition dia-
gram like graph. Since the concept is represented visually, high design e�cency
can be achieved. Besides, people other than computer scientist can design the
behavior easily without understanding the underlying stucture.

Future work is to improve the graph editor to process graph which represents
a cooperation among a few agents in single graph.

2 Team Development

Team Leader and only a member: Takeshi Matsumura

{ a�liation: Waseda University
{ country: Japan
{ position: graduate student
{ did or did not attend the competition: attended

Web page http://www.futamura.info.waseda.ac.jp/~matsu/erika

3 World Model and Communication

World model which is situated in the lower layer of the two layer structure
agent was created by the sensor. The internal functions inside the agent invoked
every 100ms update the world model by using the information received from
the server. Agent processes all of the visual information and update the proper
object inside the world model by examining the time stamp. Newly created object
always supersedes the old one which is found by comparing the time stamps of
each objects. (e.g. If agent had a ball object with time 14 and he got a ball
information when time 16, then the time 14 ball object information is thrown
away.) An agent stop its current computation immediately, reset the states and
restart decision making when it receives a referee message in order to increase
reactivity.

Agent used in Stockholm had no communication. Communication is being
installed in current work to synchronize the computation of agents when a co-
operation, like one-two pass or attack from corner kick, starts.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 554−557, 2000.
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4 Skills

Agent has the ball prediction routine which use the world model update routine
to predict the ball's future postion. The prediction is not very accurate because
only the last information of the ball was being used. In future work, history of
the ball position and the sequence of the ball movement will also be used in
order to improve accuracy.

5 Strategy

All agents always try to monitor the ball's action even when the agent is far
away from the ball because important events usually occur around the ball but
basically only the agent closest to the ball goes to get it. The only exception
is that when the agent is returning to his home position. In this case he will
monitor the ball every 5 seconds.

6 Special Team Features

6.1 Graph editor for one player

An transition diagram like graph shown in �g.1 is used to represent each agent's
play style. Each agent's computation moves from node to node, depends on the
conditions described on each arcs.

(recover-stamina pl)

(< (stamina pl) 1500) (> (stamina pl) 2500)

(dash-to-vobj pl bl)

(inviewp pl bl)

(not (inviewp pl bl)) (kickablep pl bl)

(kick-to-vobj pl gl)(look-for pl bl)

(not (kickablep pl bl))

Fig. 1. graph styled ow-chat represents dango-play

Agent's computation begins at the leftmost node, for instance, node 1. At
�rst the agent does the action "(look-for pl bl)", where the variables pl and
bl are bounded to the agent himself and a ball object respectively. Then he
checks the condition "(inviewp pl bl)" on the arc derived from node1. If the
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condition "(inviewp pl bl)" is true, which means that ball come into his view,
then his computation will be moved to the center node. Otherwise, he takes
the "(look-for pl bl)" action and attempt to evaluate the condition again. If the
computation is at the node which has no arcs, then the action on it is taken
and the computation stops. In the example, however, the computation continues
permanently because there are no nodes without any arcs if there is no referee
message.

After moved to another node, the action which is described on the node is
absolutely taken before evaluation of conditions.

We us a graph editor to create this kind of graph and use it to generate lisp
lists which are embedded inside an agent. The interpreter inside each agent's
upper layer analyse the diagram and then the agent behavior is set.

6.2 Graph Editor for cooperation

(pass A B)

t

  every 
3 seconds(ball-coming-p B)

(dash-to-apos A pos)

t (ball-coming-p A)

(receive-ball B)

(kickablep B)

(receive-ball A)

t

(pass B A)
B

A

A

player movement

ball movement

Fig. 2. one-two pass cooperation graph between two agents

Cooperation between agents can also be represented by a transition diagram
like graph. In Fig.2, the left graph shows an example of the cooperation between
two agents acting a one-two pass as shown in the right �gure.

There are two roles. Role A who kicks a ball to role B and receives it later
at another position; role B who receives the pass from role A and kicks it back
towards A immediately.

The computation shown in Fig.2 will is similar to Fig.1. The most major
di�erence is that each node and arc has a a color which is assigned to each role.
We assume that an agent's computation is on a node N colored cn. If the agent
is playing the role r

n
, which is assigned to the color c

n
, then he does the action

described on N. Otherwise, he observes another agent playing the role rn who
are assigned the color cn instead of acting it himself.

An agent evaluates the conditions on the arcs colored the same color as the
agent. If there are no such an arc, he stops his computation.
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For instance, the graph of Fig.2 has two colors black and gray which are
assigned to the role A and B respectively. Assumed that both A and B's com-
putations are on the left most node.

A's computation sequence will be as follows:

1. act "(pass A B)" on the black node (node1)
2. evaluate "t" (it means true in lisp) and move to the center node (node2).
3. act "(dash-to-apos A pos)", where variable pos is a proper position.
4. if ball comes towards A, go to 6.
5. computation moves to upper left gray node (node3) every 3 seconds. Because

his color is not gray, he does not act "(receive-ball B)" but observe the
other agent who plays role B. A's computation returns to node2 immediately
because the evaluation "t" on the black arc is derived from the node3.

6. he receives the ball and stops computation.

B's computation goes in the same manner. One-two pass cooperation will go
well because of the observations of other players.

7 Conclusion and future work

With the introduction of the graph editor, behavior design of the agent is fa-
cilitated. Future work will include the improvement of graph editor to generate
eager execution code for the evaluation of conditions in order to shorten the
response time.
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Essex Wizards’99 Team Description

H. Hu, K. Kostiadis, M. Hunter, M. Seabrook

Department of Computer Science, University of Essex
Wivenhoe Park, Colchester CO4 3SQ, United Kingdom

Email: {hhu,kkosti,mchunt,seabmn}@essex.ac.uk

Abstract: This paper describes the Essex Wizards team participated in the
RoboCup'99 simulator league. It is mainly concentrated on a multi-threaded
implementation of simulated soccer agents to achieve real-time performance.
Simulated robot agents work at three distinct phases: sensing, thinking and
acting. POSIX threads are adopted to implement them concurrently. The issues
of decision-making and co-operation are also addressed.

1. Introduction

In the RoboCup simulator environment, the response time of a soccer agent becomes
significantly important since the soccer server operates with 100ms cycles for
executing actions and 150ms cycles for providing sensory data [12].  Moreover,
auditory sensory data can be received at random intervals. It is vital that each agent
has bounded response times.  If an action is not generated within 100ms, then the
agent will stay idle for that cycle and enemy agents that did act might gain an
advantage.  On the other hand, if more than one action is generated per cycle, the
server will only execute one of them chosen randomly. An additional constraint is that
Unix is not a “true” real-time system and hence real-time performance and response
times can only be guaranteed up to a certain resolution [13]. A more detailed
description of real-time systems can be found in [2,11].

 In addition to the responsiveness, the ability to cope with changes in the agent‘s
environment provides a significant advantage, especially when the environment is
noisy, complex, and changes over time [5]. One of important issues for an agent
therefore is to learn from its environment and past experience in order to
autonomously operate without the need of human intervention. Another important
issue in multi-agent systems is co-operation.  It has been shown that groups of agents
can derive more efficient solutions in terms of energy, costs, time and quality [6,7].  A
common feature in co-operative frameworks is that of distribution of responsibilities
and multiple roles.  Each agent in a group has an individual role and therefore a set of
responsibilities in the team [4].  In this article a form of emergent co-operation
through reinforcement learning is presented. Using the back-propagating nature of Q-
learning, co-operation is achieved by linking the intermediate local goals.

In section 2, a description of the agent requirements is presented. The agent
architecture for Essex Wizards is illustrated in section 3.  Then how multiple threads
have been implemented to improve the agent’s responsiveness is explained in section
4.  Section 5 illustrates how machine learning is used in our team for decision making
and co-operation of multiple agents.  Finally conclusions and future work are briefly
presented in section 6.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 558−562, 2000.
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2. Agent Requirements

The robotic soccer simulator is an instance of a client/server application in which each
client communicates with the server via a UDP socket [12].  The server is responsible
for executing requests from each client and updating the environment.  At regular
time intervals (150ms) the server broadcasts visual information to all clients
depending on their position, the quality and size of the field of their view, and their
facing direction on the field.  In addition to that, the server sends auditory information
to various clients at random time intervals.

After processing the sensory data, the clients respond by sending action requests to
the server from a set of primitive actions available to them.  To avoid message
congestion on the server, the clients are allowed to send one request per cycle.  A
cycle in the current implementation is 100ms.  If no message is sent within this
interval, the client will not perform any actions.  If more than one message is send
during the same cycle, the server executes only one, chosen at random, which might
produce undesired results.  The server updates the state of the environment by serially
executing each request.

Since UDP sockets have a limited receive buffer, messages arriving on a UDP
socket will be queued until the receiving buffer is full in which case additional
messages will be discarded.  A client that fails to retrieve the messages at the rate that
they arrive is in danger of receiving older information from the server, since newer
data will be further back in the queue.  This will cause the client to create the wrong
representation about the current state of the pitch, which will lead to undesired effects
since the wrong actions might be executed. The term “client”, used in the client/server
application context above, is the real-time agent to be built.   For each cycle, the agent
receives data from the server, and produces an action. When new data is available, the
agent should receive this data and update the current state of the environment. For
efficiency the following conditions should be satisfied:

• To receive the newest sensory data that arrives on the socket as quickly as
possible and no data queue up.  This enables agents to have the most recent
representation of the environment, and execute the most appropriate action.

• To time the execution of requests to the server accurately.  If more than one
request is send by an agent per cycle, the server will only execute one at
random, which might be non-optimal.  If the agent is too slow, it might miss a
cycle and then give an advantage to the enemy agents.

• To allow the maximum time and resources for the thinking process.  Since an
agent has a fixed amount of time per cycle, the longer it waits to send or
receive data, the less time it has to think.

Given the frequency of the message exchange and the timing constraints, building
an agent that will satisfy the conditions described above becomes a challenging task.

3. Agent Architecture

Given the variety of I/O models supported under Unix, it becomes difficult to choose
the most suitable one for the soccer agents. In addition to that, choosing an I/O model
heavily depends upon the inner structure of the agent. As it can be seen in figure 3,
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the agent contains six different modules, including the agent’s sensors, a set of
behaviours, the actuators, the current play mode, a set of predefined parameters and a
memory module.  The dashed arrows in this diagram represent the communication
links between the agent and the server.  The server sends information received by the
agent’s “Sensors” module, and the agent sends information back to the server through
its “Actuators” module. A brief description is given below to show the relationships
among these modules:

Figure 1 Block diagram of the soccer agent’s architecture

• Sensors -- are responsible for receiving and analyzing the visual or auditory
information transmitted by the server.

• Behaviours -- is the most important module within the agent.  It is responsible for
generating actions according to the current state of the environment.

• Actuators -- are used for timing and sending actions to the server every 100ms.
• Play Mode -- holds and updates the current play mode using the information

received by the “Sensors” module.  The current play mode directly affects the
behaviour of the agent

• Parameters -- hold information regarding various settings both for the server and
the agent.

• Memory -- is a representation of the whole pitch, rather than part of it.

4. Multi-Threaded Implementation

Instead of a single-thread, a process can have multiple threads, sharing the same
address space and performing different operations independently.  This architecture
allows the agent to use a separate thread for each of the three tasks. Inside the agent,
the three main tasks are running concurrently (or in parallel in multi-processor
hardware) minimizing delays from the I/O operations.  Only the “Sense” thread is
responsible for waiting data from the server, and only the “Act” thread is responsible
for timing and sending the.  In this way the agent can dedicate the maximum amount
of processing power available by the processor(s) to the “Think” thread.

Firstly the “Sense” thread is dedicated to receiving data using a blocking I/O mode
connection in which the rcvfrom call will put the “Sense” thread to sleep until new
data arrives on the socket.  Putting the “Sense” thread to sleep does not affect the

Server

ActuatorsBehaviours

Play Mode

Sensors

Parameters Memory

Players Pitch Ball

Lines Flags GoalsAgent

Memory
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execution of the other two threads.  When data arrives on the socket, the “Sense”
thread will be awaken, analyze the data, and repeat a rcvfrom call for the next
available datagram from the server.

 Secondly, the “Act” thread needs to measure 100ms intervals, and sends any
available actions to the server. The gettimeofday function and a conditional variable
are used to implement the “Act” thread.  In other words, the current absolute time is
incremented by 100ms and then the thread is also put to sleep to wait for the
conditional variable to return. Since no other thread will signal this conditional
variable, it will only return when the 100ms have passed, in which case the “Act”
thread can send an action to the server.  This method provides highly accurate timing
and enables the agent to guarantee certain levels of timing correctness.

Thirdly the “Think” thread is the only one that stays permanently awake, and
consumes the majority of the available resources to perform most of the
computations.  The details on the “Think” thread in the current implementation can be
found in [8].   More details on the multi-threaded implementation and the results are
presented in [9].  The issues on multi-threaded programming can be found in [3].

5. Reinforcement Learning

Reinforcement learning (RL) addresses the question of how an agent that senses and
acts in its environment can learn to choose optimal actions in order to achieve its
goals.  There are many systems that use RL for learning with little or no a priori
knowledge and capability of reactive and adaptive behaviours [1,10,14,15]. The main
advantage of reinforcement learning is that it provides a way of programming agents
by reward and punishment without needing to specify how the task is to be achieved.
On each step of interaction the agent receives an input i which normally provides
some indication of the current state s of the environment.  The agent then chooses an
action to generate as output.  The action changes the state of the environment and also
provides the agent with a reward of how well it performed.  The agent should choose
actions that maximize the long-run sum of rewards.

To fully utilize the power of the learning scheme used (Q-learning), the state space
is divided by assigning different roles for each individual agent.  For example, the
goalkeeper need not worry about how to score a goal.  This task is indeed numerous
stages away given the goalkeeper’s responsibilities.  It would take numerous
iterations before the goalkeeper’s training can yield acceptable levels of performance.
On the other hand, a goalkeeper can easily learn to pass the ball safely to a nearby
defender since this task has a goal-state that is near the goalkeeper’s region. In a
similar manner a defender can learn to clear or pass the ball to a midfielder and so on.

The agents in the current implementation not only have different roles and
responsibilities, but also have different subgoals in the team. Hence, every individual
agent in turn tries to reach its own individual goal state without worrying about the
performance, or the goals of the other agents. By linking the different goals of each
agent, co-operation emerges.  Although each agent tries to optimize its actions and
reach its own goal-state, since these goal-states are related, the agents co-operate.
The ultimate goal, which is to score against the opposition, becomes a joint effort that
is distributed between the members of the team.  A detailed description of the Essex
Wizards RL implementation can be found in [8].

561Essex Wizards´99 Team Description



www.manaraa.com

6. Conclusions and Future Work

To satisfy all the necessary timing constraints for real-time agents in general, football-
playing robots in particular, a single-threaded implementation will not suffice.  This is
mainly due to the low speed of network I/O operations, and the limiting serial nature
of such architectures. Therefore, a multi-threaded implementation is presented in this
article to overcome this problem. Based on this approach, the agents can perform
various computations concurrently and avoid waiting for the slow I/O operations. A
multi-threaded model clearly outperforms a single-threaded one in terms of
responsiveness and efficiency. A decision-making mechanism based on reinforcement
learning is briefly described, which can also be used to enable co-operation between
multiple agents by distributing their responsibilities. By gathering useful experience
from earlier stages, an agent can significantly improve its performance.

The future work for the Essex Wizards team is to focus on cooperative behaviours,
team formations, sensor fusion and machine learning capability.

Acknowledgements: We would like to thank the University of Essex for the financial support
to the project by providing the Research Promotion Fund DDP940.
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FCFoo99

Fredrik Heintz, frehe@ida.liu.se

Department of Computer and Information Science, Link�oping university

1 Introduction

The emphasis of FCFoo was mainly on building a library for developers of
RoboCup teams, designed especially for educational use. After the competition
the library was more or less totally rewritten and �nally published as part of the
Master Thesis of Fredrik Heintz [4].

The agents are built on a layered reactive-deliberative architecture. The four
layers describes the agent on di�erent levels of abstraction and deliberation.
The lowest level is mainly reactive while the others are more deliberate. The
teamwork is based on �nite automatas and roles. A role is a set of attributes
describing some of the behaviour of a player. The decision-making uses decision-
trees to classify the situation and select the appropriate skill to perform. The
other two layers are used to calculate the actual command to be sent to the
server.

The agent architecture and the basic design are inspired by the champions
of RoboCup'98, CMUnited [6, 7]. The idea of using decision-trees and roles is
inspired by Silvia Coradeschi et al [2, 3].

FCFoo99 did not do very well in the competition, but still better than ex-
pected since FCFoo was a less than six month one man project. FCFoo lost its
�rst game against the 11 Monkeys with eighteen nil, but won its second by �ve
nil agains Sibiu. In the third game Pardis forfeited since they were not able to
run their agents properly. The fourth game against the Gongeroos was a very
exciting game. FCFoo scored two quick goals but then the Gongeroos adapted
its playing style and managed to score four goals and make it to the elimination
round.

2 Team Development

Team Leader: Fredrik Heintz
Team Members:

Fredrik Heintz
{ Department of Computer and Information Science, Link�oping university
{ Sweden
{ Graduate student
{ Attended the competition

Team Web Page http://www.ida.liu.se/ frehe/RoboCup/FCFoo/
Library Web Page http://www.ida.liu.se/ frehe/RoboCup/RoboSoc/

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 563−566, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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3 World Model

FCFoo used an object-oriented approach to do the world modelling. Each object

in the simulation, the ball, the agent, the game and so on are represented by an

object. All the objects are stored in a large knowledge structure, representing

the memory of the agent. Each object is responsible for all the modelling of

the corresponding game object. For example the ball object is responsible for

updating itself after each step of the simulation. Each object also contains the

history of the last few cycles, so that previous states of the object can be used

in determining the current or the next state of the object.

FCFoo also used an object-oriented approach to model the server actions

available to the agent. Each primitive action is a separate object which knows

how to update the state of the agent after the skill has been executed and if the

primitive action is applicable, according to the world model of the agent. Before

sending the actual string to the soccer server the action object makes sure the

parameters used are valid, according to the parameters of the simulation and

according to the current world model of the agent.

4 Communication

Inter agent communication was not used by FCFoo. Instead it used roles to

coordinate the behaviour of the team.

5 Skills

The skills was one of the major weaknesses of FCFoo. The skills implemented

includes score, pass, dribble, catch and intercept ball. For example the score

skill only takes the position of the agent into account, not the position of the

opponents, and kicks the ball just inside the closest goal post. The other skills

are equally simple in their implementation.

FCFoo used a special goal keeper agent, but since the algorithm for calculat-

ing the speed of the ball did not work very well the goal keeper did not perform

very well since it could not estimate where to run to catch the ball.

6 Strategy

The strategy of FCFoo is based on roles. Each player is given an initial role. The

role de�ne where it should position itself on the �eld, when to take freekicks and

so on. The roles can be assigned and changed during the game. The roles are

mainly used when making a decision on what to do next.
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6.1 Roles

A role is a set of attributes that de�nes the behaviour of a player. A player can
have only one role. But since it is possible to de�ne new roles as combinations
of roles it is actually possible for a player to have several roles. Problems with
this approach are among others that one have to de�ne a speci�c role for each
role-type. Attributes can have di�erent values for each individual having that
role and therefore specialisation is supported.

Examples of attributes are: freekick-area, home-position, and home-area.
They de�ne where the player with this role should be and when it should do the
freekicks. Examples of roles are: goalkeeper, defender, mid�elder and attacker.
Examples of specialisations are: left inner mid�elder and right outer defender.

6.2 Decision making

The decision making of the agent is based on decision-trees (DT) and �nite
automatas (FA). The automatas are used in the strategy layer to decide what
DT to use. The automata describes when to change states, and DT. The triggers
used by the FA are referee-calls, the positions of the players and the position of
the ball. Figure 1 shows a part of the FA used by the agents. The italic words
on the arrows are referee-calls, the normal words are predicates and the words
inside the boxes are the name of the DT to use when in that state.

start

play_on

MyUniformNumber = Y

our_corner_kick
CornerKick

Normal

OurKickOff
our_kick_off

their_free_kick, their_kick_in,
their_goal_kick

InterceptBall

BallDistance < 5.0 and

Fig. 1. Part of the �nite automata used by an agent making a decision.

The DTs are used in the decision layer to classify the situation and decide
what skill to execute. When the decision layer has found a skill to perform it sends
that information to the skills layer. The skills layer calculates what primitive
action to do based on the current position and internal state of the agent. The
primitive action layer takes the action with its parameters and calculates the
actual command to be sent to the server.
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7 Conclusion

The purpose of FCFoo has been to test and support the development of RoboSoc,
a system for developing RoboCup agents for educational use. FCFoo will not
compete in RoboCup2000, instead the author and a couple of students from an
AI programming course given at Link�oping university [1] will create a new team,
called NOAI, based on RoboSoc and on the strategy editor from the Headless
Chickens III developed by Paul Scerri et al [5]. The emphasis will be on extending
and evaluation RoboSoc and on improving the e�ciency and expressiveness of
the behaviour-based decision trees used by the Headless Chickens.
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R�esum�e This document describes the software architecture of the Footux-
99 team (simulation league). It is now well known that purely reactive
(resp. cognitive) agents are out of date. An agent must be able to respond
reactively when necessary, but it should have a general behaviour guide-
line. strategy. The most classical approach consists in using a hybrid
architecture.

The architecture we are introducing in this article is a hybrid one. It
combines vertical and horizontal hybrid approachs where each layer is
based on a subsumption architecture.

The aim of our approach is to study the possibility to obtain a coope-
rative behavior within a multi-agents system without using centralized
control, and thus to observe the emergence of potential relations between
an agent and the society to which it belongs.

1 Introduction

The RoboCup challenge forces us to have several points of view about the
agent. In a �rst way, the agent must be fast, clever and accept a not well known
world. In a second way a soccer player must have a coherent collective behaviour.
Combining both approaches implies hybrid architecture and an anticipatory ap-
proach.

In order to take both points of view about the agent into account, we need to
split the basic agent model into two distinct modules. On one hand, a reactive
module which acts according to reexes. On the other hand, a set of cognitive
modules making more or less long term plans. It is clear that if we do not wish
to fall into the classical approaches (i.e. reactive vs cognitive), both modules
shall not run one after the other but shall have a complementary and parallel
existence.

The hybrid architecture ([4]) approach tries to combine two antagonistic
models (reactive vs cognitive). A layered model such as InteRRaP([3]) or a
Touring Machine divides the di�erent levels : Basic Behaviour Level (BBL),
Local Plani�cation Layer (LPL) and Social Plani�cation Layer (SPL). There
are two di�erent hybrid architectures. The �rst one is vertical : a higher layer

? A more recent version of this document is always available at the
URL: http://www.info.unicaen.fr/~girault/footux-99

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 567−571, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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is called when the previous layer needs it. The second one is the horizontal
architecture : all layers are running simultaneously, when a layer �nds a solution
it is the next one. Our model combines vertical and horizontal hybrid approach
in the same architecture : the perception ow is vertical while the action ow is
horizontal.

BB Layer

LP Layer

SP Layer

BB Layer

LP Layer

SP Layer

BB Layer

LP Layer

SP Layer

1

Perception Action

Vertical architecture

Perception Action

Horizontal architecture

Perception Action

Footux-99 architecture

2 3

Fig.1. Hybrid architecture

2 The Footux-99 architecture

As shown in �gure 1 p.2, there are two types of hybrid architectures according
to the orientation of the control ow. Our model is at the intersection between
these architectures. In fact, in a vertical architecture, the response delay of a high
level layer such as the LPL can take long enough to give a response outdated to
the call situation. In the horizontal architectures, each module computes, taking
no account of the other modules results. This implies a solution management by
a fairly problematic subsumption architecture as well as a potential incoherence
between the di�erent solutions.

In order to try and avoid these problems, we introduce a recursive anytime
architecture : Augmented Reality by Anticipation (ARA).

2.1 Diagonal approach

We wish to have an agent which cognitive modules can always bring a relevant
solution without any action conict nor global planning reorganization. In that
respect, we have to avoid the punctual aspect of reorganization, which implies a
full-time communication between the modules that have to work in parallel.

This short description looks like a horizontal architecture, except that in such
architectures, each module produces a solution autonomously without taking
into account the other modules ? behavior. Taking this into account implies
stopping the cognitive mechanism except where the module works in anytime

2
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1. Furthermore, this produces an incremental planning allowing us to avoid a
complete new computation of the plans.

Module behaviour As just shown, a module functions anytime, and in that
perspective, it is necessary for it to receive and produce a continuous data ow.

In order to simplify these data ows, we have decided to use a single data
type : the REALITY. This is opposed to more classical approaches which are
highly inuenced by expert systems, which each level introduces a new data type,
meta-data, thus adding an supplementary system to handle this meta-level.

Each module takes a reality as input and produces as output a reality modi-
�ed or augmented. We call augmented reality a representation of the world in a
more or less near future, reality in which some elements have been added. These
augmented realities are computed, according to the module, as a function of
the relative knowledge of the current situation. It seems fairly improbable that
a module be able, in a real-time environment, to face all situations. It is thus
important that some modules have a learning capacity.

Just as a child discovering the world, the agent placed in an very dynamical
environment must be able to learn from its mistakes, to anticipate the e�ect of
its action and to predict the behavior of objects or other agents surrounding it.

Inter-module communication The inter-module communication is the key
to this model. As a matter of fact, just as the environment, the functioning of the
di�erent modules is very dynamical. Resulting from this, taking other modules
intermediary results into account is as important as the modules functioning
itself.

The data ow begin continuous, the interpretation of the world given by a
module is used as a representation of the world by the higher level. As we can
see in �gure 2, the local module takes a representation P0 of the world and gives
an interpretation I1. Every modi�cation brought to this interpretation will be
directly transmitted to the global module. The way the information goes down
again is a crucial point in the inter-module communication. In fact, it is the
choice of the right augmented reality which will place the reactive module in an
emergency situation. We �nd again the problem of the choice of the action to
do happening in horizontal architectures, to the di�erence that now we have a
continuous information ow that has to be transmitted. This continuity allows
us to chose quickly or to concatenate realities produced by two modules from
neighboring levels and not all possible realities. This operation is done by the Fi
control function.

A control function is an entity taking two realities in input (augmented or
not) and producing an augmented reality corresponding to the ?best ? possibility.
This best reality is the partial or complete concatenation of both inputs. The
concatenation consists in retaining, for each element of each reality, the one being
in the further future.
1 the anytime process being de�ned such that un module can supply a solution at

anytime, even if it has to be incomplete or degraded

3
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Fig.2. Cognitive model diagram

3 Discussion and perspectives

The inspiration of this model comes from the idea of anticipatory systems
([1]). Indeed, anticipation plays a signi�cant role in the taking into account of
actions unforeseen and external with the agent. It makes it possible to give an
account of total and complex phenomena not apprehended by a reactive layer.
To anticipate the actions of the adversary or its fellow-members, to anticipate
the movements of the ball or the conicts between team-members constitute
some of the forms of anticipations which we wish to take into account in our
system.

In order to ground this concept of anticipation, we are inspired here by theo-
retical work, in particular those of Rosen, which gives the following de�nition
of an anticipatory system : \ . . . a system containing a predictive model of itself
and/or its environment which allows it to change state at an instant in accord
with the model's predictions to a latter instant".

An anticipatory system thus uses the knowledge of future states of the system
to decide actions to take in the present moment.

This model is merely a draft. It is thus not de�nitively set. We can however
summarize that :

In a general way :

{ Every task can be split in a set of simpler sub-tasks

{ Any action can be split in a set of elementary and complementary sub-
actions.

{ Every set of elementary actions can be split in actions running in parallel.

This model is far from being perfect : the problem with horizontal models is
that they are slow at thinking. The problem with vertical models is that they do
not stop thinking and thus good ideas may arrive too late. In our approach, the
cognitive modules keep thinking all the time, but the lower layer can modify the

4
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representation of the world for the higher layer at any time in order to submit
new information that may be important. Each module (cognitive or reactive)
being built according to a parallel execution of actions, each modi�cation of the
representation of the world is taken into account as soon as it is instantiated.

The reactive module have been partially implemented in C++ programming
language. Further policy managements for the layers are experiment. What needs
to be improved as soon as possible is a better reactive cooperation.
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Gongeroos'99

Chee Fon Chang, Aditya Ghose, Justin Lipman, Peter Harvey

Department of Information Systems, University of Wollongong, NSW 2522, Australia

fc03, aditya, jl06, pah06g@uow.edu.au

1 Introduction

The Gongeroos'99 team involves agents built within the broad framework de�ned
by the BDI agent architecture [3] with novel features involving the application
of notions from team-oriented programming [2] and multi-hop ad-hoc communi-
cation networks [1] from the area of mobile computing. Gongeroos'99 achieved
a 9th place ranking in RoboCup-99's software simulation league.

2 Team Development

Team Members:

Chee Fon Chang

{ Decision Systems Laboratory

{ Australia

{ Graduate Student

{ did attend the competition

Aditya Ghose

{ Decision Systems Laboratory

{ Australia

{ Senior Lecturer

{ did not attend the competition

Justin Lipman

{ Decision Systems Laboratory

{ Australia

{ Graduate Student

{ did attend the competition

Peter Harvey

{ Decision Systems Laboratory

{ Australia

{ Research Assistant

{ did attend the competition

Web page http://budhi.uow.edu.au/robocup
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3 World Model

The Gongeroos'99 agent architecture is a variant of the well-known BDI archi-
tecture. As with the BDI architecture, our agents are based on the following
core data structures: beliefs B, desires D, intentions I and plans PL [3]. The
belief state B of an agent is denoted by a triple < E;S;M > where E denotes
an agent's environment or world model, S denotes an agent's skill set and M

denotes the domain theory used by agent. The environment E is denoted by a
collection of sensory parameters including positions of moving and stationary
objects (ball, players, �eld), time and information accuracy. The skill set S de-
notes the repertoire of actions available to an agent. These skills include atomic
actions such as kicking and turning as well as complex skills that make use of
other skills within the same set. M is the domain theory (or domain invariants)
that describes how actions a�ect states of the environment. It contains causal
rules that determine the e�ects of actions in various states of the environment
as well as (possibly partial) speci�cations of how actions map from one state of
the environment to another.

4 Communication

The communications regime used by Gongeroos'99 agents relies on the theory of
multi-hop ad-hoc networks [1]. Ad-hoc networks are wireless networks consisting
of multiple mobile hosts. They form an unstructured, dynamic and temporary
mobile network. In situations where a source host wishes to send a packet to a
destination host, which is not within broadcast range, the packet may be sent
via other hosts within broadcast range. Hosts forward this packet until it reaches
its destination.

5 Skills

The set D of desires of an agent is partitioned into two categories: o�ensive and
defensive desires. These are treated di�erently depending on how far a match has
progressed. Given a certain state of the environment E, a mapping determines
a unique desire to be adopted (which may be either o�ensive or defensive). The
mapping function takes into account how far the match has progressed as well
as the team role assigned to the agent at that point in time (team-oriented
aspects are described later in this paper). The set of intentions or sub-goals I is
partitioned into two categories: reactive intentions IR and tactical intentions IT .
Direct mappings exist from the state of the environment E to reactive intentions
in IR, which may supersede intentions in IT (thus, reactive behaviours take over
when the ball is perceived to be within a certain radius of the player). Adoption
of tactical intentions is determined, again, by an agent's role in a team at a given
point in time.

The Plan Library PL is a collection of plans. Each plan is a 4-tuple denoted
by < Pr;A; F > where Pr denotes the plan pre-conditions, A is a sequence of
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actions to be peformed if Pr is satis�ed and F is a measure of how successful
the plan was in the past (denoted by the ratio of successful invocations to total
invocations). All the actions contained in A are drawn from the skill set S.
A limited form of learning can be implemented using the F measure attached
to every plan. In general, multiple plans may match both the current trigger
and have their pre-conditions satis�ed. In such situations, plans with a higher
value of F are selected. The plan library is strati�ed into priority levels. These
levels assist in plan interruption and recovery. A plan with a higher priority can
interrupt a plan with a lower priority. When a plan is selected for execution, an
expiration time is assigned to the plan. When a plan is interrupted, the agent will
hold the current plan and execute the higher prioritized plan. At the completion
of the plan, the agent will try to recover the previous plan and try to complete
it within the given expiration time. Should the time expire, the plan will be
discarded.

Ball interception by an agent is a reactive behaviour and the relevant plans
are invoked via direct mappings from the state of the environment (usually when
the ball is within a certain radius of an agent). Dribbling is achieved via small
kicks forward, followed by re-interception of the ball.

6 Strategy

Our approach to team coordination is to implement agent teams. We have
adopted the concept of mutual belief, joint goal and joint intention [2] as well as
dynamic role assignment [4] and team plans.

A team � represents a set of a �nite individual agents [2] and the social struc-
ture � represents the agents' belief of belonging to a � . The social structure � as
de�ned by Tidhar [2] denotes it as a pair of command and control team which we
denote as < St; Ta > where St denotes the command team and Ta denotes the
control team for a � , however,in our approach, there are no distinct command or
control teams. Every agent would perform both the St and Ta functions. These
functions are however emphasised when the agent becomes a leader. A leader
is an agent that take charge of other agents' and are responsible for the their
behaviours. The majority of the St component's authority is contained within
the leader. Thus, a team's goal is Ta is concerned with an individual agent's
contribution towards the team goal. That is, Ta takes into account the team
goal. Ta could be considered the component of the agent that handles team
intentions. Ta also communicates with St, which in turn communicates within
the team to synchronise certain movements of players. St holds the concept of
social structure and responsibilities where the agents know who is in command
of it and who it is in command of. Ta adopts the role of coordinator. This ap-
proach allows the dynamic assignment of sub-teams, which we will denote as
task groups. In theory, there can multiple encapsulation of sub-teams however
with the limited number of agents involved we are limiting to only one level of
sub-teams. These individual task groups can only receive task from the agent
that initiated their formation, in other words, if the Captain initiates the forma-
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tion, then only the Captain can assign tasks to the task group however transfer
of task group between the Captain and the Goalie are permitted. This result in
� that can adopt two or more non-contradicting desires simultaneously. In our
approach, we have adopted a social structure where the Coach is at the top of
the chain, followed by the Captain and Goalie. The agent structure of the coach
is a variance of the Case-Based BDI agents [5]. Before the start of the game, the
Coach plays an important role where it will make decisions regarding the type
of strategy to deploy as well as the composite of the initial team plan library
similar to the locker room agreement [4]. Due to the time constants, we have
limited the number of team plans that are available to the team. The team plan
is a 3-tuple similar to the make up of the agent plans. The team plan library
selection will be done based upon the success frequencies. During the game, the
coach will analyse the game, determine where the plans are failing and make
modi�cations or in extreme cases generating new team plans. These plans will
then be uploaded to the player when allowed.

7 Conclusion

The Robocup environment provides an interesting range of challenges within the
domain of multi-agent systems. We expect a new and improved Gongeroos2000
team based on a design philosphy that emphasizes explicit representations of
both the beliefs and plans of agents as well as the trade-o�s made to achieve
e�ective behaviour in time-bounded situations.
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Headless Chickens III

Paul Scerri, Johan Ydr�en, Tobias Wiren, Mikael L�onneberg and Pelle Nilsson

Institute for Computer Science, Link�opings Universitet

1 Introduction

The development of the Headless Chickens III emphasized a high level team
speci�cation environment, called the Strategy Editor, that was intended for use
by endusers, rather than computer programmers[2]. Using the strategy editor
consisted of placing players on a image of the ground and indicating the direc-
tion(s) the player should kick and/or dribble when they get the ball. Di�erent
player formations and passing/dribbling patterns could be speci�ed for di�erent
game situations. The designer could also specify the style of play for each of the
players, e.g. defensive or inclined to shoot or dribble.

The Strategy Editor proved to be an e�ective tool primarily because a \player
template" could be loaded into the editor. The template speci�ed the di�erent
modes of play the players knew about, the di�erent styles of play the player could
play and the di�erent actions the player could take. The mechanism allowed
parallel development of the low level aspects of the players behavior (developed
by agent experts) and high level strategies (developed by domain experts).

Speci�cations made with the Strategy Editor were \compiled" into separate
behavior based agents. The core of the behavior based agents runtime engine
had been previously developed for earlier versions of the Headless Chickens[1].

The Headless Chickens III �nished equal 5th in the 1999 World Cup compe-
tition. They were involved in some of the more exciting games of the competition
including the �rst ever World Cup overtime game which HCIII eventually won
two to one. However HCIII were clearly inferior to the best teams losing seven-
teen nil to CMUnited99 and eleven nil to MagmaFreiburg.

2 Team Development

Team Leader: Paul Scerri
Team Members:

Paul Scerri
{ Link�opings Universitet
{ Sweden
{ Graduate Student
{ Attended Competition

Johan Y'dren
{ Link�opings Universitet
{ Sweden
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{ Masters Student
{ Attended Competition

Tobias Wiren, Mikael L�onneberg and Pelle Nilsson

{ Link�opings Universitet
{ Sweden
{ Undergraduate Students
{ Attended Competition

Web page http://www.ida.liu.se/~pausc/RC99/main.html

3 World Model

The agent architecture is split into two layers, one for skills and one for strategies.
Although there is some basic information processing that is used at both layers,
e.g. calculating the velocity of the ball, the way world information is presented
to the di�erent layers is quite di�erent.

The skills layer uses world information almost directly from the sensors. Some
low level calculations are done to ensure the players view of the world remains
reasonably accurate between sensing cycles and after acting cycles. There is some
very simple reasoning done so that objects that have been seen previously but
are no longer in view are maintained in memory unless the player is looking at
where the object was last seen.

The strategy layer uses world information only as abstracted fuzzy predi-
cates. A separate Java class is associated with each fuzzy predicate. The class
uses sensor information to assign a value between one and one hundred to pred-
icates such as the ball is close or defensive position. The higher the value of the
predicate the more the predicate seems to be true. Some of the predicates, for
example near ball, have some \memory" so that the value of the predicate is still
reasonable when sensor values are unable to determine its value, e.g. when the
ball can be no longer seen the predicate near ball retains it's previous value.

4 Communication

The HCIII do not use communication between agents. It was not found to be
necessary either from an individual player perspective or from a team perspec-
tive.

The reactive nature of the agents, i.e. a behavior based architecture, is well
suited to having limited local information, hence there is little need for inter-
agent communication about object locations.

From a coordination point of view it is the responsibility of the team designer
at design time to ensure that players will be in appropriate positions at particular
stages of a game to ensure that team behavior \emerges". The \emergent" team
behavior does not require communication. The team designer also speci�es the
preferred directions for players to pass and dribble so communication is not
required for that either.
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5 Skills

The skills of HCIII are relatively simple. Every cycle one skill is called, perhaps
with some parameters, and gets the chance to execute one action. A ag is passed
to the skill indicating whether or not it was the skill that executed the previous
action but it has no guarantees that it will get to execute the next action. Niether
does the skill have any idea of the higher goal that the skill is part of achieving.

The algorithm for intercepting the ball looks for the closest position where
the player can meet the ball. A loop calculates the expected position of the ball
for subsequent cycles and for each cycle checks whether the player can reach that
position within that time. There are special cases for when the ball is coming
directly at the player or moving very slowly.

Because a skill can only execute one action at a time the dribble is also very
simple. The agents action depends only on the position of the ball and the point
that the agent should dribble to. The kick parameters are calculated by �rst
working out where the agent wants the ball to be in two cycles then working out
the power and direction to get the ball there.

The goalie is a special agent that attempts to maintain a position a certain
distance along a line between the center of the goal and the ball. Any time the
ball comes into the penalty box the goalie chases the ball. Once he has the ball
he will wait (spinning around to watch as much of the �eld as possible) until
�nding a good player to pass to. If no good passing option is found within some
time the ball is kicked hard towards the sideline.

6 Strategy

The strategy of the HCIII can vary greatly from game to game. The strategy
of the team is de�ned in two parts, using two di�erent graphical development
systems, the individual strategy editor and the team strategy editor.

The individual strategy editor, as the name suggests, de�nes the strategies of
a single player. In e�ect it de�nes a template of a player which will be instantiated
for a particular team strategy. At a high level of abstraction the individual
strategy determines the di�erent \modes" of play that the player will react
to. Example modes are Before kick o�, Deep defense and Transition to attack.
Within each of the modes the individual strategy determines the styles of play
the agent has for that mode, for example waiting before kicko� or crossing from
attack. Several di�erent \styles" of behavior can be de�ned for one mode, for
example a defensive style and an attacking style. Which particular style the
player will have is determined in the team strategy editor. At a lower level
of abstraction the individual strategy de�nes aspects of a player such as its
preference for kicking with respect to dribbling, how long the player is willing to
lose sight of the ball before searching for it and how keen a player is to attempt
to intercept an opponent.

The team strategy editor allows an enduser to quickly instantiate the tem-
plates created in the individual strategy editor into a team con�guration. In the
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strategy editor aspects such as where each player should be in each mode, the
positions to kick to and the directions to dribble as well as the style of play for
each of the players is speci�ed.

The combination of the two strategy editors allows a great deal of exibility.
During the World Cup our development team would watch log�les of prospective
opponents and create specialized strategies for each team. A prime example was
the opponent YowAI. It was realized that there were certain team tactics that
would keep most of YowAI's team o�side most of the time. The tactics were
quickly speci�ed in the team strategy editor without recourse to the individ-
ual behavior editor. Using the newly created tactics and having players prefer
dribbling meant that HCIII had a large amount of ball possesion (bad stamina
management meant that high ball possesion was not turned into a good score). A
less successful strategy was against CMUnited99. It was clear that CMUnited99
were far better than HCIII and a loss was inevitable so a very aggressive strat-
egy was employed in a (vain) attempt to be the �rst team to score against CMU
in two years. Alas the aggressive strategy resulted only in making CMUnited's
margin of victory more pronounced.

7 Conclusion

There are two teams planned for RoboCup2000 based on the HCIII. One of the
teams will use the same team speci�cation system and a similar agent archi-
tecture but port the agent runtime architecture to C++ (from Java). Porting
the agent code is aimed at improving the e�cency of the team. The other team
planned for RoboCup2000 will also use the same team strategy editor but will
use a slightly di�erent, though still very reactive, agent architecture. The new
agent architecture is aimed at providing facilities for more intelligent agent deci-
sion making, in particular the ability to simultaneously attend to multiple high
level goals.
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IALP 

Antonio Cisternino1, Maria Simi1 

1 Dipartimento di Informatica, Università di Pisa 
Corso Italia 40, 56125 Pisa, Italy 

{cisterni, simi}@di.unipi.it 

1 Introduction 

IALP is a team for the simulation league of the RoboCup initiative [4]. The team is 
programmed using ECL, a public domain implementation of Common Lisp [1]. 
The core of the IALP team is a reactive planner whose behaviour is structured in 
layers. The requirements we had in mind for the architecture is that it must be open 
and offer different levels of abstraction coping with different problems in a modular 
way. Moreover the architecture is meant to be general and flexible enough to allow 
reuse of code built for the RoboCup initiative in other domains.  
For coping with limited perceptions, we developed a memory model based on the 
absolute positions of objects. 
IALP uses a model of coordination without communication [3] and a concept of role 
for a player that is built on top of basic abilities, common to all the agents. The 
layered and modular structure of the planner allows an easy reuse of the basic 
capabilities of the players and specialisation of roles at the higher levels. 
Using Common Lisp to implement IALP offers clear advantages from the AI 
programming point of view; in particular we have exploited the Lisp reader and the 
macro feature.  
The team played four games at RoboCup ’99: three games have been lost and one was 
a draw. The poor performance was due to the fact that the low level (the 
communication layer responsible for handling communication with the server) was 
too slow. Moreover the memory model, implemented in Lisp, proved to be too heavy. 

2 Team Development 

Team Leader: Maria Simi 
Team Members: 
    Maria Simi 
 Dipartimento di Informatica, Università di Pisa 
 Italy 
 Associate Professor of Artificial Intelligence 
 Attended the competition 
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Antonio Cisternino 
Dipartimento di Informatica, Università di Pisa 

 Italy 
 Undergraduate student 
 Attended the competition 
Web page: http://medialab.di.unipi.it/Project/Robocup/IALP/ 

3 World Model 

A memory model is used in IALP to keep track of objects and players seen recently in 
terms of their absolute positions. The memory also stores the messages heard and the 
physical status of the player. 
The IALP player executes a standard cycle: receives a perception from the server, 
updates the memory, computes a new set of actions and sends them to the server. In 
deciding the next actions the planner uses higher level predicates implemented from 
the information contained in the memory. 
If the received perception is see the memory tries to update the absolute position of 
the player. The coordinate system is the same used by the server. The absolute 
position of the player is computed using a borderline and a flag. When a borderline is 
visible the player can easily compute his distance from the line, and thus one 
coordinate, which is x or y depending on the line and the direction in the coordinate 
system chosen. If a flag is also perceived the player can compute the second 
coordinate. This method has a good precision and is fast to compute. The basic 
assumption is that the player movements are continuous; if the player at a given time 
cannot compute one or both coordinates he can assume the previous ones, without 
making a significant error. 
Once the position of the player has been computed, the absolute coordinates for each 
dynamic object present in the see perception (players and ball) are also computed 
using standard trigonometric calculus. 
The choice of recording absolute coordinates (see [4] for a different choice) allows us 
to focus memory updating on the moving objects because static objects are recorded 
in a stable form using their position. 
The hear and sense body perceptions are treated similarly. 

4 Communication 

The model of coordination used does not involve communication [3]. For instance if 
the player possessing the ball decides to pass, he simply does so. The coordination is 
in the fact that the target player is typically looking at the ball and close enough, thus 
able to see the ball coming and to intercept it. 
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5 Skills 

The skills of the players are built using our layered architecture. We have hand coded 
basic skills like go to ball, run with ball, pass ball and so on. The skills of the players 
need to be improved in future versions of the team. For this purpose we plan to use 
some form of learning. 

6 Strategy 

All players are equivalent in IALP team: they differ only for the definition of the role 
they play. This homogeneity among players is justified by the definition of role that 
we have assumed: a role amounts to prevalence of behaviour. This implies that the 
basic capabilities of the various players are the same, and only the overall strategy of 
the team and the environment account for differences in behaviour. When all the team 
members are forced in a situation of defence, for example, we would like the attackers 
be able to behave like defenders.  
The overall strategy of the team emerges from role definitions. The zone of the field 
assigned to a player, when he is not engaged in the current action, essentially defines 
the role. The player is responsible for the ball and opponents in his zone. 
The ball flows from the defence zone to the attack zone according to a decision 
function used by each player. When the player has the ball, he checks whether he can 
pass the ball or shoot into the enemy goal; if not, he tries to move forward with the 
ball until a pass becomes possible or he can shoot. For deciding whether to pass the 
ball or proceed, each player, depending on his role, keeps a number for each team-
mate, assigning a preference score to the candidates for a pass.  Thus defenders prefer 
to pass the ball to middle players and are not happy to pass the ball to the goalie. The 
evaluation function also considers, for each possible target of the pass, the gain in 
case of success and the risk that the pass will be intercepted. The most promising 
target is thus chosen and its value compared with the gain and risk of advancing with 
the ball. 

7 Special Team Features 

The core of IALP is a hierarchically structured reactive planner that computes and 
executes plans. There is an ordered chain of layers, with a base layer and a top layer. 
The base layer is devoted to the communication with the RoboCup server: the output 
are commands like (dash speed) or (turn moment). The top layer defines the 
overall strategy of a player; it contains the most abstract plans and fully determines 
the behaviour of the agent. The intermediate layers define a hierarchy of actions: each 
layer decides upon the implementation of an action using the actions offered by lower 
layers. 
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A plan built in a layer is a list of actions defined in one of the layers below. A while 
action can be used to repeat a sequence of actions until a specified condition is 
verified.  
At each cycle, the interpreter of plans requests an action in executable form to the 
base layer; if this layer is executing a plan, the next action of the plan is executed. 
Otherwise (it has finished executing the previous one), it requests a new plan to the 
upper layer. This chain of requests may propagate to the top layer, which must always 
return an appropriate plan. The architecture of the planner is shown in figure 1. 
Since the top-level planner determines the behaviour of the underlying planners, 
specific abilities implemented by lower levels may be reused for building different 
roles. In particular the layered approach is convenient for sharing low level abilities 
that all players should possess. 
Each layer can request to reset the 
executing plans to upper and/or 
lower layers. This is important to 
implement reactive behaviours and 
in particular to react promptly to 
referee messages. 
Another feature of the IALP planner 
is the possibility of defining several 
alternative implementations for an 
action, all of them considered equivalent with respect to the outcome. In this case the 
interpreter chooses randomly the implementation to be used. This feature introduces 
richness of behaviour and makes it difficult for an opponent team to guess the 
behaviour of players.  

8 Conclusion 

We are working on a newer version of the IALP team built on the current architecture 
and we hope to compete in the next European event. Experience with past 
competitions suggested rewriting in C both the communication level and the memory 
model for better performance. Moreover we plan to use a machine learning approach 
for improving individual and coordination skills of the players. 
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NODA, Itsuki
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1 Introduction

In order to realize exible strategic planning in multi-agent systems that are
working in dynamic environment, it is necessary to provide a mechanism to
integrate hierarchical planning (include team planning) and reactive behavior.
The main issues of this integration are:

{ how to switch the context of plan
In the dynamic environment, it is important how to terminate making and
executing a plan when the environment changes so that the plan is not useful
any more.

{ how to organize multiple planning
It is better that agents in a complex environment can have ability to making
multiple planning, because such agents may have multiple goals in the same
time. For example, in the case of soccer, while agents have an obvious goal
\win the game (or score goals)", also the agent should have another instinc-
tive goals, that is \not to miss their position", \follow the rule", and so on,
in the same time. The similar requirement will be happen when agents try to
make a consensus by communication during they were acting something. So,
it will make the problem simple that the agent has parallel planning process,
that is action planning and communication planning.

In order to attack these issues, we are proposing a programming language
called Gaea and programming methodology on it.

2 Team Development

Team Leader: NODA, Itsuki
Team Members:

NODA, Itsuki
{ Stanford Univ. / ETL
{ USA
{ visiting scholar
{ attended

Damon Otoshi
{ Stanford Univ.
{ USA
{ under graduate student
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{ not attended
Stanley Peters
{ Stanford Univ.
{ USA
{ Professor
{ not attended

Web page http://ci.etl.go.jp/ noda/research/kyocho/kappaII/

3 World Model, Communication, and Skills

The World Model of kappa-II is simple. They scan visual information from the
server and calculate their global positions using a revised version of libsclient.
Then, it calculate positions of visible objects. In order to handle the ball smooth-
ly, they also simulate movements of the ball in few steps ahead. Using this world
model, a player calculates suitable parameters of turn, dash and kick commands.

Our players use the communication to require passes to a ball player. When
a team is o�ending (keeping the ball) and a player A is keeping the ball, another
player B requires if player B is locating a good position to receives the ball. Then
player A can decide whether he should pass the ball to player B or not by itself.

For lower level of skill to handle the ball, we refered the code of CMUnited.
Especially, circle-kick skill and intercept skill is based on the code. For higher
level, we use multi-thread logic programming to behave reactively to the dynamic
environment. The details are described below.

4 Strategy

As discussed in the introduction, the main issue of agent programming is:

how to combine hierarchical planning and reactive behavior

In order to solve this issue, SOAR[5], that is used STEAM system in ISIS team[6]
uses hierarchical structure of operators. In SOAR, the hierarchical structure
are realized by asserting structured state data to identify where a system is
extracting the plan in a decision tree. Then each rule recognizes the state of
decision process by checking the state in its condition part.

Out approach takes the di�erent realization using the similar representation
of hierarchy. When a operator is selected, then the system forks a thread for
execution of the operator. The original thread remains and continue to check
the condition is satis�ed. The new thread checks conditions of all sub-operators
in the case the operator is complex operator, or execute action. In other words,
All operators on a path in a decision tree becomes threads and keep alive while
the path is active.

In addition to it, the system allows a parallel planning. If a operator is de-
noted as multiple, then all sub-operators are forked immediately, and keep alive
until the mother operator is alive.

The merits of this architecture:
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{ We can realize quick and slow planning by controlling the priority of execu-
tion of each thread. Basically, high level operator does not change so quick-
ly, while low level operator should be checked frequently. In order to realize
such features, we can specify sleeping durations of each cycle of execution of
thread.

{ Using multiple operators, we can easily realize instinctive processes. Instinc-
tive processes should always be alive and continue to check the condition.
multiple operators enables to realize such instinctive processes in a hierar-
chical manner. In order to reduce the cost of such checking,

Offensive

SlowAtackFastAtack

Defensive

PlayMode byRuleInstinctive

TopGoal

multiple operator

Basic

ChaseBallStayHome

Left 
Atack

Right
Atack

Center
Atack

Fig. 1. Example of a tree of operators

5 Special Team Features

We use Gaea to implement our players. Gaea is a logic programming system
[2, 3, 4], which has the following features:

{ prolog style logic programming system
{ multi-thread with exible control mechanisms
{ dynamical program manipulation

Because Gaea is logic programming, it is easy to make a translator that de-
composes a hierarchical planning description to lower reactive rules. Moreover,
such rules can be evaluated in parallel using multi-thread features. Therefore, it
is easy to realize parallel processes to behave reactively or intensionally like sub-
sumption architecture [1]. Dynamical program manipulation enables to combine
program modules for each thread and to change the behavior of agent.

Compared with the previous RoboCup competition, Gaea has been improved
in the following features:

{ light weight multi-thread generation
{ rich control mechanism of waiting event
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6 Discussion

Compared with reactive production systems, the proposed architecture has an
advantage in parallel process. In both systems, all behaviors are described in
reactive rules. In the usual production systems like SOAR, these rules are checked
uniformly in a single selection-application cycle. So, in every cycle, all conditions
of operator should be checked. On the other hand, in the proposed architecture,
the system can have multiple processes for each node of the operator tree. This
enables to realize lazy checking mechanism. Usually, low-level operators should
be tested almost every execution cycle, while conditions of high-level operators
may not checked so frequently, in other words, the conditions can be checked
lazily. In the proposed architecture, users can specify the length of interval that
each process take a sleep in each cycle. So, we can realize such lazy checking

mechanism.
Compared with the subsumption architecture[1], the proposed system has

an advantage in dynamics of architectures. The problem of subsumption archi-
tecture is its static structure to subsume lower behavior modules. Because of
the static structure, all combination of planning should be generated before the
execution, and de�ne the subsuming relation of each modules. In Gaea, we can
realize similar subsuming mechanism by overriding de�nitions of predicates by
manipulation of program in real-time. So, we need not prepare all combination
of plan before running the agents.
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Karlsruhe Brainstormers - Design Principles
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A. Hofmann, and L. Frommberger
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Abstract. The following paper describes the design principles of deci-
sion making in the Karlruhe Brainstormers team that participated in
the RoboCup Simulator League in Stockholm 1999. It is based on two
basic ingredigents: the priority - probability - quality (PPQ) concept is a
hybrid rule-based/ learning approach for tactical decisons, whereas the
definition of goal-orientented moves allows to apply neural network based
reinforcement learning techniques on the lower level.

1 Introduction

The main interest behind the Karlsruhe Brainstormer’s effort in the robocup
soccer domain is to develop and to apply machine learning techniques in com-
plex domains. Especially, we are interested in Reinforcement Learning methods,
where the training signal is only given in terms of success or failure. So our final
goal is a learning system, where we only plug in ’Win the match’ - and our agents
learn to generate the appropriate behaviour. Unfortunately, even from very op-
timistic complexity estimations it becomes obvious, that in the soccer domain,
both conventional solution techniques and also advanced today’s reinforcement
learning techniques come to their limit - there are more than (108×50)23 differ-
ent states and more than (1000)300 different policies per agent per half time. The
following describes the modular approach of the Brainstormer’s team to tackle
this complex decision problem.

2 The Decision Module

The task of the decision module is to compute in each time step a new basic
command (i.e. kick, turn, dash) that is sent to the server. This command de-
pends on the current situation st, which is provided by the world model module
(not discussed here). As already discussed in the introduction, it is a very hard
problem to do decisions at the level of basic commands.

An obvious approach - which is used in most of the known approaches in
various variations (e.g. [3]) - is to introduce two levels of the decision making
process. The lower level implements some useful basic skills of an individual
player (for example, intercept a rolling ball). In our framework, such basic skills
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are called moves (in analogy to other strategic games as chess or backgammon).
The second level is realized by the tactics module. Its task is to select one of
the moves, depending on the situation. An appropriate choice of moves should
finally lead to success in terms of scoring a goal. Also, aspects of team play are
realized here.

2.1 The Moves

A move is a sequence of basic actions, that transforms a current situation s(0)
into a new situation s(t) some time steps later. The resulting situation is one
of a set of terminal states Sf , which might be either positive/ desired outcomes
(S+) or negative/ undesired situations (S−). The move ends, if either a terminal
state is reached (s(t) ∈ Sf ), or the time exceeds a certain limit (t > tmax).

For example, the move intercept-ball terminates if either the ball is within
the player’s kickrange (S+) or if it encounters a situation, where it is no more
possible for the player to reach the ball (S−).

Since each move has a clearly defined goal, it is now possible to find sequences
of basic commands, that finally reach the defined goal. This can be done either by
conventional programming, or, as it is the case in our approach, by reinforcement
learning methods. In both cases, it is important that the goal of a move is
reasonably chosen, that means that the solution policy is not too complex (e.g.
a move ’win that game’ would be desirable but its implementation will be as
complex as the original problem).

Clearly, the quality and the number of different moves eventually determines
the power of the individual player and therefore the whole team respectively.

2.2 Reinforcement Learning of Moves

The question now is how to implement a closed-loop policy that, after emitting a
sequence of basic commands finally reaches the specified goal of the move? The
above move definition directly allows to formulate the problem of ’programming’
a move as a (sequential) Reinforcement Learning (RL) problem. The general
idea of reinforcement learning is that the agent is only told, what the eventual
goal of its acting is. The agent is only provided with a number of actions, that
it can apply arbitrarily. In course of learning, it should incrementally learn a
(closed-loop) policy, that reaches the final goal increasingly better in terms of a
defined optimization criterion. Here we apply Real-Time Dynamic Programming
methods [1], that solve the problem by incrementally approximating the optimal
value function by repeated control trials. A feedforward neural network is used
to approximate the value function [2].

In the current version which was used in Stockholm, the kick-move was
learned by reinforcement learning. Several other teams have reported tricks how
to implement a kick-routine by conventional programming using various heuris-
tics. The problem with this approach is that it can be very time-consuming to
find the right heuristics and to tune several parameters by hand. Instead, our
reinforcement learning approach is much more convenient to handle - the work
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of looking for an appropriate policy is done by the agent/ computer itself. The
agent is provided with a (finite) number of basic kick commands. The goal is
defined in terms of a target ball direction and a target ball velocity. The agent
receives costs for every kick command it uses until the ball has left its kickrange.
If the ball is lost during the sequence, maximum costs occur; in case of success,
the sequence is terminated with 0 costs [2]. This formulation results in a time-
optimal policy: the number of kicks until successful termination is minimized.
After about 2 hours of learning, the resulting policies were quite sophisticated -
similar to the proposed heuristics, the agent learned to pull the ball back and to
accelerate it several times in order to produce high speeds. It was able to learn
to accelerate the ball to speeds up to 2.5 m/s. Of course, it is too difficult for
a single policy (i.e. a single neural net) to manage to kick in all situations to
all directions with all imaginable velocities. Instead, the problem was divided
into 54 subproblems; therefore the neural kick-move now is based on 54 neural
networks (each of them using 4 inputs, 20 hidden and 1 output neuron).

2.3 The Tactics Module and the PPQ approach

The task of the tactics module is to select one out of the set of available moves.
The difficulty with this decision is, that in general, a complex sequence of moves
has to be selected, until the final goal is achieved, because normally a single move
will not lead to scoring a goal. In the soccer framework, this problem becomes
even worse, since the success also depends on the behaviour of the whole team - a
successful sequence can only be played, if all the agents involved make the correct
decisions. Although we already started some promising experiments applying
reinforcement learning to this decision level also, we are still some theoretical
and practical steps away from a convincing practical solution (other teams also
work on this topic [3]).

For our Stockholm competition team, we therefore worked on a different
solution for the tactics module, which we call the priority - probability - quality
(PPQ) approach. The idea origins in the observation, that some parts of the
problem can be elegantly solved by simple rules, whereas other aspects are not
so easily judged. The PPQ approach tries to combine the worlds of programmed
and learned parts.

Priority Classes and Qualities The moves are partitioned into a number
of classes, e.g. the class of goal shots, the class of pass plays, the class of dribblings.
It is now relatively easy to define a reasonable priority ordering between these
classes. For example, in our Stockholm approach, we used the following priorities:
1. shoot to goal, 2. pass forward, 3. dribble, 4. pass backward, 5. hold ball.

If there are several choices of moves within a priority class, a quality function
decides which move to chose. Conceptually, this quality function typically follows
a very simple decision rule, for example pass to the player that is closer to the
goal.

Learning of success probabilities
Each move has a certain probability of success, which depends on the current

situation. The idea now is to learn this probability by a simple trial and error
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training procedure. The agent is set into various situations, executes a certain
move and notes the success or failure of the move. The learning task now is
to associate each situation with its outcome, for example in terms of a ’1’ for
success and a ’0’ for failure. A feedforward neural network is used here to learn
the training patterns. After training, the neural network, gets a certain situation
as its input and outputs the expected value for success/ failure.

The decision algorithm
Each priority class has a set of available moves,M(i). The algorithm works

through all the priority classes, until it finds one, where there is a move that
has a higher probability of success than a certain threshold. This set is called
M+(i) := {m|PNN (m) ≥ θi,m ∈ M(i)}. The threshold is selected such that a
reasonable chance of success is given, for example θi = 0.8. If there is more than
one such move, one of them is selected by judging its quality. Note that this
final judgment can be treated very relaxed, since it already is a nearly maximal
useful move (determined by the priority of its class) and its also very likely a
successful move (determined by its high success probability).

To guarantee termination of the algorithm, at least one class must exist,
whereM+(i) is not empty. This is done by the definition of a default move that
is always possible.

3 Conclusion

The Stockholm version is an intermediate step within our Brainstormers’ con-
cept of a learning agent. The final goal is to have an agent, which has learned
its fundamental decision behaviour by reinforcement learning. However, until
then a lot of work has to be done in the field of multi-agent RL, on Semi-
Markov Decision Processes, partially observable domains (POMDPs) and on
large-scale RL problems. Some of very recent RL ideas have already been suc-
cessfully realized. For example, the moves-concept is closely related to Sutton’s
et.al ’options’-framework [4]. Therefore our work can be regarded as realizing and
testing some conceptual ideas in a practical environment. The Brainstormer’s
Stockholm agent used an ensemble of 67 feedforward neural networks, 54 for
the neural kicking (RL) routine, and 13 as probability networks in the tactics
module.
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Kasugabito III

Tomoichi Takahashi

Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501, Japan

1 Introduction

Its on-line coach agent characterizes Kasuga-bito III. Kasuga-bito III is com-
posed of LogMonitor [LogM]and Kasuga-bito II, which was runner-up in JapanOpen'98
and the champion in the RoboCup Paci�c Rim Series '98. The LogMonitor ad-
vises their position to players. The positioning strategy is authenticated by anal-
ysis of the log�les of evaluations at RoboCup'98. Our player agents are advised
by the on-line coach and changes their formation.

2 Team Development

Team Leader: Takahashi Tomoichi

Team Members:

Kazuaki Maeda, Shinji Futamase, Akinori Kohkestu

{ Chubu University

{ Japan

{ lecturer, master course student, master course student

{ did not attend the competition

Web page http://kiyosu.isc.chubu.ac.jp/robocup/

3 World Model

Player agents do not have a global �eld model. They have only a local world
model created from see information from the soccer server. The model is updated
as they receive see information. The on-line coach agent has a global �eld model
that holds data for the most recent simulation steps ( default 100 steps).

4 Communication

There is no communication between player agents. The on-line coach agent ad-
vises player agents when the ball is out of bounds.
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5 Skills

Our player agents are basically the same as Kasugabito-II used at RoboCup '98.
They predict the ball trajectory for the next steps (default 15 steps). If an agent
can catch the ball within the steps, it tries to intercept the ball. It dribbles
the ball when there is no teammate to which it can pass the ball. Dribble is
combination of a kick and a dash. We do not have a special goalie. Our goalie's
parameter are values gained from o�-line training [Pricai98]. Defender moves to
the centerline to get an o�side trap.

6 Strategy

The on-line coach is introduced from soccer sever version 5.06. The coach agent
can see all objects on the �eld and gives advice to the players at play o� time.
The coach's advices are generated by the followings factors:

defender (o�side trap advice): When opponent players are within 10 m and
their direction are toward our goal, the coach advises the defenders move
10m forward.
(position back advice): After the defender moved, if there is no opponent
within 10m in their back, the coach advises them to return to their default
position.

forward The top forward is advised to move 5m behind the opponent o�side
line.

others The other players are advised that they are proportionally spread be-
tween the top forward and the defenders.

The positions of opponent players are calculated in the following steps:

{ Players far from the ball are in their default positions. The players more than
30m far away from the ball are objects to be calculated, because players near
the ball are assumed to catch it. The catching motion is not a usual one.

{ The newer data is supposed to be the more certain. (The players may change
their position as the game goes on.) The average of the most recent 100 points
which satis�es the above conditions are set as the opponent players' position.

Table 1 shows the scores of the games against three team without and with
the coach agent. The three teams are AT Humbolt97, Andhill98 and Kappa.
Andhill98 is known as the team that changes players' position during the game
by reinforcement learning. The version with a coach won games for Andhill98
more than the version without a coach. This result supports the coach advice's
e�ective in robustness.

7 Special Team Features

Kasugabito-III's feature is its on-line coach. Kasuga-bito III's coach is the im-
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Table 1. Scores of games without /with coach.

AT Humbolt Andhill98 Kappa

without with without with without with

1 - 6 0 - 7 3 - 1 7 - 1 0 - 6 0 - 10
0 - 7 0 - 11 2 - 2 3 - 4 0 - 9 0 - 7
0 - 8 1 - 8 3 - 1 1 - 4 0 - 8 0 - 13
0 - 10 0 - 6 3 - 3 1 - 4 0 - 8 0 - 5
0 - 8 0 - 8 1 - 2 4 - 1 0 - 5 0 - 5

right score is KasugabitoIII's score.

Fig. 1. On-line LogMonitor screen image

proved LogMonitor which analyzes the game on simulation cycle (Fig.1) [LogM].
The left window is the normal viewer, and the right window displays the on-line
coach's status. Blocks on the �eld displayed upper left of right window show the
range of players' movement. Line graphs show the ball location, the ball control
rate, and heuristics values that indicate the coach agent thinks how the game is
going.

The coach agent used at Stockholm generated advices by the follows princi-
ples:

formation The coach agent directs teammate agents to take an o�ensive forma-
tion, a normal formation and a defensive formation. It evaluates the game's
trend based on the number of kicks and scores. When the gap of scores is
more than one, the coach advises team mates for the �rst time. The �rst
advice is to change to an o�ensive formation if the team leads the opponent,
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otherwise to change to a defensive one.

The coach's advice from the second time is evaluated its e�ectiveness by

heuristics.

vertical spread The three formations - o�ensive, normal and defensive - have

three variations - narrow layout, normal layout and wide layout. The coach

directs the layout based on the average position and vertical variance of the

ball during the previous period.

8 Conclusion

We were eliminated at Group H, where CMUnited 99 and Essex passed the

league. The reason is the di�erence of agents' basic ability between out team

and others are bigger than the coach's advices.

A new coach agent has been researched for improving the old one. The games

at RoboCup '98 indicated that the player agent ability is required to make use

of the coach advice.
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RoboCup-99 Simulation League: Team KU-Sakura2  
 

Harukazu Igarashi, Shougo Kosue, Takashi Sakurai 
Kinki University, Higashi-Hiroshima, Hiroshima, 739-2116, Japan 

 
Abstract. In this paper we describe our team, KU-Sakura2, which is to 
participate in the simulation league of RoboCup-99 Stockholm. KU-Sakura2 is 
characterized by soccer agents that make tactical plays and passes using 
communication between players. 

  

1 Introduction 

Robot soccer is one of the relevant candidates for the standard challenging problems 
in Artificial Intelligence. Our two teams, Team Miya and Team Niken, participated to 
the simulation league of RoboCup97 Nagoya (Japan, August 1997) [1]. Moreover, we 
sent Team Miya2 to the simulation league of RoboCup98 Paris (France, July 1998) 
[2]. Team KU-Sakura2 is an improved version of Miya[3] and Miya2[4]. In this short 
paper, we give a brief technical description of our Team KU-Sakura2.  

Team Miya was characterized by individual tactical play[3]. Individual tactical 
play do not require communication between players, so the speed of passing was 
rapidly increased in RoboCup 97 games, and the team sometimes behaved as if it had 
been taught some tactical play. Team Miya proceeded to the quarterfinal match and 
was one of the best eight teams in the simulator league.  

In Team Miya2, a kind of communication between players is realized by using a 
"say" command so that a passer can make a pass to a receiver without looking around 
for receivers[4]. Consequently, Team Miya2 was one of the best sixteen teams in 
RoboCup98.  

However, more tactical play is required for the following two reasons. First, top 
teams of RoboCup98 showed very high-level skill in individual play. For examples, 
we observed a speedy dribble keeping the ball near the player's body and a safety pass 
without being intercepted by the opponent players. Second, the offside rule was 
introduced at RoboCup98. Thus forward players have to check whether they are in an 
offside position or not at all times. Some tactics is necessary to avoid the opponent's 
offside trap and succeed an offside trap against the opponent team. We use 
communication between players for realizing the tactics in Team KU-Sakura2. 
 
2  Hierarchy of Actions 
 

In Team KU-Sakura2, there is a hierarchy of actions. Actions are generally classified 
into four levels: strategy, tactics, individual play and basic commands(Table 1). A 
higher-level action includes more players and requires information in a wider range of 
time and space than a lower-level action. Coradeschi et al.[5] and Tambe[6] expressed 
the relationship between actions as a decision tree. We call such a decision tree an 
action tree. A soccer agent selects an action from the action tree at each action cycle 
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by analyzing visual and auditory information and by considering the agent's current 
state. The action is then compiled into a series of basic commands: kick, turn, dash, 
catch and say. 

As shown in Table1, "individual tactical play" is introduced to reduce the delay 
time between decisions and actions. The individual tactical play is defined as an 
action that an individual plays in a specific local situation without communication 
from a teammate. However, an agent expects some cooperation from a teammate in 
individual tactical play. For Team KU-Sakura2, we implemented three actions as 
individual tactical play: the safety pass, the centering pass and the post play. These 
three plays speed up the tactical actions of the safety pass between two players, the 
centering pass from a wing player, and the post play of a forward player. 

 
Table 1. Hierarchy of actions 

 Action Definition Examples 
Level 4 Strategy Cooperative team action 

 
Rapid attack,  
Zone defense 

Level 3 Tactics Cooperative action by a few players 
for a specific local situation 
 

Pass with 
communication 

Individual 
tactical  
play 

Action of an individual player for a 
specific local situation without 
communication, but expecting 
cooperation from a teammate 

Safety pass,  
Post play, 
Centering pass 
 

Level 2 

Individual play Individual player skill Pass, Shoot, 
Dribble, Clear 

Level 1 Basic command Basic commands directly controlling 
soccer agents 

Kick, Turn, 
Dash, Catch, Say 

3  Action Tree 

According to the role given to the agent, each agent has its own action tree based on 
the hierarchy shown in Table 1. An agent's next action is specified by prioritized rules 
organized into its own action tree. An example of an action tree, which is used in 
Miya2, is shown in Fig. 1. Here, if the node offense is selected, the firing conditions 
of action nodes at levels 2 and 3 are checked. The knowledge of selecting actions at 
levels 2 and 3 are expressed as if-then rules in a C program. Examples of the firing 
conditions include whether there are opponent players nearby, whether the player can 
kick the ball, whether the ball is moving, whether the player can estimate his position 
correctly, and whether the player can see the ball. In addition to the if-then rules, 
some actions at levels 2 and 3 are prioritized.  
 
4  Safety Pass and Safety Kick 
 
The actions of level 2 are not unrelated to one another. The actions, shoot, centering 
pass, post play, dribble and clear, consist of two basic skills[4]: the safety pass and the 
safety kick. The safety pass is a skillful pass to a receiver so that it is not easily 
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intercepted by the opponents. The safety kick is a skillful kick, which eludes 
interception by the opponents, in the direction of the objective. We call these two 
kinds of play individual tactical play. 

5  Team Play Using Communication between Players 

5.1 Team play in defence 

The goalkeeper is a commander who orders defence players to go forward  or  
backward. In Fig.2, the goal keeper is denoted by G and defence players are denoted 
by D. The optimal position of the defence line is determined by the goalkeeper taking 
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positions of the opponent forward players into account.  

5.2 Team play in offence 
 
A midfielder in the center of a team, denoted by M in Fig.2, is a commander who 
orders forward players to go forward or backward. The optimal position of the 
offence line is determined by the midfield player taking positions of the opponent 
defence players into account.  

5.3 Experiment 
 
We ran 30 simulation games between Team KU-Sakura2 and Team Miya2. No team 
play mentioned in 5.1 or 5.2 is implemented on Miya2. The time length of each game 
is 3000 simulation-cycle steps. The results of the games are shown in Table 2. 

In Table 2, one finds that the frequency of offside in Miya2, 6.77 per game, was 
reduced to 1.43 in KU-Sakura2. Moreover, this reduction of offside contributed to 
increase of scoring from 0.40 to 0.67 per game, and winning from 5 to 10 wins. The 
results prove that our team play is effective in actual simulation games. 

 
Table 2. Experimental results of 30 games between KU-Sakura2 and Miya2 

Offside Score  
total avr. total avr. 

Win Loss Draw 

KU-Sakura2 43 1.43 20 0.67 10 5 15 
Miya2 203 6.77 12 0.40 5 10 15 

6  Summary 
 
Team KU-Sakura2 has a hierarchy of actions. According to the role given to the agent, 
each agent has its own action tree based on the hierarchy. KU-Sakura2 is 
characterized by individual tactical plays at level 2 and tactical plays using 
communication between players at level 3 of the hierarchy of actions. 
 
References 
[1] http://www.robocup.v.kinotrope.co.jp/games/97nagoya/311.html 
[2] http://www.robocup.v.kinotrope.co.jp/games/98paris/312.html 
[3] Igarashi, H., Kosue, S., Miyahara, M., Umaba, T.: Individual Tactical Play and 

Action Decision Based on a Short-Term Goal -Team descriptions of Team Miya 
and Team Niken-. In: Kitano, H.(ed.): RoboCup-97: Robot Soccer World Cup I, 
Springer-Verlag(1998)420-427 

[4] Igarashi, H., Kosue, S., Miyahara, M.: Individual Tactical Play and Pass with 
Communication between Players -Team descriptions of Team Miya2-. Proc. of 
RoboCup98(submitted). 

[5] Coradeschi, S., Karlsson, L.: A decision-mechanism for reactive and cooperating 
soccer-playing agents. Workshop Notes of RoboCup Workshop, ICMAS 1996 

[6] Tambe, M.: Towards Flexible Teamwork in RoboCup. Workshop Notes of 
RoboCup Workshop, ICMAS 1996 
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The magmaFreiburg Soccer Team

Klaus Dorer

Centre for Cognitive Science
Institute for Computer Science and Social Research

Albert-Ludwigs-University Freiburg, Germany
klaus@cognition.iig.uni-freiburg.de

1 Introduction

The main interest of our research concerns motivation action control and goal
management of agents (magma). Action Control of the magmaFreiburg team is
based on extended behavior networks, which add situation-dependent motiva-
tional influences to the agent, extend original behavior networks to exploit infor-
mation from continuous domains and allow concurrent execution of behaviors.
Advantages of the original networks, such as reactivity, planning capabilities,
consideration of multiple goals and its cheap calculations are maintained.

magmaFreiburg has been very successful in the competition finishing at sec-
ond place. We scored 59:0 goals and 12:0 points in the four games of the round
robin and 30:11 goals in the six games of the elimination round with all goals
against us scored by the winning team CMUnited.

2 Team Development

Team Leader: Klaus Dorer
Team Members:

Markus Plewinski, Marc Haas
– Fachhochschule Furtwangen
– Germany
– students
– did not attend the competition

Web page http://www.iig.uni-freiburg.de/cognition/members/klaus
/robocup/magmaFreiburg.html

3 World Model

Each time an agent receives a perception from the server the information is
entered into a local map containing the distances and directions of visible objects.
After self-localization, the global position and direction of the agent and all
visible objects are inserted into a global map. Information of non-visible objects
gained by communication (see next section) is also entered into the map. The
information in the map is updated before action selection, taking into account

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 600−603, 2000.
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information on the expected effects of the agents previous actions and the inertia
of the ball and the agent. Moveable objects like other players and the ball are
removed from the map after three seconds or if they are not seen at the expected
position. Functional objects are calculated from the information in the global
map, using indexical-functional aspects of the situation [1]. This reduces the
number of competence modules needed (see section 7).

4 Communication

Communication is used by the magmaFreiburg agents to share information on
visible objects and the agent’s internal information. This allows agents to im-
prove information on visible players and to know about the position of players
the agent can not see. Knowledge about the stamina of other agents allow play-
ers to replace tired teammates. To coordinate communication between agents, a
locker-room agreement is used [6].

5 Skills

Players anticipate the future positions (20 cycles) of the ball with respect to
its current velocity. They calculate the possible intersection point by taking into
account the number of cycles the agent needs to approach the corresponding ball
position. When receiving a ball, the agent takes into account the ball’s speed to
calculate the proper power vector for kicking. If the velocity of the ball is low
and the agent decides to do a hard kick, the agent tries to place the ball in a
position, where it can kick the ball twice. Due to poor dribbling abilities, the
ball is lost in one third of all attempts. The goalie always keeps the ball in view.
This is done by turning the neck (as other agents do) if moving sideways to the
ball and by moving backwards if moving away from the ball. The goalie also
tries to position itself in a way to minimize the attacker’s angle to the goal.

6 Strategy

The player with the ball has choice of four behaviors: it can dribble with the ball,
pass the ball to a teammate, kick towards the goal or just clear the ball in any
direction. The mechanism used for behavior selection is described in the next
section. Movement of defenders and midfielders without the ball is restricted to
moving forward in order to create an offside trap if the ball is in front of the
offside line, and moving backward if the ball is behind them. Midfielders and
offenders without the ball try to keep themselves onside and try to keep at the
level of the ball within the opponents half when attacking.

7 Special Team Features

Behavior selection of our agents is controlled by extended behavior networks [2,
3] that are based on work by Maes [4, 5]. Extended behavior networks consist
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Fig. 1. Part of a behavior network used by a soccer-agent. The goals of the agent are
at the top level, in the middle the competence modules and at the bottom level the
situation propositions (perceptions). (The complete network contains 14 competences).

of the goals of an agent, a set of behavior rules called competence modules, the
perceptions of the agent and resource nodes (see fig. 1).

Goals represent the utility of propositions that are part of the goal condition.
Goals can be statically prioritized by their importance and can be dynamically,
i.e. situation-dependent, prioritized by their relevance condition. The utility of
a goal is calculated as the product of its importance and its relevance.

A competence module consists of the preconditions that have to be satisfied
for the module to be executable, a corresponding behavior, the effects expected
after behavior execution, the resources used by the behavior and an activation
value. The activation of a competence module can be interpreted as the expected
utility of the module’s behavior with eu =

∑
i ai · exi, where ai is the utility of

effect i and exi is the probability of effect i to become true. The utility of ef-
fects that are part of a goal condition can be directly accessed by links from the
goal to the competence module. The utility of propositions that are not part of
a goal condition can be calculated by utility propagation using links between
competence modules. Any unsatisfied proposition of a precondition is assigned
a utility corresponding to the expected utility of the competence module. Pre-
conditions of competence modules with a high expected utility get important
subgoals of the network. For a more detailed description on utility propagation
see [2]. The execution of a competence module depends on its executability,
the expected utility and the availability of needed resources. Modules with high
expected utility are preferred.

Perceptions represent the truth values of propositions in a domain. To im-
prove the quality of perception within continuous domains, real-valued proposi-
tions have been introduced by extended behavior networks. This has implications
on the executability of competence modules, which becomes real-valued, and on
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the relevance of goals, which can have continuous values. Empirical results show
that real-valued propositions improve the quality of behavior selection in the
RoboCup domain [2].

Resource nodes are used to coordinate the selection of multiple concurrent
behaviors. Competence modules are connected with the resource nodes that cor-
respond to the resources they use. Using these links a competence module can
make sure that enough resources are available to execute the corresponding be-
havior and that it is the module with the highest utility requesting the resource.
Concurrent actions like speaking, turning the neck and dashing have been real-
ized by this domain independent mechanism for concurrent behavior selection.

Behavior selection in extended behavior networks is extremely cheap to cal-
culate. All eleven agents of the magmaFreiburg team have been run on a single
PC while other teams used up to five PCs. Since behavior selection can be cal-
culated locally in each competence module, calculations can be done in parallel
and could even be improved if each node of the network were run on its own
processor. Besides being reactive, extended behavior networks also prefer goal-
directed behavior by calculating the expected utility of a behavior with respect
to the goals. In contrast to purely reactive approaches, goals of an agent can be
explicitly specified.

8 Conclusion

The success in RoboCup99 has encouraged our team to take part in Melbourne
2000. Besides improvements to existing behaviors (especially ball handling and
dribbling), we plan to add new behaviors to improve positioning of players not
dealing with the ball and to introduce situation-dependent team strategies.
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Mainz Rolling Brains

Daniel Polani and Thomas Uthmann

Institut für Informatik, Johannes Gutenberg-Universität,
D-55099 Mainz, Germany

{polani,uthmann}@informatik.uni-mainz.de
http://www.informatik.uni-mainz.de/PERSONEN/{Polani,Uthmann}.html

1 Introduction

Our agent team is the result of a development which had to take place under
tight time limitations. The total development time available was slightly less than
three months where over most of the time the team developers could invest no
more than a few hours per week. The code was developed from scratch to improve
over the design and quality of last year’s code. Thus one of the challenges was
to keep a smooth development line and to avoid dead ends in the development,
as well as to maintain a development environment in which a larger number of
developers could work productively.

Our main challenges were twofold: to design an agent architecture which
enables robust development of strategically operating agents with a larger de-
veloper team; and a lightweight implementation of agents (e.g. running the whole
team on a single Ultra 1 Sun machine in Stockholm caused only a quite moderate
degradation of the team’s performance).

The team Mainz Rolling Brains (MRB) participated in Stockholm for the
second time. Like the last year, it reached the fifth position in the total ranking,
among that defeating the last year’s champion team CMU ’98, but succumbing
to this year’s winner CMU ’99.

2 Team Development

Team Leaders: Daniel Polani and Thomas Uthmann
Team Members:

Christian Meyer (graduate, R)
Erich Kutschinski (graduate)
Axel Arnold (graduate)
Götz Schwandtner (graduate, R)
Manuel Gauer (graduate, R)
Birgit Schappel (graduate, R)
Tobias Hummrich (graduate, R)
Ralf Schmitt (graduate)

Peter Dauscher (PhD)
Tobias Jung (graduate)
Sebastian Oehm (graduate, R)
Frank Schulz (graduate)
Achim Liese (graduate)
Michael Hawlitzki (graduate)
Peter Faiß (graduate)

(Each student’s position is marked graduate or PhD, respectively; R indicates at-
tendance at RoboCup ’99)

Web page: http://www.informatik.uni-mainz.de/ANGEW/robocup.html
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3 World Model

The agents are aware of their own position, of the ball position and the position of
other agents, their own speed, the velocity of other agents and objects and of the
age (i.e. de facto reliability) of data from objects. This is particularly important
for objects not being updated by current data. The world model contains a time
window of past and future world states. The past ones are filled in during the run
when they are received from the server, the future ones are generated on request
of the strategy unit from the most reliable known data. For every object in the
game (ball or soccer player) an absolute position representation is used. The
player determines his own position using the flags and reconstructs the positions
of other objects combining the sensor data giving their relative positions and
his own absolute position. Future positions are extrapolated by simulating the
known soccer server dynamics for the ball and for the current player. Other
players are simulated as not moving. The libsclient library is not used in our
team.

4 Communication

Our agents only transfer minimal information about status and intention of a
player that enables to improve playing quality. The fundamental doctrine of our
team using communication is that it should enhance the quality of the play, but
the players should in no way depend on it. Disabling communication, our players
are still able to act independently, maintaining coherence of the team’s play on
a purely behavioural level.

Our team’s messages are endowed with a checksum and slightly encoded
to make sure that only our own team’s messages are parsed. Though sending
intentionally confusing or forged messages is deemed unfair play in RoboCup, it
can still happen that without encoding the agent parser can be trapped on an
innocuous message string emitted by the opponent team.

The agents send messages saying whether: they want the ball, they do not
want the ball, they want to pass the ball, they are going to a given position,
they are low on stamina or they estimate the offside line at a certain field value

An agent without the ball communicates that he wants the ball depending
on its estimate of the situation. It can be issued by an agent if a team member
is assumed to be in control of the ball. High stamina, far away opponents and
being closer to the opponents goal are factors which favor an agent asking for a
ball. Also the existence of a broad enough corridor between the player controlling
the ball and the agent asking for the ball. The opposite factors (low stamina,
close by opponents, lack of a safe corridor between sender and receiver) cause
an agent to ask for not receiving the ball.

If a player intends to pass the ball, he communicates this intention, so that
another player can issue a request for a ball. No handshake, however, is per-
formed, i.e. the player does not necessarily wait for a reply.

After performing a catch, the goalie has the possibility to freely move to
a position. By sending the pass message the team is informed that the goalie
is indeed going to kick the ball away now. Another important situation where
an agent emits a pass message is when a situation is considered defensive and
opponents are close to the player controlling the ball.

When the available stamina is low (our agents stay always above the stamina
limit which yields full recovery) and an opponent is close to the ball (this is a
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condition determined by a fuzzy rule), an agent emits the stamina low message.
For any team player that receives the message this strongly reduces the priority
of passing to the player who broadcasted it.

A player who intercepts a ball communicates his estimated interception point
to his team by the going to ball message. This information is useful first to avoid
other team members clustering around the ball and second for giving them the
opportunity to optimize their positioning.

A player which has just passed should not immediately request the ball back
again; this is a constellation which would be favoured by mainly reactive archi-
tectures as ours. Thus, after passing, the priority of requesting the ball back is
lowered for a certain time. This, however, does not affect however the respective
players behaviour: if there is danger that the ball would be lost, the player will
intercede and try to secure the ball, following the doctrine mentioned above.

5 Skills

The most important higher skills available to our agents are compound kicking,
intercepting, dribbling and prepare kick-in. Compound kicking includes all types
of kick combinations which allow a player in reach of the ball to kick it, given a
position and velocity, to some other given position and velocity (if possible). As
intercepting and dribbling it may include a combination of kick and move com-
mands to realize the desired effect. Our agent design has a strong emphasis on
reactive behaviour. The mentioned compound skills, however, require processes
that take place during a larger number of time steps. So, one of the most im-
portant aspects of our skill design is the realization of pseudo-multithreads. On
the one side this yields the possibility to carry out compound actions for several
time steps in a consistent way. On the other side the agents are able to interrupt
a running action to either choose a different one if the situation requires a policy
change or to adjust a currently running compound action.

The pseudo-multithread concept works the following way: every time step
the agent considers to perform some action according to its strategy. When the
agent calls a compound skill method, this calls an elementary action (like e.g.
kick, turn, dash). The skill then returns a status value indicating whether: 1. the
action was completed by the current call, 2. whether it requires further calls
to be completed or 3. whether it is not possible at all to perform this action.
In case 1, the skill called in the next time step can be chosen independently
from the current step. In case 2, the status value indicates that the skill method
has to be called again in the next time steps for the action to be complete. It
also gives a reason which can be wait (e.g. if player intercepting a ball has not
reached its target yet), collision which indicates that an intermediate step has
been taken to avoid a collision of player and ball or placing which indicates that
the intermediate step serves to place the ball or agent at a position useful for
later kicking.

Due to this mechanism the skills always return control to the agent strategy
level. This, in turn, may consider either performing an action thread until it is
completed or interrupting it, as considered useful. On a collision/placing return
status, it is usually a disadvantage to interrupt the action thread. In these cases
the intermediate states may leave the ball at a position which are only adequate
in a predetermined sequence of actions. For the new action sequence this position
may be inconvenient.
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The compound kick skill in the current version consists of a sophisticated
hand-optimized sequence of ball kicks which can not be described in detail here.
It attempts to perform a kick that will — from a given ball position and velocity
— kick the ball to a given ball velocity in the smallest possible number of kicks.
The dribbling uses a variant of the compound kick skill to kick the ball some
steps ahead and follow it. It is possible to specify the average number of time
steps that the player is dashing before he emits a kick. The higher this number
is, the less contact the player has with the ball. It is also possible to specify a
preferred direction with respect to the player where the ball is supposed to be
kept.

6 Strategy

The strategy is behaviour oriented, i.e. communication is useful but not necessary
for the capability of teamplay. Fuzzy predicates characterize a given situation.
The predicates are then combined with fuzzy rules resulting in the respective
action choice. If an agent controls the ball, it estimates the situation, i.e. the pres-
sure by opponents, the support by team members and its own stamina state.
Depending on these parameters, it will try to move the ball ahead in the field
(preferably at the wings) and to kick the ball towards the centre near the op-
ponent goal. Opponent pressure or low stamina will increase its priority to pass
the ball.

If the players do not have the ball, their action is determined in part by their
role (giving a preference position), in part by the current situation. A player
whose responsibility (a fuzzy predicate) for the ball is high will dash to the ball.
If his responsibility is low he will try to acquire a good position (e.g. a position
giving a good opportunity for passes by a partner). If opponent players are close
to the ball, players will feel responsible more easily, so that more agents will try
to intercept the ball.

7 Special Team Features

In the current stage no parts developed via machine learning methods are used.
Neither are opponent models used. After completion of the server communi-
cation and world model modules several independent lines of development for
the strategy were taken while the agent skills module was optimized in parallel.
About three weeks before the tournament a decision was taken in favour of one
of the strategy development lines to be used in the official agent team. Strate-
gical ideas from the other lines of development were then incorporated in the
main line.

8 Future Work

The agent team presented here has been developed in such a way to consider the
needs of a large developer group; it includes clear and well-documented module
interfaces, in particular of world model and skills. This makes it amenable for
further development and a participation at RoboCup 2000 is envisaged. Relevant
aspects of our future work include the improvement of ball control and the
positioning tactics via machine learning techniques.
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Kouichi Nakagawa,Noriaki Asai,Nobuhiro Ito,Xiaoyong Du, and Naohiro Ishii

Department of Intelligence and Computer Science,Nagoya Institute of Technology,

Gokiso-cho,Showa-ku,Nagoya 466,JAPAN

kouichi@egg.ics.nitech.ac.jp

1 Introduction

Since the o�side rule was adopted in RoboCup-98, many teams without team-

work ability got o�side penalty many times in their matches. Those teams who

have dribble skill won, because most of other teams have not e�cient defence

strategy.

Our team focuses on a special teamwork strategy called line defence to against

the o�side rule. We use some basic teamwork abilities for implementing the line

defence.

2 Team Development

Team Leader: Kouichi Nakagawa

Team Members:

Nobuhiro Ito

{ Nagoya Institute of Technology

{ Japan

{ Research Associate

Kouichi Nakagawa

{ Nagoya Institute of Technology

{ Japan

{ graduate student

3 Communication

When the ball is being close to a defender, the other defender should notify the

defender that the ball is coming. It is also used by the player who is close to

the ball to tell the other players the location of the ball. In addition, each player

broadcast his position at regular intervals. This ability is helpful for passing the

ball from a defender to a mid�elder and catching the ball from the opponent

o�ence.
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4 Strategy

The o�side rule makes the soccer agents have to consider new o�ensive strategies
and new defensive strategies.

The line defence is an e�cient defensive strategy which means that a group
of defenders locate at a line (called o�side-line) paralleled with the bottom line
between the goal and the ball. we consider some ability to implement line defence.

Each defender has a home position. Usually, each defender keeps at his home
position if the ball is not close to. The home position of each defender is changed
dynamically depending on the position of the ball. We call the behavior of an
agent to move back to its home position area as positioning. This ability is a
necessity for the line defence.

Since the home positions of defenders are possibly overlaped, it is possible
that a player comes into a collision with others. Moreover, a player chasing the
ball may collide with the backbone of the player dribbling the ball. Hence, agents
need an ability to avoid collision with others. This special behaviour is called
avoiding.

Each defender should pay attention to the opponent players who are close to
the o�side-line,because it may break through the o�side-line with the ball. That
is the most dangerous situation. The defender should move to the cross point of
the o�side-line and the line connects one of the opponent player and the goal(see
Fig.1). We call the behavior of the agent to move to that cross point as marking.

Without this ability of marking, the o�side-line is possibly broken through
by opponent players who have a dribble skill.

 BallDF

DF

DF

DF
DF

GK

MF

MF

GK

MF

 Offside Line

Line Difence

Gallie

Defender

Midfielder

Fig. 1. Marking
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The defence line varys with the position of the ball. When the ball is in the

�eld of opponent side, the line is up. Otherwise, the line is down.

5 Conclusion

The line defence is e�cient strategy against a team which using a simple pass

strategy. But now, some teams have a practical dribble skill which is speedy and

controllable. So our line defence strategy is not e�cient against these teams. In

this case, a sweeper is useful in real soccer.

We plan to vary a defence formation by modeling opponent team and using

online lerning.
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Oulu 99

Jarkko Kemppainen et al.

University of Oulu, Finland

1 Introduction

Oulu99 team was formed by students of University of Oulu, Finland as a part
of student’s Software Project course. Entire software was designed and written
from scratch, even though there was source code available from previous Oulu
teams. as a result, Oulu99 finished on 13th place in Robocup’99.

2 Team Development

Team Leader: Jarkko Kemppainen
Team Members:

Mr. Jarkko Kemppainen
– University of Oulu, Finland
– graduate student
– attended the competition

Mr. Jouko Kylmäoja
– University of Oulu, Finland
– graduate student
– attended the competition

Mr. Janne Räsänen
– University of Oulu, Finland
– graduate student
– attended the competition

Mr. Ville Voutilainen
– University of Oulu, Finland
– graduate student
– attended the competition

Web page http://ee.oulu.fi/˜mysti/robocup

3 World Model

Clients had two coordinate systems:

– Absolute coordinates, where 0,0 is in the middle of own goal, and angle 0 is
from own goal to opponent goal.

– Relative coordinates, where 0,0 is the player position, and angle 0 is directly
forward from players body position.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 611−613, 2000.
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All objects had speed vectors which are estimated to any point of time in
past or in future.

Client had a memory of estimated position for each object in the field and up-
dated this information when sensory information arrived. Otherwise the position
was estimated and the probability of this information decreased as a function of
time.

Ball position and referee calls played most important part in determining
the current world state. Clients had different behaviourial modes depending on
current play mode.

For shooting purposes, a special module calculated optimum shoot paths
from own position, ball position and enemy player positions. Also, enemy goal
posts played an important role in this algorithm.

To achive the most efficient learning of Soccer Server system, Team Oulu99
did not use any of the available source codes or libraries.

4 Communication

Players marked the free ball by applying movement towards it. This was a signal
to other clients but one to ignore the ball. By this algorithm, ball catcher and
backup player were deployed.

5 Skills

Clients had several different moving modes:

– Move with ball
– Move without ball
– Stay between two objects
– Shoot to point
– Shoot to goal
– Catch ball (goalie)

Dribble was used only when turning, it was not used for protecting the posession.

6 Strategy

High level strategy was fast point-to-point passing. Each client had a weighted
position depending on ball position and play mode. All clients knew all other
clients’ should-be-position and could give blind passes to these coordinates.

7 Special Team Features

Team Oulu99 used different approach to determining own position than most of
the other teams. Position was determined from all seen flags using distance as a
weight of reliability. With extensive testing optimum values were found and the
position determination was very accurate. It was also very unsensitive to noise
and view blocking objects.
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8 Conclusion

The final result, 13th, was very inspiring for the whole team and our sponsors,
University of Oulu, Finland. We wish to thank Jukka Riekki, our inspirator.
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Shahriar Pourazin

Computer Engineering Department,
AmirKabir University of Technology, Tehran, IRAN

Tel: +(9821) 6419411, Fax: +(9821) 6413969
pourazin@ce.aku.ac.ir

1 Introduction

Pardis, was one of the entries in RoboCup-99, simulation league. It had
a optimistic timing in communication with the server. And lost most of the
cycles in the real league, because of relying on the enough network bandwidth.
So unfortunately it had chance to be only in the �rst round robin. It used an
experimental model, consisting of �nite set of categories for each player. Each
softbot in Pardis team, was a player acting as designed in a speci�c category.
The coach had the ability to map each player in the opponent team with one of
the same categories. It dynamically changed the characteristics (category) of the
facing teammate to be e�ective against the analyzed opponent player. Although
in the real league, there was no chance to see the use of the coach and it was
never activated. The players read their behavioral con�guration once at the start
of the game and kept playing that way.

2 Team Development

Pardis was the result of 9 man-month development e�ort, mostly done by three
people, the team leader and two undergraduate students.

Team Leader: Shahriar Pourazin
Team Members:

Ali Ajdari Rad

{ team member, coding and representation of categories
{ IRAN
{ undergraduate student
{ attended the competition

Houman Atashbar

{ team member, coded the low level parts, communication etc.
{ IRAN
{ undergraduate student
{ attended the competition

Web page http://www.pnu.ac.ir/~ pourazin/rc99
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3 World Model

The spatial model of the �eld consisted of separated squares making some
regions. Players had patterns which described their behavior in each region. Ac-
cording to (say) their distance to the opponent's goal, they selected their action
among the choices to pass, dribble, kick, etc. The more the player approached to
the opponent's goal, the more eager it would become to kick to goal. The desire
to kick, dribble, pass and other actions, had been stored as fuzzy values in an
array called the desire array. Having no ball, near our own goalie, the player had
to notice the ball and kick it away, and at the middle regions, it keeps trying not
to let opponents receive any pass and if gets the ball passes it to teammates.

The real calculations on the array of fuzzy values for actions, depended on
the exact region the player is in, the result of the game so far, the Boolean ag
indicating that the player has the ball, and the position of other players. The
player will do the action with the highest value.

All the codes were written in C++ from the scratch without any use of
external prewritten libraries such as libsclient.

4 Communication

We had designed a method for message passing between players, by doing
some special actions in front of the teammate, e.g., if the player does four 45
degree turns each one in the opposite direction of the previous, means that,
received ball will be sent back soon. This mechanism was designed to reduce the
SAY messages, but we had no chance to see its e�ect in the quali�cation of teams
when no SAY is possible. They were supposed to receive from the coach some
information (making the inter-player messages unnecessary), and also commands
(to change their desire array).

5 Skills

Pardis has the goalie, as the player which receives the number one. It is di�erent
from the other players, such that, has no desire to take the ball toward opponent's
goal, etc. It stays near the goal, uses fast moves when has the ball and the
opponents are near the goal. So the goalie has no special di�erence in structure.
All it has, is a di�erent desire array.

6 Special Team Features

The players were designed to be as single threaded processes (i.e. no parallel
processing in the players). The coach had to have a huge parallelism. It should
have a plenty of models instead of each opponent, looking which model plays
the same as the real opponent. This lets the coach determine the characteristics
of the opponent player.
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7 Conclusion

Our approach to opponent modeling had a severe assumption that the roles
of the players in the opponent team are static or at least not rapidly changing.
The unstructured program was not suitable for maintenance. That's why we had
no chance to come up with the slow network in Stockholm. So the right thing
to do is, throwing away the code and writing a new structured one.

After analyzing the timing of the whole system, we learned that working
with the server could be very complicated. Even in the case that the server
remains unchanged, the e�ect(s) of the networking problems could not be eas-
ily predicted. So how could we start our work? Is it necessary to think of all
anomalies in all of our processes?
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Fig. 1. The timing of an exchanged packet.

The answer could be found in the isolation of the anomalies. To do so
we have to design a layered architecture for our next generation player. The
structure has four layers: (1) Sense/Control Layer, (2) Synchronization Layer, (3)
Task Management Layer and (4) Planning layer from bottom to top. The lowest
layer (SCL) is to be modi�ed to let us use upper layers in other leagues (F2000,
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F180 or Legged). SL is to isolate the timing anomalies from the upper layers.
TML is to translate abstract plans (of PL) into strings of smaller activities. This
approach lets us, try to work on the (say) intelligent part of our player without
being mixed up with unreliable data. Anyone who wants the corrupted data in
the PL, could modify SL later. Figure 1 shows the four layers, receiving packets
from server and sending back the responses. It is also shown that the response
should be in the D interval. The grayed arrows stand for predicted packets. Tp
should be large enough to shift the gray arrows to the left, making the player on
time. Now we are working on the knowledge representation in the PL and the
dynamic estimation of Tp.
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PaSo-Team'99

Carlo Ferrari, Francesco Garelli, Enrico Pagello

Department of Electronics and Informatics, The University of Padua, Italy
Via Gradenigo 6a. I-35131 Padova, Italy

{carlo,pascal,epv}@dei.unipd.it

Abstract. PaSo-Team is a Multi-Agent system for playing soccer game in the
Simulation League of the RoboCup competition. This paper describes the ideas
and the technical structure of  PaSo-TeamÕ99, that played at RoboCup-99, in
Stockholm during IJCAIÕ99. The main goal of the 1999 project was about the
integration of a reactive model with some kind of high-level reasoning.
Obstacle avoidance and motion reasoning are encapsulated at the behavior
level. They  use a proper world model (built from the sensed data), that focus
on the relevant objects.  The choice&evaluate problem is performed  through an
utility function over a proper coding of the prototypical game arrangements.

1. Introduction

Following the experiences done in 1997, and 1998 competitions, [2], [3], it has been
developed the '99 release of PaSo-Team  (The University of PAdua Simulated Robot
SOccer Team), namely PaSo-Team'99. The PaSo-Team project has been  conceived
as a Multi-Agent System that must be able to play soccer game. While maintaining its
historical origins of being a multi-agent reactive software architecture based on
BrooksÕ Subsumption Architecture, PaSo-Team'99 tries to overcome the major
limitations of pure reactive systems, introducing a more abstract level of learning and
reasoning used to proper differentiate the current behaviour of the various component
agents  of the system, according to the actual phase of the game.

One of the big scientific challenge of this project, is to resolve a dilemma between
two basic paradigms that mark the past and current history of Artificial Intelligence
and Robotics, i.e. planning vs. reaction. The experience done at previous competitions
seems to confirm the better quality of reactive-based systems, for soccer games. But it
also demonstrated that a pure reactive schema suffers some major problems. In fact, it
must be considered that the player is not alone in the environment. Thus, the agent
cannot be recommended to execute only pure lowest-level reactive actions, due to the
presence of obstacles such as other players, (team-mates or opponents) that surely
interfere with the development of its strategy to score the goal. Then, obstacle
avoidance routines against the opponents agents, and cooperative routines to get
collaboration with the team-mates, are necessary. In the current project the emphasis
is about finding a good balance between reaction and reasoning in the design of a
player.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 618−622, 2000.
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2. Team Development

Team Leader: Enrico Pagello (Associate Professor of Computer Science)
epv@dei.unipd.it

Dept. of Electronics and Informatics, The University of Padua,
Via Gradenigo 6a, 35131 Padua, Italy
and
Institute LADSEB of CNR, C.so Stati Uniti 4, 35100 Padua, Italy,

Team Member: Carlo Ferrari  (Assistant Professor of Computer Science)
Francesco Garelli  (Undergraduate Student)
Stefano Griggio  (Undergraduate Student)
Andrea Sivieri  (Undergraduate Student)

Dept. of Electronics and Informatics, The University of Padua,
Via Gradenigo 6a, 35131 Padua, Italy and

 {carlo, pascal, btenia, tigre}@dei.unipd.it

WEB page: http://www.dei.unipd.it/~robocup

3. The World Model

Complex data fusion procedures do not help reaction because their major role is to
build a (maybe local) world model that represent a situation in a more compact form
and with a focus on some aspects that are dependent from the actual task. Moreover,
the continuos updating of the world model can be better performed if the validity of
the acquired information can be maintained along more than one  sensing cycle,
trying to compute the evolution over time of the model itself. In simulated soccer
game, each player is given with different information about its team-mate and
opponents, as well as about ball dynamics and about the game field. Because of the
nature of the problem (a team game), each single player cannot move simply reacting
from raw positions and velocities information of the opponent players (like in a
cat&mouse play), both because the presence of its team-mates can produce a variety
of physical arrangements that it is real hard to classify, and also because its global
attitude can switch very quickly from being a defender or an attacker. Moreover its
focus of attention can change as well. In fact a player that has the ball maybe want to
defend it against one ore more opponent or it want to drop it in the adversary net.
Run-time motion planning and reasoning is the main intelligent activity at an
intermediate level, for a single player. This activity is greatly based on obstacle
avoidance that becomes a primary tasks in the most game situations. As obstacle
avoidance is a primary task, the player world model must easily support a fast kind of
obstacle avoidance reasoning. Moreover we want a model that can be produced and
updated in a standard way, and that it is applicable in all the game situations

With this major requirements in mind, we developed a model that we call the SVM
model, where SVM stands for Synthetic Visual Maps. SVM are a concise
representation of the free space around the player. The SVM maps each movement
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direction of the player with a boolean value that says whether that direction is free or
prohibited. Only the nearest elements are considered while building the SVM. In fact
the influence on a SVM due to a game element (team-mate, opponent or field
element) becomes as less important as its distance of the element itself is increasing.
The SVM can be seen as a polar representation of the free space in a proper disk
centered in the player. This representation can be easily updated at each sensing
cycle, in order to consider new game elements that become important, either because
they are moving towards the player or because the player itself is moving towards
them. The SVM are computed from the sensed position of those game elements, that
are directly reachable from the current player position. These elements form the in-
focus  set. The SVM for a single player is obtained as a composition of the SVM due
to each element in the in-focus  set. While building a SVM it is possible to explicitly
take into account some correction factors that can enlarge the actual dimensions of an
opponent player, in order to be able to make a choice about the movement direction
that shows to be robust in spite of all the possible movement of the opponent player
itself. Figure a,b and c show how to use the SVM for a dribbling action.

4. Communication

In the current PaSo-Team project we  confirmed the idea of not  realizing the
coordination via explicit communication. In [4], it has been shown how it is possible
to obtain an appropriate global team behaviour, via implicit communication., for a
generic multirobot system. With implicit communication the agents can communicate
looking at the current status of the environment. The interpretation procedure has
been tuned to measure how the team is carrying its global task.

5. Skills

In PaSo-TeamÕ99 we developed in C++ language, a single program that contains the
features of all kind of players. This is because the simulation context is different from
real soccer, where the human players have different physical abilities. In our team all
the players are clones of a prototype player. The only thing that distinguishes one
player from another is the role, that slightly makes changes in its reasoning strategy.
The technical structure of each player is based on encapsulating the interface with the
Soccerserver, and to represent the different player capabilities at different levels of
abstraction. At the lowest level the PaSo-Team'99 clients act via B-Actions (Basic-
Action), that code the information to be sent to the Soccerserver. A proper "talker''
module is devoted to explicitly send information to the server, using the information
prepared by the B-Actions.

B-Actions form a catalogue of primitives that can be used to model a kind of more
complex action: the Skills.  Skills are used to model atomic actions, like kicking the
ball or looking around. Using Skill and B-Action let possible to separate the logical
capabilities of a player from its particular implementation due to  a specific server.
Information from the server are handled by the "listener" module. The listener module
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solves the synchronization problem with the server and it receives the data items
related to the game development. The data interpretation activity is devoted to a
"parser" module, that can update the player local status, that is, the player "memory".
The memory module is used as a data container able to answer to every request from
the higher reasoning level modules. Among these modules there are the behaviour
modules  (or simply Behaviours). They realize the intelligent manoeuvring of a
player, according to the different game situations. Behaviours  are coded using Skills,
and they also compute the SVM for motion reasoning. Some typical behaviours are
devoted to control the dribbling, or to stop an opponent player, or to kick the ball
away.

6. Strategy

While playing, every player can activate a particular behaviour (its running
behaviour) at a time, and, usually, all the player of a team do not have the same
running behaviour. In this way it is possible to have a global team emergent
behaviour, that it is due to the compound effects of all the players behaviours. In the
current approach, the PaSo-Team player do not code explicitly the coordination
procedures for obtaining complementary actions, that arise, instead, because of a
proper interpretation of the perceptions sent by the soccerserver. The high level
reasoning is devoted to select the proper behaviour, that becomes the running
behaviour. This kind of reasoning requires to solve a two-fold problem: the
choice&evaluate problem.

At each game cycle each player must either confirm its running behaviour or
decide to change it with another one that looks more appropriate to the game
development. Moreover, it should maintain and update the evaluation of its past
behaviour choices, with respect to the different game situations. Recognizing failures,
and learning from them is a key point for high level reasoning. So far, the
choice&evaluate problem is solved first looking for the most promising behaviour,
that is, the behaviour that maximize an utility function over a proper coding of the
game situations, and then updating this utility function measuring how good the
behaviour has been in reaching its goal.

7. Conclusions

In the PaSo-Team'99 project we experimentally investigate how much the reaction
schema for intelligent agents team must be integrated with some kind of high level
reasoning. In PaSo-Team'99, sensed data are used in the decision process after they
are filtered through a proper mechanism (the Synthetic Visual Maps), that builds a
world model  to support fast and efficient procedure for motion planning. Obstacle
avoidance and motion reasoning are encapsulated at the behaviour level, while higher
levels deal with decision and learning. The choice&evaluate problem is performed
separately by each player, using an utility function over a proper coding of the game
situations
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Alexander N. Kozhushkin

Program Systems Institute of Russian Academy of Sciences

1 Introduction

Our team { PSI was developed at Program Systems Institute of Russian Academy
of Science. This paper is a short description of the dynamical re�nement planning
method that we use to construct our software agents.

Basic skills and roles of every agent are presented by means of the set of ele-
mentary plans. The purpose of the planning process is to compose the extended
plan de�ning the behaviour of the agent from elementary ones.

The planning system (or just a planner), built in the agent, modi�es extended
plans depending on external conditions and the internal state of the agent. It
adds new elementary plans to the extended one re�ning it and controls the
execution of elementary plans in a body of the extended plan. Namely, planner
can temporarily suspend (interrupt) execution of some elementary plan in favor
of another one or abort execution of the inappropriate elementary plan. For
its work planning system uses the family of basic relations (interruptability,
priorities and plan levels) described below.

Although results of RoboCup'99 are not very well for the PSI team, we think
that our method proved to be exible and convenient for the programming the
complex behaviours of the agents working in the unpredictable environment.

2 Team Development

Team Leader: Alexander N. Kozhushkin
Team Members:

Alexander N. Kozhushkin

{ Program Systems Institute of Russian Academy of Sciences
{ Russia
{ Ph.D. student
{ did attend the competition

Alexei P. Lisitsa

{ Program Systems Institute of Russian Academy of Sciences
{ Russia
{ senior researcher
{ did not attend the competition

Web page http://www.botik.ru/�soccer/ANK.html
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3 Model of the planning system

Consider a model of the planning system built in each player. It is de�ned by the
discrete set of time moments T = f0; 1; 2; 3; :::g, a set O of elementary actions
which soccer server can execute, a set I of input (or external) states de�ned
by all possible values of data available from soccer server and the space 
 of
internal states of the player. I � T and O represent input information (input)
and actions (output) of the player, respectively. Play history, or just a play, from
the point of view of a player may be de�ned as a map H : T ! I � 
, where
H(t) consists of the information from soccer server and of the internal state of
the player at the moment t. Let B(i; !), C(i; !) be some logical conditions on
the set of full states I�
, � and  be some maps, � : I�
 ! 
,  : I�
 ! O.
De�ne elementary plan of the player as a tuple p =< B;C; �;  >, where B and
C are, respectively, its beginning and continuation conditions.

For our work we use some �xed �nite set of basic elementary plans �. De�ne
the family of subsets Di � �, i 2 f1; 2; :::; nlevg, where nlev > 1 the number of
the hierarchic levels, such that [iDi = � and Di \Dj 6= Di for i < j. For every
Di de�ne partial order relation Priori (priority). By means of plan hierarchic
levels introduce the binary interruptability relation Int de�ned on � � �, with
the constraint on it: Int(p; p0) ^ p 2 Di ) p0 2 Di+1. In the rest of the paper
we suppose that if the set � is de�ned then families fDig, fPriorig and the Int
relation are de�ned as well.

Explain the meaning of introduced notions. Each elementary plan from � is
designed to determine a skill or a role of the player or to solve a particular task.
For example, there are plans designed to solve the task of the ball interception,
overtaking another player and so on. Both B andC are applicability conditions of
the plan. But in practice these conditions are di�erent. The aim of the distinction
between them is a making behaviour of agents more robust and stable.

The family fDig i.e. plan levels determine the hierarchy on the plans. Levels
divide all plans into main and auxiliary ones. Note, that same plan can fall onto
di�erent levels. This is in agreement with the intuition that same skill can be
auxiliary to some main skill and, at the same time, auxiliary to another auxiliary
one. The interruptability relation presents the further re�nement concerning
which plan can be suspended temporarily (interrupted) in favour of another
one, auxiliary to it. The priority relations serve to resolve ambiguities in the
cases when several elementary plans can be applied to the current situation.
Thus fPriorig relations play the role of evaluation functions.

For every time t of the playH there are two elementary plan subsets Appt
H =

fp 2 �j j= Bp(H(t)) and Cont
H = fp 2 �j j= Cp(H(t))g of � whose beginning

and continuation conditions are satis�ed at the moment t, respectively. We would
like to name the set Appt

H as a set of applicable and Cont
H as a set of executable

elementary plans.
Suppose that the set � is de�ned, we build its extension �� by the following

rules:
(i) � � ��;
(ii) if p =< Bp; Cp; �p;  p >2 �

� then plan < Cp; Cp; �p;  p > is in ��;
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(iii) if p =< Bp; Cp; �p;  p >2 �
� and p0 =< Bp0 ; Cp0; �p0 ;  p0 >2 �

� then plan

< Bp ^ Cp0 ; Cp ^ Cp0 ; �p(i; �p0(i; !));  p > is in ��, where i 2 I, ! 2 
.

Thus �� the set of all elementary plans which an agent can use, "tuning" the
basic ones to current conditions.

We de�ne extended plan P as a word of a plan language L in the alphabet
A = (��[f�g)�(�[f�g)�f0; : : : ; nlevg. We use the symbol "�" as a abbreviation
of the (�; �; 0). L is de�ned by the next rules (where Q, Q1 are letter sequences
without "�", possibly empty):

1. � 2 L;

2. if Q� 2 L and p 2 D1, then Q � (p; p; 1) 2 L;

3. if Q � lQ1 2 L where l 2 � � �� � f0; : : : ; nlevg and p 2 �� then Ql �Q1 2 L;

4. if Q � (< B;C; �;  >; p; k)Q1 2 L, where

(< B;C; �;  >; p; k) 2 �� � � � f1; : : : ; nlevg, and there exists

< B0; C0; �0;  0 >2 fp0jInt(p; p0)g, then

Q (< B;C; �;  >; p; k)� (< B0 ^C;C0^C; �0(i; �(i; !));  0 >; p0; k+1) 2 L.

Every extended plan represents some play history and possible evolution of
the play history. The letters lying before "�" represent elementary plans, which
the agent has used in the past. The �rst elementary plan after "�" is a current
one, i.e. behaviour of the agent is determined by the  mapof this plan at present.
All other elementary plans are those which the agent is going to execute in the
future.

Introduce the notion of the planning function as a map F : L�2� �2� ! L.
We use the special kind of the planning function de�ned by the followingmanner.

Let functions f : A ! � [ f�g and g : A ! f0; : : : ; nlevg are projections,
P 2 L SB � �, SC � � and Q is a letter sequence without "�", possibly empty.
De�ne the planning function F , representing the step of our planning system
work, by the following clauses:

1. If P = Q� and there exist the largest element p 2 SB \D1 wrt the Prior1
relation, then F (P; SB; SC) = Q � (p; p; 1)

2. If following conditions hold:

a) P = Q � l1 : : : ln where l1 = (< B1; C1; �1;  1 >; p1; k1), n � 1;

b) for all i such that 1 � i � n, f(li) 2 SC and f(li) is the largest element of
the set (SB [ ff(li)g) \Dg(li) wrt the Priorg(li) relation;

c) there exists the largest element p =< B0; C 0; �0;  0 >2 fpjInt(p1; p)g\SB
wrt the Priork1+1 relation;

then F (P; SB; SC) = Ql1 � (< B0 ^ C1; C
0 ^ C1; �

0(i; �1(i; !));  0 >; p; k1 + 1)(<
C1; C1; �1;  1 >; p1; k1) : : : ln.

3. If P = Q � l1 : : : ln where l1 = (< B1; C1; �1;  1 >; p1; k1), n � 1 and there
exists i (1 � i � n) such that:

a) for all k such that i � k � n, f(lk) 2 SC and f(lk) is the largest element
of (SB [ ff(lk)g) \Dg(lk) wrt the Priorg(lk) relation;

b) if i 6= 1 then f(li�1) =2 SC or f(li�1) is not the largest element of (SB [
ff(li�1)g) \Dg(li�1 ) on the Priorg(li�1) relation;

then P = Q � l1 : : : li : : : ln. If such i does not exist, then P = Ql1 : : : ln�.
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4. For all other cases F (P; SB; SC) = P .

Consider arbitrary history H. For every moment t0 we can built the extended
plan by means of the rule: P (0) = �, P (t0+1) = F (P (t0); Appt0

H ; Cont0
H ). Thus,

for every time t extended plan can be built by applying consequently the planning
function to the initial plan �.

4 How the planning system does work.

Let us consider one illustrative example. We have the very simple player which
has only �ve basic elementary plans in the basic elementary plan set: (1) "Go
to the Ball" (p1 =< C1; C1; �1;  1 >) with the application condition "I see
the Ball and I do not possess the Ball", (2) "Intercept of the resting Ball"
(p2 =< C2; C2; �2;  2 >) { "I see the ball and Speed of the Ball is not equal
to 0 and I can intercept the Ball before other players and I do not possess the
Ball", (3) "Intercept of the moving Ball" (p3 =< C3; C3; �3;  3 >) { "I see
the Ball and Speed of the Ball is not equal to 0 and I can intercept the Ball
before other players and I do not possess the Ball", (4) "Overtaking" (p4 =<
C4; C4; �4;  4 >) { "There is a player which prevents to the movement", (5)
"Kick into the opponent Goal direction" (p5 =< C5; C5; �5;  5 >) { "I possess
the Ball". We suppose for the simplicity that Bi � Ci for every elementary plan.
This entails Appt

H = Cont
H for every moment of time. Thus the behaviour of

the agent is determined by such simple skills and the basic elementary plan set
{ � is fp1; p2; p3; p4; p5g.

There are two levels in the plan hierarchy: D1 = fp1; p2; p3; p5g and D2 =
fp4g. De�ne Int and Prior1 relations as sets of pairs:
fInt(p1; p4); Int(p2; p4); Int(p3; p4)g and fPrior1(p2; p1); P rior1(p3; p1)g, respe-
ctively. The Prior2 relation is obvious.

At the initial moment the agent behaviour is presented by the extended plan
P0 = �. Suppose that the motionless ball is far from the agent and there is
another player which can intercept the ball earlier. In this case App0

H = fp1g
and planner makes extended plan P1 = �(p1; p1; 1) by using rule (1) of the
planning function de�nition. At the time t1 our agent have seen the opponent
player on its way to the ball. Now Appt1

H = fp1; p4g and P1 will be transformed
to the plan (see rule (2)) P2 = (p1; p1; 1) � (p4�; p4; 2)(p1�; p1; 1).
Here, p1

� and p4
� are de�ned by rules (2) and (3) of the de�nition of ��, respec-

tively.
Consider two of the possible scenarios. The �rst { the agent overtakes the

opponent player successfully, but still can not intercept the ball before some
other player. In this case we have P3 = (p1; p1; 1)(p4�; p4; 2) � (p1�; p1; 1).

The second one: the agent believes that it can capture the ball before other
players. In this case Appt2

H = fp1; p2; p4g. The planning system transforms P2
into the extended plan P4 by the next two steps (see rules (3) and (1)):
P2

0 = F (P2; Appt2
H ; Appt2

H ) = (p1; p1; 1)(p4
�; p4; 2)(p1�; p1; 1)�,

P4 = F (P2
0; Appt2

H ; Appt2
H ) = (p1; p1; 1)(p4�; p4; 2)(p1�; p1; 1) � (p2; p2; 1).
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If the plan P4 completes successfully at the time t3, the agent captures the
ball. Then Appt3

H = fp5g and P4

0 = (p1; p1; 1)(p4
�; p4; 2)(p1

�; p1; 1)(p2; p2; 1)�.
P5 = (p1; p1; 1)(p4

�; p4; 2)(p1
�; p1; 1)(p2; p2; 1) � (p5; p5; 1).

5 Conclusion

Our approach is somewhat analogous to that presented in [1, 2], with one es-
sential di�erence: our planning system works on-line, and plans re�nements are
being made dynamically in case of need. More detailed comparisons deserve the
further investigations and are to be presented elsewhere. The further develop-
ment of the method itself and the more precise formulation of its essence is a
goal of further work.
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1 Introduction

The RoboCup scenario yields a variety of fields of research. The main goal of the
RoboLog project, undertaken at the University of Koblenz in Germany, is the specifica-
tion and implementation of flexible agents in a declarative manner. The agents should
be able to deal with the real-time requirements but also be capable of more complex be-
havior, including explicit teamwork. To this end, we develop a declarative multi-agent
script language for the specification of collective actions or intended plans that are ap-
plicable in certain situations. The agents should be able to recognize such situations by
means of qualitative spatial reasoning, possibly supported by communication.

Team Leader: Frieder Stolzenburg
Team Members:

Dr. Frieder Stolzenburg
– Universität Koblenz-Landau
– Germany
– Researcher
– attended the competition

Oliver Obst, Jan Murray
– Universität Koblenz-Landau
– Germany
– Master Students
– attended the competition

Björn Bremer, Michael Bruhn, and
Bodo van Laak

– Universität Koblenz-Landau
– Germany
– Master Students
– did not attend the competition

Web page: http://www.uni-
koblenz.de/ag-ki/ROBOCUP/

Fig. 1. The RoboLog Koblenz team.

The RoboLog team is based on an ar-
chitecture with four layers, where layer 1
deals with the synchronization with the
SoccerServer and realizes the low-level
skills. Layer 2 handles qualitative spa-
tial reasoning. More complex actions and
teamwork are realized in layers 3 and 4.
The focus of this paper is laid on the first
layer, especially on position determina-
tion (see Sect. 3). For a more detailed de-
scription of the higher layers see the paper
Spatial Agents Implemented in a Logical
Expressible Language in this volume.

At the RoboCup-99 competition
RoboLog Koblenz played in Group C in
the Simulator League. The team lost only
one match and managed to achieve a draw
in the other three. Unfortunately, this did
not suffice to enter the elimination round.
The match RoboLog Koblenz vs. IALP
(1–1) was the most interesting match we
played, in so far as it was the only drawn
match in the whole competition, that did
not end with a score of 0–0.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 628−631, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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2 Team Development

The RoboLog Koblenz players were implemented by a team of 3 to 5 people. Most
of them were students preparing their course work or diploma theses. We were able
to conduct several test games with different scores on our local network—a 100 MBit
Ethernet, sometimes using a Sun Ultra-Enterprise with 14 processors à 336 MHz and
3 GB main memory. Fig. 1 lists the team members of RoboLog Koblenz.

3 World Model

For each agent, the RoboLog interface—written in C++—requests the sensor data from
the SoccerServer. By this, the agents’ knowledge bases are updated periodically. If some
requested information about a certain object is currently not available (because it is not
visible at the moment), the most recent information can be used instead. Each agent
stores information about objects it has seen within the last 100 simulation steps. So we
can think of it as the agent’s memory or recollection. The passing of time can be mod-
eled in several ways with RoboLog. It provides various means for creating snapshots of
the world and defining an event-driven calculus upon them, translating the agent’s view
of the world into a propositional, qualitative representation in Prolog.

The RoboLog system provides an extensive library that makes precise position de-
termination possible. The whole procedure is able to work even when only few or incon-
sistent information is given. First of all, an agent has an egocentric view of the world.
The actual sensor data provide more or less precise information about the positions of
other agents, landmarks and border lines relative to the agent’s position and orientation.
The RoboCup scenario yields a frame of reference with absolute coordinates, given by
the geometry of the playing field. Knowing the absolute position allows the agent to
identify its own location wrt. other objects on the map, even if they are not visible at the
moment. Secondly, an absolute frame of reference is helpful in order to communicate
with other agents in situations where cooperative actions are appropriate.

j1 j2
j3

j2
j1

j3

Fig. 2. Self-localization by angle information.

The first localization
method in RoboLog—
introduced in [1]—
requires (only) three or
more directions to visible
landmarks relative to the
orientation of the agent
to be known. Provided
that at least three of them
and the position of the
agent neither form a circle
nor lie on a straight line, the absolute position and orientation of the agent can be
computed with a time complexity that is only linear in the number of landmarks. If the
corresponding equation system in complex numbers is over-determined, and the data is
noisy, the procedure estimates the position applying the least squares method. Without
reference to a third landmark, the actual position in question lies on a segment of a
circle. This is shown in Fig. 2.
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However, we also need procedures that are able to work, if only limited sensor
data is available. If less than three landmarks or border lines are visible, there are two
cases where the position of the agent is uniquely determined even then. Firstly, knowing
the distances and angles to two landmarks is sufficient. Secondly, the position can be
determined if the relative position of one landmark and of a point on a border line where
the center line of the view axis of the agent crosses this line is given, provided that both
points are not identical. In addition, by keeping track of the movements of the agent,
it is also possible to estimate the current position. All these methods are implemented
in the RoboLog module, in order to lay a solid quantitative basis for the qualitative
reasoning in the higher layers.

4 Communication

The RoboLog agents use communication in order to clarify situations. Very frequently
an agent is not able to recognize a situation or its own role therein, because of insuffi-
cient information. These drawbacks can be overcome by the use of communication. If
an agent recognizes a situation in which a multi-agent script can be executed, it sends
this fact to the others by communicating a Prolog predicate, that is executed by all
RoboLog agents receiving it. If this command turns out to be relevant for a player, i.e.
the agent has to take part in a collaborative action, it will be executed. Otherwise the
agent just ignores the message. For this communication to work the agents rely on the
fact, that their internal structure is the same, and more that they are all implemented
in Prolog. We use communication especially for initiating teamwork such as double
passing.

5 Skills

The RoboLog agents are equipped with several basic skills like dribbling or kicking to
a certain position (both programmed in Prolog). These skills are not very sophisticated,
which proved to be a disadvantage during the RoboCup-99 competition. All agents are
clones of each other except for the goalie, which we will now describe in greater detail.

The goalie’s main objects are to keep between the ball and the goal and not to lose
sight of the ball. Its behavior depends mainly on the movement and (qualitative) position
of the ball. The agent partitions the playing field into several regions, e.g. opponent half
or penalty area. Based on the region the ball is currently in and the extrapolation of its
trajectory, the goalie chooses a position to move to. It also takes into account, if the ball
is owned by the opponent team or in the middle of a shot. If the ball is in a shot, the
agent tries to intercept it, but otherwise it just blocks the way from the ball to the center
of the goal line. After any movement it turns its neck towards the expected position of
the ball, thus keeping it in sight.

6 Strategy

The underlying basic strategy of the RoboLog Koblenz team simply is moving towards
the opponent goal (possibly avoiding obstacles) and trying to score. If a RoboLog agent
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has the ball, it tries to recognize the current situation as one in which a (multi-)agent
script is applicable. In this case the script will be executed, yielding behaviors like
(double) passing. Otherwise the agent sticks to the default strategy until a script can be
applied.

When the other team has the ball, the players try getting it back in the following
manner. Each agent checks, if at least two team mates are nearer to the ball. If that
is not the case, it tries to intercept the ball. This “double attack” proved useful as it
prevents situations in which no agent goes to the ball due to sensor uncertainty. Players,
that are too far away to be involved, return to their special home positions.

7 Special Team Features

The RoboLog Koblenz agents make use of explicit teamwork during a game. In many
other teams multi-agent cooperation emerges just as a consequence of the behaviors
of the single agent. RoboLog agents, however, actively try participating in collabora-
tive behavior specified in a multi-agent script language. The agents explicitly make use
of communication to tell other players to take part in a collective action. A more de-
tailed description of the multi-agent language can be found in the paper Spatial Agents
Implemented in a Logical Expressible Language in this volume.

8 Conclusion

The RoboLog system provides a clean means for programming soccer agents declara-
tively. Cooperative Behavior can be modelled explicitly by means of multi-agent scripts.
A qualitative spatial representation allows agents to classify and abstract over situa-
tions. However, the imperfection of the low-level skills turned out to be a major dis-
advantage of RoboLog Koblenz. The current approach only allows to react ad hoc to
external events or interrupts. Future work therefore includes reimplementing a part of
the RoboLog interface in order to enhance the basic skills as well as extending them by
a number of additional abilities.

Promising areas of further research are the specification of a more sophisticated
communication paradigm and the use of logical mechanisms within the lower levels of
our approach. Deduction could be used to build a more complete view of the agent’s
world. In addition, the robustness of the decision process can be improved by means of
defeasible reasoning and the use of any-time reasoning formalisms. The application of
these techniques to real robots is one of the next steps of our research activities.
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Abstract. This paper describes the research in a new Rogi Team conceived by
simulation in Java.  It is a development of ideas for rational agents that co-
operate and use revision of exchanged information and consensus techniques.

1 Introduction

This research is implemented in JAVA.  Next it will be applied to real platform of
robots and especially to the 11x11-soccer server.  A type of rational agents is imple-
mented by techniques inspired from consensus techniques [Chi 92] and according to
new trends of agents research [Jennings 98] for emergent co-operation design.

2 Rational Agents

2.1 Reactive Decisions

In a first step of reasoning, every agent decides a private action.  This first decision is
considered a BELIEF of the Agent0 language [Shoham 93]. This belief depends on
local environment configuration defined by two parameters: distance player-ball
(DPB), and distance player-goal (DPG). The belief contains a degree of certainty.

 “Fig. 1a” shows an example of configurations of robots and the ball in the field.
Decisions are SHOOT at ‘Zone 1’, GET at ‘Zone 2’, and FORW or BACK at default
‘Zone 3’ depending on DPG value.  Thus, reactive reasoning is the following rule:

BEL ( AgentX, DPB, ZONE2 ) �
INFORM ( to_any_agent, AgentX, SHOOT, 0.8 )

Similarly, at ‘Zone 3’ in point ‘M’ (see “Fig. 1b”), reasoning would be the following:

BEL ( AgentX, DPB, ZONE3 ) � BEL ( AgentX, DPG,FAR ) �
INFORM ( to_any_agent, AgentX, FORW, certainty )

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 632−637, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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where ‘certainty’ is a value obtained by fuzzy inference by operating the certainties of
ZONE3 � FAR  Agents communicate their beliefs (INFORM in terms of AGENT0
language) to the playmates.  Thus reactive reasoning creates rough intentions.

Fig. 1: Reactive beliefs of agents by fuzzy sets (a) DPB, (b) both DPB and DPG variables

2.2 Rational (Co-operative) Decisions

Rational reasoning in the sense of [Busetta 99] is implemented by communicating the
former reactive beliefs.  It begins with a REQUEST (a communication) action, so that
every agent can know the beliefs set that contains the reactive belief, the certainty of
this belief and the identification of the player (reactive_belief, certainty, ID_player)
of all other playmates. Therefore, when two playmates realise they have conflictive
beliefs then the certainty of their beliefs is taken into account and one of the play-
mates changes its mind by reconsidering its former reactive beliefs.

“Fig. 2” shows a situation where both Agent1 and Agent2 belief they can GET the
ball. After REQUEST each other, Agent1 will change its belief because its DPB pa-
rameter brings lower certainty than those obtained by Agent2.

Fig. 2 Example of rational decision

Note that the exchange of beliefs and their certainties requires of revision [de la
Rosa 92a].  This means that the subjective certainties associated to beliefs that are
incoming from other agents have to be filtered (reviewed) at every agent.  This proc-
ess of revision is developed using extra knowledge about the co-operative world by
means of some perception of quality and reliability of mates and of oneself [de la
Rosa 92b, 93] [Acebo 98].  This reasoning procedure could be expressed as:

DPB1

DPB2

BEL(Agent1,GET,0.2)

BEL(Agent2,GET,0.7)

CO-OPERATIVE STEP

Agent1

BEL(Agent1,FORW, ? )
or

BEL(Agent1,BACK, ? )

Agent2

BEL(Agent2,GET,0.7)

Example: Both believe ‘GET’ but DPB1>DPB2

 REACTIVE STEP

Agent1

Agent2

3

2

1
DPB

 ZONE1

 ZONE2

 ZONE3

ZONE 1     ZONE2

DPB
0

1

Neigbourhood limitation

DPB = point ‘2’

PZONE2=0.8

Defense Goal

DPG

NEAR         FAR

DPG
0

1

Field limitation

Attack Goal

DPG=point ‘M’

PFAR=0.7

 M
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INFORM ( Agent2, Agent1, BEL ( Agent2, SHOOT, 0.7) ) � BEL (

Agent1, SHOOT, 0.2 ) �  BEL ( Agent1, SHOOT, f(0.7,0.2) )

where

In the example of figure 2 since f (c1, c2) = 0 then Agent1 will change its belief to
FORW or BACK action using the here described rules.

3 Implementation of the Team in the Javasoccer

COMMUNICATION of AGENTS’ BELIEFS.  When players already have their
reactive beliefs about possible actions to do, then this belief is communicated to the
playmates.  Next, every agent reviews the incoming certainty of the incoming beliefs.

3.1 Communication of beliefs

In the initialisation phase a broadcast communication channel is open. An Enumera-
tion object is used to send beliefs. This object has two attributes: one is a emitter
player’s identifier, and the second attribute is the belief and certainty to send.

Every player receives the beliefs from the others.  The incoming certainty of be-
liefs, certesa_company is reviewed by means of the following rules that contain the
perception of every agent of the community of agents in the co-operative world. This
is implemented in prestige and necessity rules.  This couple of parameters, defined as
follows, describes the perception of the co-operative world, that is the perception that
every agent has of the rest playmate agents:

The Prestige operator is implementable when using probabilistic Pij(M) = Pij * M, or
Sugeno’s Pij(M) = min (Pij , M) implementation of the and operator.

3.2 Conflicts

This is the set of conflicts that agents should solve by means of the rational decision.

Player \ Mate SHUT ATACK GO TO BALL CALL BACK

SHUT Conflict Conflict Conflict
ATACK Conflict Conflict Conflict
GO TO BALL Conflict Conflict Conflict Conflict
CALL BACK Conflict Conflict

¯
®
 !

 
otherwise  ,   c2    

c2c1  ,    0
c2)f(c1,

Prestige Pij of a System Si regarding Sj

Pij:[0, 1] o [0, 1]

M o Pij(M) = Pij � M

Necessity Nij of a System Si regarding Sj

Nij:[0, 1] o [0, 1]

M o Nij(M) = if M t TT then Nij � M else M
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Alternative possible actions ATURAR (stop), DEFENSAR (defence), COBRIR
(?), etc… aren’t conflictive in this example. In the case of no conflict then every
agent decides to convert the reactive belief into an action.

3.3 Rational decision implementation in Java

An algorithm called consensus [de la Rosa 92] [Chi 92] that recovers the perception
of the co-operative world develops the reviewing process.  The formulas are imple-
mented using probabilistic implementation of the and logical connective.

4 Methods for Changing Perception of the Co-operative World

Java implementations of our rational agents show trends of better behaviour of the
overall play of the teams, but there are still some lacks, as for example conflicts be-
tween defenders and goal keepers, are not properly solved.  Our improvement (nov-
elty) is to modify the perception of the co-operative world to make the consensus
algorithm more adaptive to changing environments: every agent modifies its percep-
tion of the co-operative world.  Two methods are proposed: (1) a positional method
and (2) a reinforcement method for winners in conflicts to increase persistence.

4.1 Method 1: positional method.

Players are specialised.  One possible effect of their specialisation is that they prefer
to stay in certain position in the playground.  Agents will take advantage of this fea-
ture and will modify their vision of the co-operative world by assigning the values of
prestige and necessity according to positions of players.

For example, the perception of the co-operative world from a forward-player could
be: ’I have big necessity of the middle-forward players and not much necessity of the
goal-keeper’.  However, this perception has to be completed by more information
according to the positions of the other playmates.  This is the assignment of the pres-
tige and necessity parameters:

a) The Necessity N is calculated as follows: ‘We have the more necessity of in-
formation provided by a playmate when the closer of his positional area we
are’. For instance, a forward-player that helps in defence will take into ac-
count more the beliefs of goalkeeper and defenders than of others and himself.

635Rational Agents by Reviewing Techniques
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b) The Prestige P is assigned as follows: ‘The more prestige I have when the
closer to my specific position I am’.  For example, a forward-player that is
waiting for the ball in its position has big prestige.

Results of the method 1 Collisions in decisions are reduced compared to non-
adaptive perception of the co-operative world but not eliminated.  Prestige is assigned
within the interval [0.5, 1] because every playmate deserves minimum credibility.
Necessities vary in the interval [0, 1] but normally are low. Here follows that the
behaviour of agents is as follows: when a player is far from the ball it will be passive
or conservative and when the ball is closer it will be more active and aggressive.

4.2 Method 2: a positional method with reinforcement of winners in conflicts.

Necessity
This is understood as the confidence any agent has on its own possibilities.  This is an
auto-perception. Necessity could be thought as the need of going to the ball an agent
has.  For example, if a defender sees the ball in the attack zone (in the opponent field)
then the necessity of this player could be very low because it is not its responsibility
to go to fetch the ball.   This necessity will be different depending upon the percep-
tion of the world that every agent contains because of its specialised view and role.

For example, necessity of going to the ball could be maximum (1) if the ball is
placed in the defence half field within the scope d distance from the origin.  Progres-
sively this necessity decreases towards the opponent half field till 0.

Prestige
Prestige is the perception of the co-operative world.  It is the confidence on other
playmates. Prestige that a player i is seen from a playmate j is based on using the
necessity that player j has of going to the ball.  This prestige, that it is initialised at a
random value (0.5), will change during the game at every conflict:

x The agent that has to modify its belief because of a conflict, and happens that its
reviewed certainty is lower than the reviewed certainty of the playmate.  We
write down the identifier of the playmate who won the conflict and its decision.

x At any moment again the agent has to modify its belief because of a conflict,
then it will consider whether the conflict is with the same previous playmate.  In

Middle
right

Middle
Left

DefenderGoal-
keeper Forward
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this case, if the conflict is solved in the same way as previously then reinforce-
ment learning will be used, to reinforce, by means of modifying the prestige, the
persistence of the rational decisions of the agents.

Results of method 2.  The improvement of this method is significative and highly
adaptive.  Almost collisions in terms of co-operative decisions are eliminated.

5 Results

x The exchange of beliefs and application of consensus algorithm for rational rea-
soning improved the performance of the team by reducing the collisions.

x The change of each agent’s perception of the co-operative world improved the
exchange of beliefs and minimised the number of collisions almost to null.

x Prototyped is in Javasoccer. An 11x11 official RoboCup soccer simulator will be
available this summer.

x The results of this research in Javasoccer are being applied to the real imple-
mentation of small-size RoboCup and FIRA robots and fields specifications.

(The results are downloadable from web page http://rogiteam.udg.es/robots/simulation.html)
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1 Introduction

The Ulm Sparrows RoboCup team was initiated in early 1998. Among the
goals of the team e�ort are to investigate methods for skill learning, adaptive
spatial modeling, and emergent multiagent cooperation [1]. We develop both a
middle-size robot league and a simulation league team. Based mostly on equip-
ment and technology available in our robot lab, we implemented a �rst version
of both teams for RoboCup-98 in order to gain practical experience in a ma-
jor tournament. Based on the these experiences, we made signi�cant progress
in our team e�ort in several areas: we designed new robot hardware, extended
our vision processing capabilities and implemented a revised and more complete
version of our soccer agent software architecture. In particular, we added Monte
Carlo localization techniques to our robots, enhanced environment modeling,
and started to apply reinforcement learning techniques to improve basic playing
skills.

These improvements allowed our simulation team to consistently beat the
quali�cation teams back home, e.g. the RoboCup-97 simulation champion AT
Humboldt. In the RoboCup-99 simulation tournament, however, we had two
very strong teams (the later champion CMUnited-99 and Headless Chickens)
in our group and su�ered some ugly defeats. Things went better for our robot
team, although we still had to debug various hardware and software problems
even during the tournament. In a middle size tournament with 20 teams playing
the preliminaries in three groups, we �nished second in our group and quali�ed
directly for the playo�s.We then lost in our quarter�nal match against the Italian
team, which advanced to the �nal and �nished second overall. Altogether, we
made substantial progress this year and laid a more solid foundation for future
team development.

2 Team Development

Team Leader: Gerhard Kraetzschmar
Team Members: (Graduate students are in a M.S. program.)

{ Stefan Sablatn�og, PhD student, simulation team coordinator

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 638−641, 2000.
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{ Stefan Enderle, PhD student, robot team coordinator

{ Mark Dettinger, Thomas Bo�, Mohammed Livani, all PhD students

{ Michael Dietz, technician

{ Jan Giebel, Urban Meis, Heiko Folkerts, Alexander Neubeck, Peter Scha-
e�er, Marcus Ritter, Hans Braxmeier, Dominik Maschke, all graduate
student students

{ Gerhard Kraetzschmar, research assistant professor

{ J�org Kaiser and G�unther Palm, professors.

Web page http://smart.informatik.uni-ulm.de/SPARROWS

3 Robots

For RoboCup-99, we designed a new, modular robot which currently consists
of �ve modules (see Figure 1): base, kicker, sonar, CPU, and camera. The lat-
ter four are common to all players. Only for the base module, which provides
mobility, di�erent designs are used for �eld players and the goalie: �eld players
have a standard di�erential drive, while the goalie has a special four-wheel drive
permitting very fast left/right movements.

CAN

MC

KC

SC

CPU

Fig. 1. A photo of the Sparrow 99 robot and a sketch of its hardware architecture.

MC=motor controller, KC=kicker controller, SC=sonar controller, CPU=PC104+

with PCI framegrabber.

The design of our computer hardware for the robots follows the smart de-
vice architecture approach. It fosters modular, distributed designs by bringing
computation closer to the data. We combine sensors and actuators with micro-
controllers. These smart sensors/actuators perform local computation on data
and thereby reduce communication and computation load on the central CPU.
These smart devices communicate via a CAN bus with each other and the main
CPU (see Figure 1). Modules can be connected using only four lines: two for
power supply, and two for the CAN bus.
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4 Software Architecture

We continued the implementation of a common soccer agent software architecture

[1] (see Fig. 2) for both the simulation and the real robot teams. This year we

situation /play
pattern associator

situation /play
pattern associator

situation /play
pattern associatorenvironment

modeling

sensor
interpretation

basic
behaviours

coherent
action

patterns

cooperative
action

patterns

behaviour

behaviour

arbiter

localization

physical layer

layer
reactive

deliberative
layer

real robot / agent

Fig. 2. The Ulm Sparrows soccer agent architecture

provided a C++ software library that allows to quickly implement and modify
the reactive layer of the architecture. It provides behavior and arbiter classes,
which are easy to instantiate and ensure safe execution of behaviors and arbiters
as parallel threads. A graphical policy editor can be used to specify temporal
sequences of behavior sets based on events and signals; it automatically generates
program code.

5 Perception

Our new robot hardware now permits us to grab frames faster and with higher
resolution.We extended our behavior-based vision architecture with line-detection
routines in addition to color blob trackers, and can now detect the ball, both
goals, and the corners quite robustly.

6 World Model

Our soccer agents apply multi-layered spatial representations for modeling the
environment. Currently, a two-layer approach that is derived and adapted from
theDynamo spatial representation architecture (see [2]) developed in the SMART
project is employed. The lower layer consists of an egocentric feature map repre-
sentation. Relevant features include position and distance of the ball, the goals,
and �eld landmarks. The egocentric representation is mainly used by low-level
behaviors for rapid action selection.

640 S. Sablatnög et al.
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The upper layer of the environment model is an allocentric spatial represen-
tation, which is constructed and maintained by integrating over time information
present in the egocentric representation.

7 Skills

As demonstrated very convincingly e.g. by CMUnited-98, it is absolutely neces-
sary to provide robust low level behaviours. Although behaviors can be hand-
crafted, this is a very tedious process that must possibly be redone every time
some system parameter changes. Such parameter changes have occurred almost
every year in both leagues we compete in, e.g. in the soccer server the size of
the physical agent and stamina model parameters have been changed, as well as
the �eld size and lighting conditions in the middle size league. All our behaviors
used in competitions so far have been hand-crafted, but we have started to apply
reinforcement learning techniques to this problem. Preliminary results are quite
encouraging and we will extent our e�orts in this area.

8 Strategy

Our decision to not use communication between players during games is quite
unique. We also focus on building strong individual players �rst before seriously
pursueing cooperative team play. Our approach builds upon strong situation as-
sessment capabilities and a broad reportoire of basic skills (behaviors). Decision
making is then the association and instantiation of the right set of behaviors
with particular situations. Cooperative team play will be a natural extension. If
it occurs, it will be emergent behavior, which arises when two or more players
independently of each other, but in temporal synchrony classify a game situation
and their role in it in a consistent manner.

9 Conclusions

The Ulm Sparrows team follows the lines of research set out in our initial
team description paper [1]. We have made substantial progress and performed
well in RoboCup-99. Our plans for the future focus on improving our software
in almost all areas, in particular for situation assessment and skill learning.
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UBU Team

Johan Kummeneje, David Lyb�ack, H�akan Younes, and Magnus Boman

The DECIDE Research Group, Department of Computer and Systems Sciences,

Stockholm University and the Royal Institute of Technology, Sweden

1 Introduction

The aim of developing UBU is to subject a series of tools and procedures for agent
decision support to a dynamic real-time domain. These tools and procedures have
previously been tested in various other domains, e.g., intelligent buildings [2]
and social simulations [6]. The harsh time constraints of RoboCup requires true
bounded rationality, however, as well as the development of anytime algorithms
not called for in less constrained domains (cf. [3]). Arti�cial decision makers are in
the AI and agent communities usually associated with planning and rational (as
in utility maximising) behaviour. We have instead argued for the coupling of the
reactive layer directly to decision support. A main hypothesis is that in dynamic
domains (such as RoboCup), time for updating plans is insu�cient. Basically
depending on the size requirements of agents, and on the communication facilities
available to the agents, we have placed decision support either in the agents, or
externally. In the former case, deliberation is made in a decision module. In
the latter case, a kind of external calculator which we have named pronouncer
provides rational action alternatives. The input to the pronouncer is decision
trees or inuence diagrams. The structure and size of these models are kept
small, to guarantee fast evaluation (cf. [7]). The pronouncer can be made into an
agent too, e.g., by using a wrapper. The coach function is particularly interesting
in this context, since it is \free" and since it could hold the pronouncer code.
An important problem here is the uncertainty and space constraints on the
communication with the coach. The concept of norms as constraints on agent
actions has also been investigated [1]. A team in which each boundedly rational
player maximises its individual expected utility does not yield the best possible
team: Group constraints on actions must be taken into account (see, e.g., [4]).
Norms is our way of letting the coalitions that an agent is part of play a part in
the deliberation of the agent.

The participation in RoboCup'99 was not successful as there were problems
with the server-timing. UBU was among the least successful teams, ending up
among the last in our group. It is not an issue whether we win or loose, it is for
the scienti�c results we are participating.

2 Team Development

The work has been done over a period of more than two years, with two di�erent
versions of the team. The current version is the product of the latter six months.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 642−645, 2000.
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Team Leader: Johan Kummeneje
Team Members:

Magnus Boman (Associate Professor)
David Lyb�ack (M.Sc.)
H�akan Younes (Graduate Student)

Web page http://www.dsv.su.se/~robocup

All of the team members are connected to the DECIDE research group, and all
attended RoboCup-99.

In addition, Johan Sikstr�om, Jens Andreasen, Helena �Aberg, and �Asa �Ahman
have made signi�cant contributions to the di�erent parts of the team.

3 World Model

Our players are always aware of the overall state of the game, according to the
referee's messages, by internally representing the last known state.

In addition to the states given by the referee, our agents also express a degree
of the certainty of their "belief" in that their team has the ball, i.e. they can
determine the state, and act accordingly when they have the ball. The referee's
messages in combination with the belief of having the ball, yields the situated
automaton shown in Fig. 1.

Fig. 1. The situated automaton of UBU.

The states consist of several options for what to do next, of which some are
reactive (reacting to referee messages mostly) and some are deliberative. The
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options determine the state transitions, and through the careful design a player
will never be "between" states.

We are not using the libsclient as we have developed the basic functionality
by ourselves.

4 Communication

The inter-agent communication in the team has been very limited, and is not of
any practical use yet. Each player has, however, built-in support for the commu-
nication of formation swapping, e.g., the team is able to change the formation
from 2-4-4 to 4-4-2 based on messages from the libero.

Every formation swap is propagated when the libero decides to change the
formation, and when a kicko� occurs.

5 Skills

The players are simple in their behaviour, as they do not make use of any special
skills. When intercepting the ball a player does not calculate an intersection with
the ball path. The player instead uses two rules to follow the ball. If the ball is
more than 5 degrees to the left or right of the center of the player's viewcone,
then turn to face the ball, else run straight forward. This works surprisingly well
in most situations.

As the players have a degree of obstacle avoidance built in they can usually,
by driving the ball in front of them, dribble past fairly simple opponents. We
have not spent a lot of time on creating or training the dribble-behaviour of the
team.

The goalie is in almost every aspect the same player as the rest of the team,
with the small di�erence of having the capability to catch the ball. The main
di�erence between the di�erent roles of the team (i.e., the goalkeeper, defenders,
mid�elders, and forwards) is a variable that controls the defensiveness of the
players.

6 Strategy

The foundation of our team is the idea that there is insu�cient time for planning,
and thereby the team does not in any way (yet) plan. We have instead used a
lot of decision situations in which we have identi�ed what is reasonable to do.
Extending the team, we will incorporate the concept of norms, i.e. mutually
agreed-upon constraints or heuristics, which each agent can decide to follow or
not. When possessing the ball, each agent has three distinct choices to perform,
pass, shoot at the goal, or dribble. This choice is made with respect to the
situation, i.e. the position of each player, and several other factors. When not
possessing the ball, the main task for each of the agent is to optimise its position
on the �eld in order to be able to intercept the ball easily or be close to their
home position.
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7 Special Team Features

Our main aim of developing UBU is to subject a series of tools and procedures for
agent decision support to a dynamic real-time domain. As stage, we use neither
machine learning, nor opponent modelling.

We have in our team created e�ective thread-scheduling, i.e. by having 10-15
threads running in each player every cycle. Besides the multi-threading we have
used several concepts inherent in Java, such as events and listeners. By using
standard components we have been able to create a exible and easily extensible
basic foundation to build higher level functionality upon [5].

8 Conclusion

During the summer of 2000 our team will enter both the European champi-
onships and the world cup. We will be working on the improvement of the
functionality of the team, and initiating several smaller projects in which we
will investigate the bene�ts of machine learning in our team. Besides the already
mentioned projects we will also incorporate concepts from the social sciences,
such as incentives for coalition formation, and norms.

References

1. Magnus Boman. Norms in arti�cial decision making. Arti�cial Intelligence and Law,

1999. 7:17-35.

2. Magnus Boman, Paul Davidsson, Nikolaos Skarmeas, Keith Clark, and Rune Gus-

tavsson. Energy saving and added customer value in intelligent buildings. In Hy-

acinth S. Nwana and Divine T. Ndumu, editors, Proceedings of PAAM98. The Prac-

tical Application Company, 1998. pages 505-516.

3. Magnus Boman, Paul Davidsson, and H�akan Younes. Arti�cial decision making

under uncertainty in intelligent buildings. In Proceedings of UAI'99, 1999.

4. Susan Kalenka and Nicholas R. Jennings. Socially responsible decision making by

autonomous agents. In Proceedings of the 5th International Colloquium on Cognitive

Science, 1997.

5. Johan Kummeneje, David Lyb�ack, and H�akan Younes. Ubu - an object-oriented

robocup team. Internal working note, Department of Computer and Systems Sci-

ences, Stockholm Univerisity and the Royal Institute of Technology, Sweden, 1999.

6. Harko Verhagen. On the learning of norms. Maamaw Poster.

7. H�akan Younes. Current tools for assisting intelligent agents in realtime decision

making. Master's thesis, Department of Computer and Systems Sciences, the Royal

Institute of Technology, 1998. DSV Report 98-x-073.

645UBU Team



www.manaraa.com

� � � � �

	 
 � 
 � � � � � � � � �

� � � �  ! " � # ! $ & ' $ " � * ! �  + , - � # , �
. / � 1 # - 2 �  3 - ! 4 $ & 5 6 � , !  $ 8 ' $ " " * # - , � ! - $ # 3 : . $ < 4 $ : = � � � #

> ? A B C D E F G B I D A

J K 
 L M M N O N Q 
 R � N � � R S � S 
 R T � S � U V � � � L W X N U N Y � Z � S T T N R � S R Q S R � L \ V ^ 
 U N R 
 M N R V _
` N K S Q S R a M � S � � � M N R V N d \ V ^ 
 U N R 
 M N R V � L X N U N Y � Z � � � � 
 ^ ^ N K 
 L O N L ^ V � 
 ^ d

 V S 
 R � 
 � Z 
 � � S O � � L T S M � S R S � S 
 R T � U S W 
 L _ 	 � S R S � S 
 R T � M � S \ S 
 M K � � T � K S

 � \ S O 
 M n R � M K 
 � o X S 
 ^ M � \ S a p � � M R � U � M � N L a 
 L O Y N N Z S R 
 M � N L o 
 L O � M K 
 � M � S

 Z Z R N 
 T � S � d R N \ M � R S S � � O S � _ 	 � S N � M ^ � L S N d M � S M S 
 \ � � O S � T R � U S O � L M � � � Z 
 Z S R

 R N � L O s N R ^ O t N O S ^ � L W K � � T � � � N � ^ O U S T 
 ^ ^ S O M � S R S � � ^ M N d o X S 
 ^ M � \ S 
 L O
p � � M R � U � M � N L o M � N � W � M M N � 
 Q S R S 
 T � S O 
 M 
 � M 
 L O 
 R O ^ S Q S ^ U V Z R S � S L M _

s S � L N K M � S S x S T M � � M � � L � L M � S W 
 � W S N d K � L L � L W U V M � S W 
 \ S S Q S L � d 
 L

 O Q 
 L T S O d � L T M � N L � � Z R N Q � O S O d N R M � S 
 W S L M K � N � 
 � M � S N Z S R 
 M � N L N d M � S � L T S R y
M 
 � L M V S z Z S R � S L T � L W Z R N M N M V Z � L W � L � � N R M M � \ S N d � 
 ^ d 
 V S 
 R _ { Q S L � d M � � � Z R N Z N � S �

 Q S R V S z T S ^ ^ S L M � O S 
 a M � � � � � N K � L N 
 Z Z S 
 R 
 L T S 
 � 
 T ^ S 
 R R S � � ^ M M N N \ � T � _ 	 � S L a

K S O � O M � S S x N R M M N O S T R S 
 � S � L T S R M 
 � L M V N d � L d N \ 
 M � N L N M � S R M � 
 L � L 
 Q N � O 
 U ^ S
� L T S R M 
 � L M V N d � L d N R \ 
 M � N L K � � T � M � S � S R Q S R 
 O O S O 
 � \ � T � 
 � Z N � � � U ^ S _ | � 

R S � � ^ M a M � S 
 W S L M � � � T T S S O S O � L M � S T N L � � O S R 
 U ^ S a � � W � ^ V 
 T T � R 
 M S T N L � M R � T M � N L
N d s N R ^ O t N O S ^ } ~ a � � � 	 � 
 M � � a � M � � Q 
 R � N � � � L d N R \ 
 M � N L � N L 
 W S L M � � n S ^ O � _ 	 � � �
R S � � ^ M � L Q S L M S O � � R Z R � � � L W R S � � ^ M _ s � S L M � S 
 ^ W N R � M � \ N L ^ V N d M � S T � 
 � S M � S U 
 ^ ^

 L O M � S � � T � M N M � S W N 
 ^ K 
 � � L � M 
 ^ ^ S O M N S Q 
 ^ � 
 M S s N R ^ O t N O S ^ a M � S M S 
 \ K S R S
Z S R d N R \ S O T ^ N � S W 
 \ S � 
 L O | L O � � ^ ^ � � a N L S N d � M R N L W M S 
 \ � � L � 
 Z 
 L _ | d M S R K 
 R O � a
M � S 
 W S L M � � 
 � W R N K L � Z M N � 
 L O ^ S M � S W 
 \ S S � � 
 ^ ^ V M N M � S M S 
 \ 
 M 
 M N Z ^ S Q S ^
N d � 
 Z 
 L U V � 
 Q � L W � L M R N O � T S O M � S � V � M S \ K � � T � M � S � L M R N O � T M � N L N d 
 O V L 
 \ � T
R N ^ S N d W N 
 ^ � S 
 L O K � � T � S � T � S L M ^ V � � S � N d � M 
 \ � L 
 _ 	 � S 
 R T � � M S T M � R S N d 
 W S L M N d
M � S M S 
 \ 
 L O M � S T N \ Z N � � M � N L \ S M � N O N d s N R ^ O t N O S ^ M � 
 M M � S � L T S R M 
 � L M V 
 R S
d S K � � O S � T R � U S O � L M � S d N ^ ^ N K � L W _

	 � � � 
 W S L M T 
 \ S M N ^ S 
 Q S 
 W N N O R S � � ^ M N d M � S K N R ^ O R 
 ^ ^ V U S � M � 
 L O M � S
� S \ � y � 
 Z 
 L S � S R 
 ^ ^ V Q � T M N R V M � N � W � N Z S R 
 M S O U V 
 Q S R V � � \ Z ^ S 
 ^ W N R � M � \ _

� � � � � � � � � � D � � � A B

� � � � � � � � � � � 	 
 � 
 � � � � � � � � �
� � � �   � � ¡ � � ¢ �

	 
 � 
 � � � � � � � � �

£ � 
 Z 
 L

£ \ 
 � M S R

£ R S \ N M S Z 
 R M � T � Z 
 M � N L
¤ � ¡ ¥ � ¦ � � M M Z § ¨ ¨ L S _ T � _ � S T _ 
 T _ © Z ¨ � � � ¨ X N U N Y � Z � �

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 646−648, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000



www.manaraa.com

ª « ¬  ® ¬ ¯ ° ¬ ± ¬ ² ³ ° ¬ ´ ² µ ¯ ° ¶ ¯ ³ µ ³ ´ · ¸ ° « ¬ ² ¸ ² · ¬ µ ¹  ² º ¯ µ » · ¬ ¼ ® ½ ¬ ¯ ° ¾ ¿ ³ ¼ ® ½ ¬ ¯ ° ¾  ¯ ¼
 ² ° ¶ µ ¯ À ¸ ´ ¸ ¯ ² « Á µ ¯ ¶ Â ¶ ¯ ® ´ ¶ ½ ³ ·  ° ¶ µ ¯ ² ¸ ² · ¬ µ ¹ Ã µ ² ² ¬ Á Ã ¬ Á Ä ¬ Á À ¬ ²  ³ ´ ¬ µ ¹ ° « ¬ ´ ¶ ¯ ® · ¬

Å Á µ ² ¬ ´ ´ Æ ª « ¬ Å  Á ° µ ¹  ² º ¯ µ » · ¬ ¼ ® ½ ¬ ¯ ° ² µ ¯ ´ ° Á ³ ² ° ´ Ç µ Á · ¼ È µ ¼ ¬ · ¹ Á µ ½ ¶ ¯ ¹ µ ½  ° ¶ µ ¯
Á ¬ ² ¬ ¶ Ä ¬ ¼ ¹ Á µ ½ Ã µ ² ² ¬ Á Ã ¬ Á Ä ¬ Á Æ ª « ¬ Å  Á ° µ ¹ ¿ ³ ¼ ® ½ ¬ ¯ ° ¼ ¬ ² ¶ ¼ ¬ ´ ° « ¬ ® µ  ·  ° Å Á ¬ ´ ¬ ¯ °

¹ Á µ ½ Ç µ Á · ¼ È µ ¼ ¬ · Æ ª « ¬ ¯ ° « ¬  ® ¬ ¯ ° ² µ ½ Å ³ ° ¬ ´ Ä  Á ¶ µ ³ ´ ² µ ¯ ¼ ¶ ° ¶ µ ¯ ´ » « ¶ ² « ¶ ´ ° « ¬
µ Å ° ¶ ½  · ¼ ¸ ¯  ½ ¶ ² Á µ · ¬ ¾ ° « ¬ µ Ë ´ ¶ ¼ ¬ · ¶ ¯ ¬ ¾  ¯ ¼ ° « ¬ ¶ ¯ ° ¬ Á ² ¬ Å ° ¶ ¯ ® · µ ²  ° ¶ µ ¯ µ ¹ ° « ¬ À  · ·
¬ ° ² Æ ° µ ¼ ¬ ² ¶ ¼ ¬ ° « ¬ ® µ  · Æ ª « ¬ Å  Á ° µ ¹  ² ° ¶ µ ¯ ¼ ¬ ² ¶ ¼ ¬ ´  ´ « µ Á ° ® µ  · ° µ  ² « ¶ ¬ Ä ¬ ° « ¬
¼ ¬ ² ¶ ¼ ¬ ¼ ® µ  ·  ¯ ¼ ¶ ´ ´ ³ ¬ ´ ° « ¬ ² µ ½ ½  ¯ ¼ ° µ Ã µ ² ² ¬ Á Ã ¬ Á Ä ¬ Á  ² ° ³  · · ¸ Æ ª « ¬ À ¬ «  Ä ¶ µ Á µ ¹

° « ¬  ® ¬ ¯ ° À  ´ ¶ ²  · · ¸ ¶ ´ ¼ ¬ ² ¶ ¼ ¬ ¼ À ¸ ° « ¬ ¿ ³ ¼ ® ¬ À ¸ Ç µ Á · ¼ È µ ¼ ¬ ·  ° ° ¶ ½ ¬  ¯ ¼ ¶ ´ Å ³ °
¶ ¯ ° µ Å Á  ² ° ¶ ² ¬ Æ

Ì Í Ï Ñ Ò Ó Ô Ï Ó Õ Ò

Ö ¬ Á ¬ ¾  ¯ ¶ ½ Å µ Á °  ¯ ° ¬ · ¬ ½ ¬ ¯ ° ¹ µ Á ² µ ½ Å µ ´ ¶ ¯ ® Ç µ Á · ¼ È µ ¼ ¬ · ¶ ´ ¼ ¬ ´ ² Á ¶ À ¬ ¼ Æ ª « ¬ ´ ¸ ¯ ×
² « Á µ ¯ ¶ Â  ° ¶ µ ¯ » « ¶ ² « ²  ¯ À ¬ Å ³ ° µ ¯ ´ ¶ ½ ³ ·  ° ¶ µ ¯ ² ¸ ² · ¬ À ¬ ° » ¬ ¬ ¯ Ø · ¶ ¬ ¯ ° Ù Ã ¬ Á Ä ¬ Á ¶ ´ ¯ ¬ ² ×
¬ ´ ´  Á ¸ ¶ ¯ ° « ¬ À ¬ ® ¶ ¯ ¯ ¶ ¯ ® Æ ª « ¶ ´ ¶ ´  ² µ ¯ ¼ ¶ ° ¶ µ ¯ ° µ ³ ´ ¬  · · ² ¸ ² · ¬ ´ ¬ Ë ¬ ² ° ¶ Ä ¬ · ¸ Æ Ú ° ¶ ´ ° «  °
¶ ° ¶ ´ ´ ¸ ¯ ² « Á µ ¯ ¶ Â  ° ¶ µ ¯ µ ¹ ´ ° ¬ Å ° ¶ ½ ¬ µ ¹ ´ ¶ ½ ³ ·  ° ¶ µ ¯ ² ¸ ² · ¬ À ¬ ° » ¬ ¬ ¯ Ø · ¶ ¬ ¯ ° Ù Ã ¬ Á Ä ¬ Á ¯ ¬ ± ° Æ
ª « ¶ ´ ¶ ´ ° « ¬ ½ µ ´ ° ¶ ½ Å µ Á °  ¯ ° ¬ · ¬ ½ ¬ ¯ ° ¹ µ Á ² µ ½ Å µ ´ ¶ ¯ ® Ç µ Á · ¼ È µ ¼ ¬ · Æ Û ¬ ²  ³ ´ ¬ ¾ ¶ ° ¶ ´
° « ¬ µ ¯ · ¸ ² · ³ ¬ ° µ º ¯ µ » » «  ° » « ¬ ¯ µ ¯ ¬ ¶ ¯ ¹ µ Á ½  ° ¶ µ ¯ » « ¶ ² « «  ´ À ¬ ¬ ¯ ´ ¬ ¯ ° ¹ Á µ ½ Ã µ ² ×
² ¬ Á Ã ¬ Á Ä ¬ Á µ Á Ú ¼ ¶ ¼ » « ¬ ¯ Æ Ç µ Á · ¼ È µ ¼ ¬ · ¶ ¯ ¹ µ Á ½  ° ¶ µ ¯ ¶ ´ Å Á µ Å  ®  ° ¬ ¼ À ¸ ´  ¸ ½ ¬ ´ ´  ® ¬
 ° ° « ¬ ¬ ¯ ¼ Æ Ü ´  Á ¬ ´ ³ · ° ¾ µ ° « ¬ Á  ® ¬ ¯ ° ´ ²  ¯ ´ ³ Å Å · ¬ ½ ¬ ¯ ° ¶ ¯ ¹ µ Á ½  ° ¶ µ ¯ » « ¶ ² «  ² ¬ Á °  ¶ ¯
 ® ¬ ¯ ° ²  ¯ ¯ µ ° ³ ¯ ¼ ¬ Á ´ °  ¯ ¼  ¯ ¼ ° « ¬ ° « ¶ ¯ ® ° µ ¼ ¬ ² Á ¬  ´ ¬ ° « ¬ ¼ ¶ Ë ¬ Á ¬ ¯ ² ¬ À ¬ ° » ¬ ¬ ¯ ¬  ² «
 ® ¬ ¯ ° Ý ´ Ç µ Á · ¼ È µ ¼ ¬ · ¶ ¯  ¼ ¼ ¶ ° ¶ µ ¯ À ¬ ² µ ½ ¬ ´ Å µ ´ ´ ¶ À · ¬ Æ

ª « ¬ ´ ¸ ¯ ² « Á µ ¯ ¶ Â  ° ¶ µ ¯ µ ¹ ´ ¶ ½ ³ ·  ° ¶ µ ¯ ² ¸ ² · ¬  ¯ ¼ ° « ¬ ´ ¸ ¯ ² « Á µ ¯ ¶ Â  ° ¶ µ ¯ µ ¹ ´ ° ¬ Å ° ¶ ½ ¬
¬ ± ² ¬ ¬ ¼ Þ Þ Æ Þ  ° ° « ¬ µ Á ¶ ® ¶ ¯ µ ¹ ° « ¬ À ¬ ´ ° ¬ ¯ Ä ¶ Á µ ¯ ½ ¬ ¯ ° Æ Ú ¯  ¼ ¼ ¶ ° ¶ µ ¯ ¾ ° « ¬ ¬ Á Á µ Á ¶ ¯ ° « ¬
¶ ¯ ¹ µ Á ½  ° ¶ µ ¯ µ ¹ ° « ¬ Å µ ´ ¶ ° ¶ µ ¯  ¯ ¼ ° « ¬ ¼ ¶ Á ¬ ² ° ¶ µ ¯ µ ¹ ° « ¬  ® ¬ ¯ ° ¶ ° ´ ¬ · ¹ ¶ ´  À µ ³ ° ß Æ à ½ ¬ ° ¬ Á
 ¯ ¼  À µ ³ ° ß Æ á ¼ ¬ ® Á ¬ ¬ ´ Á ¬ ´ Å ¬ ² ° ¶ Ä ¬ · ¸ Æ

â ã ä å æ ç è é ê ë ì ë í î ï ð ñ ò ó ô ì õ î í ë ö ÷ ë ì õ ø ë ù ð í

ú ö ÷ ë ì õ ø ô ù ð û ô ð õ ñ ñ ò í î ü ü ë í í

í ý ù ü ì ñ ù õ þ ô ð õ ñ ù ñ ò í õ ø î ï ô ð õ ñ ù ü ý ü ï ë ÿ ÿ
�

ÿ �

í ý ù ü ì ñ ù õ þ ô ð õ ñ ù ñ ò í ð ë ÷ ð õ ø ë ÿ ÿ
�

ÿ �

í î ü ü ë í í ñ ò ü ñ ø ø ô ù � ë ö ë ü î ð õ ñ ù ÿ ÿ
�

ÿ �

� � Ï 
 
  � � � � � � Ï �

È ¸  ® ¬ ¯ ° ³ ´ ¬ ´ ° « ¬ ² µ ½ ½ ³ ¯ ¶ ²  ° ¶ µ ¯ À ¬ ° » ¬ ¬ ¯  ® ¬ ¯ ° ´ µ ¯ · ¸ ° µ ° Á  ¯ ´ ½ ¶ ° µ » ¯ » µ Á · ¼
½ µ ¼ ¬ · Æ Ç « ¬ ° « ¬ Á ½ ¸  ® ¬ ¯ ° ² µ ½ ½ ³ ¯ ¶ ²  ° ¬ ´ À ¬ ° » ¬ ¬ ¯  ® ¬ ¯ ° ´ µ ¹ » «  ° ° ¶ ½ ¬ «  ´ À ¬ ¬ ¯

647YowAI



www.manaraa.com

� � � � � �  " # % % ' ' ( ' ( ) * , . / % ) ( ' 0 . , 1 % ' 3 5 6 % . ) ( 7 8 ( ' . ; < ( ; % .

> , . / % ? ' ' ( '

@ A ( ( ' ; 3 7 , 5 % B D E F % 5 % '
1 A ( ( ' ; 3 7 , 5 % B D E F % 5 % '

H ( ; 1 ; 3 ' % A 5 3 ( 7 B D K ; % L ' % %

M N O P M N M Q S N U O V U X N Y Q [ N ] S ^ N V U Y M _ ` O Q a U b b c d S Y b c S Y N U X N Y Q a e N e Q V N O S f f a Y P g
O U Q P S Y [ N Q h N N Y U X N Y Q e S Y O N N i N ^ c Q h S O c O b N e _

j k m n o o p

q c U X N Y Q r e f U P Y e s P b b P e Q S s P O s ^ a Y Y P Y X U ] Q N ^ Q V N [ U b b d U Y M Q V N [ U b b Q S h U ^ M Q V N
X S U b S ] Q V N N Y N f c _ t f u S ^ Q U Y O N [ N O U a e N S ] ^ a Y Y P Y X U ] Q N ^ Q V N [ U b b P e Q S ] S ^ N O U e Q
Q V N u S e P Q P S Y h V N ^ N Q V N u b U c N ^ O S f N e P Y O S Y Q U O Q h P Q V Q V N [ U b b _ q S ^ N S i N ^ d h V N Y
Q V N [ U b b P e s P O s N M Q S h U ^ M Q V N X S U b S ] Q V N N Y N f c d f c U X N Y Q s P O s e Q V N [ U b b U e Q h P O N
U e u S e e P [ b N O S Y Q P Y a S a e b c _

y k z { | z } ~ �

q c U X N Y Q P e [ N V U i P Y X [ c U e P f u b N U b X S ^ P Q V f S ] s P O s P Y X Q V N [ U b b Q S h U ^ M Q V N X S U b
S ] Q V N N Y N f c ^ a Y Y P Y X U ] Q N ^ Q V N [ U b b _ � V P e U b X S ^ P Q V f P e U Y U b X S ^ P Q V f S ^ P X P Y U b b c
a e N M Q S M N [ a X Q V N h S ^ b M f S M N b _

� k � } � n | o � } | � � } | z � { } p

� � � � � � � � � � � � � � � � �

� V N Q N U f ^ N U b P � N M Q V N ^ S [ a e Q u ^ S u N ^ Q c _ � V N U X N Y Q S ] Q V N Q N U f V U e e Q U Q P O ^ S b N U Y M
M c Y U f P O ^ S b N d ] S ^ N � U f u b N X S U b P N d M N ] N Y M N ^ N Q O _ ` e � P X a ^ N � h V N Y U U X N Y Q h P Q V

X S U b P N S ] e Q U Q P O ^ S b N P Y Q N ^ O N u Q N M U [ U b b d S Q V N ^ U X N Y Q h P Q V M N ] N Y M N ^ S ] e Q U Q P O ^ S b N
M N ] N Y M X S U b _ � V N Y M c Y U f P O ^ S b N P e N � O V U Y X N M _ � V P e P e � a M X f N Y Q S ] U X N Y Q P Q e N b ] _

� �   ¡ � £ ¤ ¥ ¦ £ � � � � � ¤

� V N U X N Y Q h U e Q N e Q V N e Q U f P Y U d [ N O U a e N Q V N U X N Y Q U b h U c e O V U e N e Q V N [ U b b _ § a Q Q V N

¨ a U Y Q P Q c S ] f S i N f N Y Q S ] Q V N U X N Y Q P e b U ^ X N ^ Q V U Y Q V U Q S ] Q V N U X N Y Q S ] Q V N S Q V N ^
Q N U f S i N ^ U b b S ] U f U Q O V _ � V N U X N Y Q M S e N Y S Q a e N Q V N e Q U f P Y U S i N ^ Q V ^ N e V S b M
M N O ^ N U e N M Q V N N ª S ^ Q S ^ Q V N ^ N O S i N ^ c P ] P Q P e a Y Y N O N e e U ^ c _ « V N Y Q V N U X N Y Q O U Y
e V S Q S ^ Q V N N Y N f c U X N Y Q h P b b e V S Q d Q V N U X N Y Q a e N Q V N e Q U f P Y U S i N ^ Q V ^ N e V S b M _
 S h N i N ^ d Q V N ¨ a U Y Q P Q c S ] Q V N e Q U f P Y U M N O ^ N U e N M ] S ^ Q V N f S i N f N Y Q P Y O ^ N U e N M Q S

[ N O S Y O N ^ Y M h P Q V Q V N i N ^ e P S Y a u Q S ® _ � � S ] Q V N ¯ N O O S ^ ¯ N ^ i N ^ _ � V N ^ N ] S ^ N d t f a e Q
Q ^ c Q S M N e P X Y Q V N Y N h e Q U f P Y U e c e Q N f _

648 T. Suzuki



www.manaraa.com

Zeng99 : RoboCup simulation team with

Hierarchical Fuzzy Intelligent Control and

Cooperative Development

Junji Nishino, Tomomi Kawarabayashi, Takuya Morishita, Takenori Kubo,
Hiroki Shimora, Hironori Aoyagi, Kyoichi Hiroshima and Hisakazu Ogura

Department of Human and Arti�cial Intelligent Systems, Fukui University, JAPAN

Abstract. This paper discusses the design of the team Zeng99. The goal
of team Zeng99 is to show a performance of Hierarchical Fuzzy Intelligent
Control system in the �eld of multi agent problems. It worked well at
RoboCup99 competition, even with little error in an invoking clients. It
also allow independent/cooperative development client by client.

1 Introduction

The goal of robocup simulation team Zeng99 is to show a performance of Hier-
archical Fuzzy Intelligent Control system (HiFIC) [1] in the �eld of multi agent
problems, such as soccer simulation. The HiFIC is a scheme of controller for
ill-de�ned/described objects.

These days, there are many studies on intelligent control systems to per-
form high level control such as human operators do. Human knowledge based
controller model is an approach to realize an intelligent control system. In this
paper, HiFIC is adopted to soccer agent cooperative behavior planning and re-
active control.

The HiFIC controller is a derivative of three layered control model by Jens
Rasmussen[2]. HiFIC also consist of three levels: lower layer to regulate primitive
reactive control, middle layer to perform skill level behavior and highest layer
to make decision on strategic and tactical playing plan. A main ability of this
system is easy construction of hybrid controller which combines feedback loop
regulator facility and feed-forward control facility.

2 Team Development

Zeng99 team development model was a independent and/or cooperative clients
programming.

Team Leader: Tomomi Kawarabayashi (O�ensive Mid-�elder)
{ Graduate student
{ attend the competition

Team Director: Junji Nishino

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 649−652, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000



www.manaraa.com

{ Faculty: Assistant professor
{ attend the competition

Team Members: { all members below did not attend the competition
Takuya Morishita (Defensive Mid-Fielder), Hiroki Shimora (Goalie)
{ Graduate student

Takenori Kubo (Defender, Sweeper), Kyoichi Hiroshima (Goalie 2)
{ Graduate student, PhD candidate

Hironori Aoyagi (Forward)
{ Undergraduate student

Hisakazu Ogura
{ Faculty: Professor

Web page http://bishop.fuis.fukui-u.ac.jp/~tomomi/index_e.html

We have six independent client programs that was created by di�erent pro-
grammers respectively. The clients were preassigned to their own position in the
4-4-2 soccer formation that is shown in the �gure 1.

3 World Model and Communications

Zeng99 use libsclient4.0 for o�ensive mid-�elder, the source cord of CMUnited-
98[3] for defender and side mid-�elder, and special developed low level libraries
for goalie. They are just ordinary models for time interpolation.

Zeng99 didn't use any on-line communication for emerging cooperative play,
in another words the team didn't use say command. They used eye-contact
communication, which is occurred by matching of behavior rules.

4 Skills

All clients except the Goal keeper don't have tuned skills such as a boll keeping
faint move. CMUnited-98 based clients only have the skills of the CMUnited-98
source code.

GK SW

DF

MFd

MFs

MFo

FW

attack direction

Fig. 1. Zeng99 4-4-2 Formation
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ball

goalie positon

goal

r parameterized arc

Fig. 2. Goalie positioning

The Goal keeper have two special skills. It have 1) middle term boll prediction
and 2) trace moving on an arc. Here, middle term means several simulation steps
among two and �ve. The goalie predicts two to �ve steps ahead, and then tests
the boll position and his possible position to determine whether he can catch it or
not at that time. If he decides that it can be caught, then he goes to appropriate
position and catch the ball. If not, he goes to goalie position described in the
�gure 2 .

5 Special Team Features and Strategy

For the Zeng99 team's strategy, human soccer players' knowledge is implemented
in the form of HiFIC. The HiFIC system allow us to write a knowledge in natural
language like form of fuzzy inference model with ambiguous words by fuzzy logic
facility.

The team clients were developed separately under the agreement of program-
mers, that is cooperative strategy with 4-4-2 formation system. In the process
of development, it takes repeated three phases. The steps are as follows; 1)
analyzing human players' knowledge, 2) brain storming and discussion on the
knowledge by whole development members, 3) independent development and
testing. This sequence was repeated once a week.

Programmers had a common workspace to store current version of one's client
so that they were able to test his client with newest another position clients. They
were brushed up by trial and error toward the agreements made at a discussion
phase. This style of development could provide quickly actual prototypes of
several clients which are pegged on particular rolls. In the knowledge analyzing
phase, we interviewed real armature human soccer players and/or studied soccer
books.

Zeng99 have neither learning mechanism nor modeling ability at the version
of Stockholm. Though the Goalie was tuned very well. it needed a sweeper just
in front of our goal. This style is not available very often in the usual soccer play.
However, indeed, a combination play between goalie and back ground sweeper

651Zeng99: RoboCup Simulation Team 
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was worked very well. Because goalie moves strictly only ON THE ARC LINE

shown in the �gure 2, he couldn't catch balls behind him, even if the ball run

very slow.

6 Results

We had errors in the startup script instead of the program, so the Zeng99 team

couldn't gain a point at the regular competition. Therefor we like to show some

result from friendly match results which has played in the simulation league site

and on the same machines. At the regular round-robbin, because of startup script

Table 1. Results

Regular round-robbin group A Friendly match results

0-11 CMUnited99 2-0 Footux99 12-0 Polytech

0-1 UlmSparrows 1-5 Cyberoos99 9-0 Robolog

0-3 HCIII 2-0 UlmSparrows 0-7 BrainStormers

4-0 NITStones

error, zeng99 clients couldn't read correct server.conf �le in the game against

CMUnited99, the champion team. Thus they couldn't kick the ball. Therefore

CMUnited99 always keep the ball, however the goalie and the sweeper had saved

their goal 30 times in 41 shoot trial. At the friendly matches, the goalie, the

sweeper and defender also played well, repaired the error.

7 Conclusion

Human knowledge based cooperative soccer playing rules are implemented using

Hierarchical Fuzzy Intelligent Control System architecture and they worked well

on matches with other teams. This type developments allow us to separately

developments. In the future work, make a common knowledge based strategic

level controller for both simulator and real robots.
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All Botz

Jacky Baltes, Nicholas Hildreth, and David Maplesden

Centre for Imaging Technology and Robotics
University of Auckland
Auckland, New Zealand

j.baltes@auckland.ac.nz

1 Introduction

This paper discusses some important features, which make the All Botz, the
University of RoboCup team, a very unique team. In particular, the use of cheap
hardware and the design of the video server.

Instead of custom built robots, the All Botz team consists of cheap remote
controlled cars, which can be purchased at any toy store. The cars use coarse
D-A converters to provide proportional steering and speed control. Cost is the
main advantage of the All Botz; a standard team costs around $10,000 USD,
compared to the $200 USD for the All Botz team.

Like most teams competing in the small sized league, the All Botz use a global
vision system. However, there are a number of important differences between the
All Botz and other teams. Firstly, it is not necessary that the camera is mounted
overhead, but it can be mounted on any angle as long as the whole field can be
viewed. Secondly, the toy cars are not modified, the video data is the only source
of information for the agents.

Although disadvantaged by their cheap hardware, the All Botz achieved a
respectable result.The All Botz had to play in a tough group, which included
the two best teams in the world (Big Red from Cornell University, and Robotis
from Korea).

In the first game, the All Botz lost 33:0 to Big Red. The biggest problem
in this game was that our path planner took to long to formulate paths for our
agents. Another problem was that the Big Red team, like all other teams, are
much heavier and powerful than our robots, which meant that our robots were
pushed around a lot.

In the next game, the All Botz faced Robotis. The Robotis team is a very
exciting team to watch, since their robots move at a significantly faster than any
other team. The All Botz lost 35:0 to Robotis. Our goalie made most of the first
saves, but was not fast enough to clear the ball.

In our last game, we beat last year’s third place finisher 5DPO 3:1. 5DPO is
a difficult team to score against since their strategy is to cover the ball in their
own half. Still, the All Botz dominated the game and territory. The only goal
that 5DPO scored was due to an error of our goalie.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 653−656, 2000.
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2 Team Development

Team Leader: Jacky Baltes

Team Members:
Jacky Baltes

– CITR, University of Auckland
– New Zealand

– Lecturer
– did attend the competition

Nicholas Hildreth

– CITR, University of Auckland
– New Zealand

– Graduate Student
– did attend the competition

David Maplesden

– CITR, University of Auckland
– New Zealand

– Graduate Student

– did attend the competition

Web page http://www.citr.auckland.ac.nz/˜jacky

3 Sensing

The most obvious difference between the All Botz and other teams is that the
camera is looking at the playing field from the side rather than from directly
overhead. This means that the All Botz are more flexible and can play under a
wider range of conditions than other teams.

The side view introduces large perspective distortions in the image, which
must be compensated for by the video server. This problem can be overcome by
a sophisticated camera model and an accurate camera calibration. The All Botz
use Tsai’s camera calibration method that corrects for the radial distortion of
the lens.

The calibration of this camera model requires a large set of calibration points,
distributed across the playing field. Instead of using the points on the playing
field itself (e.g., the corners and centre points), the All Botz use a calibration
carpet (a duvet cover with a square pattern of white and blue square on it).
Once a picture of the calibration carpet is taken, a program finds and sorts the
squares in the image and assigns them real world coordinates. These mapped
points are then used in the Tsai camera calibration to compute the parameters
of the camera model.

This system has proven to be very robust. Camera calibration now takes less
than 30 minutes and results are accurate to within one centimeter even at the
far side of the image.
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4 Communication

To improve robustness, the agents only use implicit communication to tell other
agents about their goals and fall back on their autonomous behavior if commu-
nication fails.

The limitations of the car-like robot makes it very important that agents
communicate. A lot of tasks that can easily be achieved by a single holonomic
robot, such as clearing the ball by the goalie, can only be achieved efficiently by
coordinating the activities of multiple agents using car-like robots.

Currently, the All Botz use two groups of players that communicate amongst
each other: the two strikers, and the goalie/defender combo. The communication
is similar in both groups and we will focus on the strikers in this paper.

Since it is impossible for our cars to move sideways, the strikers implement
a “cycling” behavior. One striker moves in for a shot on goal, whereas the other
striker moves into a position to wait for a rebound or to shoot at the goal next.
Since we want to avoid having both strikers try to shoot at the goal at once,
they need to communicate their intention. Both strikers evaluate their relative
position to the ball and the goal. They then compute an estimate of the cost of
a goal shot and the striker with the smaller cost will shoot at the goal whereas
the other striker will move into the rebound position. The estimate of the goal
shot cost is based on the holonomic path distance. After the first striker shoots
at the goal, the world state will change and the striker waiting for the rebound
will then start its attack run.

This scheme is augmented by: (a) implementing a hysteresis function for
switching from goal shot to rebound to avoid oscillation, and (b) a time horizon
scheme. The striker agent has only a limited time to show progress. If the goal
shooter does not make progress towards the goal shot, because for example, it
is being blocked by an opposing robot, the rebounder will attempt a goal shot.
Once the rebounder is closer to the ball than the goal shooter, their roles will
change and the striker will become the rebounder and it will attempt to move
towards the rebound position.

5 Special Team Features

This section discusses the path planning problem and the problem of path fol-
lowing control for car-like robots and our solutions to these problems.

5.1 Car-like robot control

Controlling a car-like robot at high speeds with noisy vision data as the only
source of information is a challenging and difficult problem.

Even though the non-holonomic control problem is more difficult than that
of wheeled robots, the control of our agents is as good as that of other teams
(with the exception of the Robotis team). The All Botz robots are controlled to
a maximum speed of 1 m/s. However, the lack of local control means that the
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All Botz system is much more robust. Schemes that use shaft encoders and stall
detectors to augment the localization are unable to cope with rough terrain or
slippery surfaces.

The state of the art in non-holonomic control was not sufficient to control
car-like robots at high speeds. The All Botz developed a number of different
control algorithms, the best ones being a look ahead controller and a controller
that uses reinforcement learning to learn the control function. We believe that
these are the best practical implementations of control for car-like robots in the
world today.

5.2 Non-holonomic path planning

Efficient Path planning in highly dynamic environments is a difficult problem
for holonomic vehicles. For car-like robot the problem is even worse.

Initially, the All Botz use a non-holonomic path planner, which is an exten-
sion of visibility graphs. This path planner performs well in a static environment,
but its time complexity makes it unsuitable for dynamic environments.

Currently, the All Botz use an adaptive case-based path planning system.
Instead of re-planning from scratch whenever an object moves in the domain,
the path planner tries to adapt the current plan to match the new world state.
The path planner uses the following set of adaptations for each path segmen-
t: translation, rotation, lengthening, shortening, change of turn radius, change
from straight line to curve and vice versa, deletion, and insertion of a new path
segment.

Another planner we are currently developing is a any-time path planner. The
basic idea is that the agent can ask the planner for the best currently available
plan. If given little time, the planner may return an incorrect or sub optimal plan.
However, if given more time, the planner will eventually return the optimal plan.

6 Conclusion

For next year, the reinforcement learner will be enhanced to include look-ahead,
which will allow us to control the cars at much higher speeds (2 - 3 m/s).

After emphasizing and finding scalable, practical solutions to the low level
problems, such as control and path planning, we will focus more on the design
of team strategies and agent coordination.

Currently, the agent architecture is being extended to include explicit com-
munication. Also, the interaction between the controller and the path planner
is being made more expressive. This allows the path planner to use short macro
sequences (e.g., a quick kick followed by recovery) in the planning stage.

Also, currently, the strikers only attempt a direct shot on goal. The set of
aims of the individual players will be extended to include passes, double plays,
and give and go plays.

We hope that the addition of these strategic components will make the All
Botz a team to be reckoned with in 2000. Our goal is to be among the best eight
teams in the world.
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Big Red: The Cornell Small League Robot
Soccer Team

Raffaello D’Andrea, Jin-Woo Lee, Andrew Hoffman, Aris Samad-Yahaya, Lars
B. Cremean, and Thomas Karpati

Mech. & Aero. Engr., Cornell University, Ithaca, NY 14853, USA
{rd28, jl206, aeh5, as103, lbc4, tck4}@cornell.edu

http://www.mae.cornell.edu/robocup

1 Introduction

In this paper we describe Big Red, the Cornell University Robot Soccer team.
The success of our team at the 1999 competition can be mainly attributed to
three points:

1. An integrated design approach; students from mechanical engineering, elec-
trical engineering, operations research, and computer science were involved
in the project, and a rigorous and systematic design process[2] was utilized.

2. A thorough understanding of the system dynamics, and ensuing control.
3. A high fidelity simulation environment that allowed us to quickly explore AI

and control strategies well in advance of working prototypes.

The paper is organized as follows. In Section 2, we describe the overall aspects
of the project, followed by the artificial intelligence and strategy in Section 3.
We include some of the other features of our team in Section 4.

2 Characteristics of Overall System

The robots have a design mass of 1.5 kg and a maximum linear acceleration of
5.1 m/s2 and a maximum linear velocity of 2.5m/s. The goalkeeper design is
independent of the field player design, and thus the goalkeeper exhibits signif-
icantly different skills. The goalkeeper is equipped with a holding and kicking
mechanism that can catch a front shot on goal, hold it for an indefinite amount
of time required to find a clear pass to a teammate, and make this pass. Configu-
ration constraints result in decreased angular but increased linear performance,
as compared to the field players.

The main features of our electronics are wireless communication, motor con-
trol and the kicking control. Considering the speed, memory space, I/O capabil-
ity, and the extension flexibility, we decided to use 16bit 50MHz microcontroller.
An infrared system is used to detect the ball. It informs the microcontroller when
the ball has come into contact with the front of the robot.

After careful considerations and trade-off analysis, the wireless communica-
tion was limited to one-way transmission from the global AI computer to each

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 657−660, 2000.
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robot. The main justification for the decision is the lack of on-board local sensing
information. The one-way transmission saves the communication time compar-
ing to the two-way communication, and makes the AI strategy and the on-board
program easier. The our wireless communication system takes 12.5ms to transmit
the whole information from AI computer to the robots.

The vision system perceives the current state of the game and communicates
this state to the artificial intelligence computer allowing decisions to be made
in real-time in response to the current game play. The vision system captures
frames at half resolution (320x240) at a rate of 35-40 Hz. Object detection and
tracking is not determined by the previous locations of objects, and the full
frame is searched for targets.

Listed below are the summary of main characteristics of our system:

Characteristic Goal Keeper Field Player

Weight 1.78 kg 1.65 kg
Max. Acceleration 5.90 m/s2 5.10 m/s2

Max. Velocity 1.68 m/s 2.53 m/s
Max. Kicking Speed 4.18m/s 2.6 m/s

Operating time 30 min per battery pack
Special function Ball Holding mechanism only for goalkeeper

Wireless Transmission 40 kbit/s
Other Sensor Infrared systems to detect the ball

Vision Speed 35 - 40 Hz
Vision Resolution 320 by 240 pixels

3 Strategy and Artificial Intelligence

The artificial intelligence subsystem is divided into two parts: high level AI and
low level AI. The low-level AI computes the trajectory to the target point and
computes the wheel velocities to transmit to a robot. The high-level AI takes the
current game state (robot and ball positions, velocities, and game history) as
input, and generates new targets and kicker commands for the robots as output.
A target consists of a field location and a desired final state (time-to-target,
robot orientation, and robot velocity).

3.1 Trajectory Control

Compared to reactive control strategies, such as those in [1] for example, we
perform a global trajectory optimization for each robot and take advantage of
the mechanical characteristics of the robots. It takes as inputs the current state
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of the robot and the desired ending state. The current state of a robot consists
of the robot x and y coordinates, orientation, and left and right wheel velocities.
A desired target state consists of the final x and y coordinates, final orientation,
final velocity as well as the desired amount of time for the robot to reach the
destination.

Our geometric path is represented by two polynomials in the x and y coordi-
nates of the robots. The x coordinate polynomial is a fourth-degree polynomial
and the y coordinate polynomial is third degree. The task is to solve for the nine
polynomial coefficients for a particular path requirement.

Once a trajectory is generated, the velocity of both wheels are easily calcu-
lated. Even though each run of this algorithm generates a pre-planned path from
beginning to end, it can be used to generate a new path after every few cycles
to compensate for robot drift. The continuity of the paths generated is verified
through testing.

3.2 Role Based Strategy

High-level AI maintains a list of roles that the four field players can assume.
Every cycle, the high-level AI computes the priority and feasibility of each role
as a function of the game state. To perform this, it first sorts the roles by priority.
Then, it rearranges the list of roles based on their feasibilities. Certain role-robot
pairings are ruled out if determined to be completely infeasible. For example, if
the trajectory of the ball relative to a robot R is such that it is difficult to shoot
it into the goal, not only will the feasibility value of this role for R be relatively
low, it will reflect how difficult it is for R to shoot.

Finally, the high-level AI chooses the most suitable role assignments from
the top of the list, and calls the respective role functions to give instructions to
the robots.

4 Other Team Features

4.1 Vision Calibration

The vision calibration consists of 4 main parts. They are:

– barrel distortion correction
– scaling
– rotation
– parallax correction

Barrel distortion is a function of the lens of the camera and is radially sym-
metric from the center of the image. To invert the distortion, points are measured
from the center of the image to the corner of the image and a look-up table is
built to map a point in image-coordinates into a new coordinate equidistant co-
ordinate system. The scaling is then computed such that the sides of the field are
computed. Since the camera cannot be mounted perfectly, the rotations about
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the center axis of the camera also need to be taken out. The points are rotated
so that the sides of the field are have constant x-coordinates along the widthwise
walls and constant y-coordinates along the lengthwise walls. Finally the paral-
lax error that results from differences in object height is removed by scaling the
x- and y-coordinates proportionally to the distance that the object is from the
center of the camera projected onto the field plane.

4.2 High Fidelity Simulation

To provide a realistic testing platform for our artificial intelligence system, we
have constructed a simulation of the playing field that models the dynamics of
our environment.

The dynamic modeling of our system is performed by a Working Model 2D[3]
rendering of the complete playing field. The model includes two teams of five
individual players, the game ball, and the playing field. Real world forces and
constraints are modeled, including the modeling of the motion of the tires and
the inertia of the robots and ball. Additionally, the physical interactions between
the players and each other, the ball, and the playing environment are all modeled
in Working Model’s two dimensional environment.

5 Conclusion

Even though our team performed well at the competition last year, there are
many subsystems and components that need to be improved. The main ones are
outlined below:

– A more robust vision system. The current vision system performs well when
operational, but does fail on occasion. In addition, it takes a very long time
to calibrate the system. One of our objectives for next year is to construct
a reliable vision system that can be set up in less than 30 minutes.

– Role coordination. This will allow us to implement set plays.
– More refined trajectory generation, obstacle avoidance, and trajectory con-

trol.
– Reduce the system latency.
– Innovative electro-mechanical designs.
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One of the necessary steps in entering a small-size RoboCup team is the

actual construction of the robots. We have successfully built robots for RoboCup-

97 and RoboCup-98, leading to two champion teams, namely CMUnited-97 [2]

and CMUnited-98 [1].

Given that our research is focused on team work in multirobot systems and

not particularly on the mechanical construction of robots, and given that we had

already built two di�erent teams of robots, we decided that we would use the

CMUnited-98 robots for the RoboCup-99 competition. We still had to rebuild

the goalie robot, as our RoboCup-98 goalie was slightly beyond the size of the

allowed robots, according to the revised rules for RoboCup-99.

Our purpose therefore entering RoboCup-99 was to concentrate our e�ort

in new research directions involving more elaborate robot motion and strategic

team work, namely:

{ Extension of the motion control algorithm to allow for a preferred side, so

that attackers would make more and better use of the kicking device.

{ Increase of the number of defenders to two from the single one used in

CMUnited-98. The number of defenders would vary dynamically in response

to the number of attackers.

{ Improvement of the coordination between the goalie and the defenders, to

maximize the coverage of the defense area and not endanger our own goal.

{ Additional strategic planning to dynamically adjust the number of attackers

and defenders based on the current situation (e.g. position of the ball, the

\formation" of the opponent, or the current score).

We partially successfully pursued our research. We created a sophisticated

simulator where we developed an interesting algorithm for the coordination of

the goalkeeper and multiple defenders. We expect to use this algorithm in our

future RoboCup teams and re�ne it then, when e�ectively tested on real robots.

We had however limited success carrying ahead our new approaches in the

robot team, as we encountered several unexpected diÆculties with the radio

control of the �ve robots. We also realized earlier, but mainly at the competition,

that our robots' hardware was indeed worn out, most probably from the several

trips and its extensive usage for two years.

We look forward to participating in future RoboCup competitions necessarily

with new robots!
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We thank Kwun Han for the development of the vision algorithm of CMUnited-

98, which we also used in CMUnited-99. We also thank Peter Stone, Rune Jensen,

Jim Bruce, and Tucker Balch for their help during the competition.
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Abstract - This paper describes the 5dpo team. The paper will be divided into
three main sections, corresponding to three main blocks: the Global Level, the Local
Level and the Interface Level. These Levels, their subsystems and some
implementation details will be described next.

1 Introduction

This is our second participation in the Robocup Competition. Our robots comply
with the F-180 League Regulations that constrain their dimensions: the occupied
floor area must not exceed 180 square centimeters and the height must be bellow 15
centimeters. That limits the processing power and the kind of sensory devices that
can be fitted in. On the plus side it also limits the costs and eases the mechanical
design.

The main options that shape the way the 5dpo team was designed were: the use of
a global vision system with more than one camera, the relative autonomy (in a short
time frame) expected from the robots and the unidirectional nature of the radio link.

The whole team can be seen as a system divided in three basic levels.

Global Level
Image Processing, State Update,
Role Selector, Trajectory Generator

Local Level

Radio Link Vision
System

Robot #1 Robot #5

Position Update;  New Trajectory RGB 15 bits Image (384x288) @ 25 Hz
(PAL Source)

…

Radio Link

Fig. 1. The three levels with their interrelationships and the information flowing between
them.
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The global vision system saves us from building robots with onboard cameras and
the corresponding processing power. It also gives us a global view which is
independent from the robots’ state. As the radio link cannot be completely reliable
we tried to fit the robots with some autonomy so that they can survive a small
starvation of orders from the global controller. That can ease the problem of lost
packets over the air.

We will now describe each level and its subsystems.

2 The Global Level

This is the global Control Level. The global state of the system is updated based
on the vision. Data fusion is attempted and adversary robot moves are tracked. A
rule based engine is used to classify opponents intents. By observing the present
system state as well as a global mid-term strategy, short term orders are generated
and sent to the players.

This layer closes the global loop. It must be stressed that while the “sampling”
frequency of this loop is 25 Hz, there is some intrinsic lag that degrades its optimal
performance. The PAL signal takes 20 ms to deliver the frame, then some time is
lost processing it, the reasoning unit must decide the new course of action and it is
necessary to wait for the next time slot to send some orders to the robots. That is
why the local loop, running at 50 Hz (only the double), can show a much better
performance in some tasks than a globally closed loop.

Short term orders try to account for typical adversary moves. They are anticipated
using a model for their behavior. Naturally, the quality of this model has a direct
link with the quality of the tactic behavior achieved by the team.

Some team tactics are maintained at all times like some defense mechanisms that
are enforced during the match. In any case, the defense robots stand in alignment in
such a way that the robot that holds the ball can’t easily shoot for goal. This implies
the presence of a path planner not only for the robots but also for the ball and the
opponents.

All these systems are implemented in C++ in DOS with a 32 bits extender. That
was the only way to ensure the hard real-time nature of the tasks. Other operating
systems could not guarantee hard real-time behavior or there were no drivers
available for some of our hardware.

3 The Interface Level

3.1 The Radio Interface

The radio link allows sending and receiving short packets that carry messages
from the Global Controller to the robots. We have the radio channel time slotted
synchronously with the global Control Loop.
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3.2 The Video Interface

Our team uses a global vision system as a primary sensorial source. This is our
global positioning system for our robots, for the opponent robots and for the ball.

This system consists in one or more color video cameras, placed directly above
the playing field. The TV signal from these cameras is feed to a video acquisition
board placed in a PC. This board is capable of placing a digitalization of each image
frame in the PC memory without CPU intervention, thus wasting almost no
processor time. In the end of this process the board can signal the processor the
conclusion of that task.

As we are using PAL cameras the image frequency is 50 Hz with alternating even
and odd frames. For the single camera setup we are only using even frames
therefore we have an image update frequency of 25 Hz. For the two camera setup,
the synchronization procedure (even while using all frames), forces the update to 25
Hz too.

Based on the acquired image we must identify the ball position and also the
robots’ position and orientation. As the robots are fitted with colored Ping-Pong
balls, the second problem is similar to the first one. It is easier because the
background is stable and, in the case of our team’s robots, chosen by us. Better,
there is not any kind of occultation for these balls. The playing ball can be partially
or totally hidden by the robot’s body. It can have the green or the white of the lines
as background. That makes its tracking more difficult. There is another problem:
typically, the ball’s speed can be grater than the robots speed.

Another problem is distinguishing each of our robots. That is being achieved by
reading a bar code placed on the top of each robot. The bar code uses only three bars
which give us 8 possible numbers, excluding the all whites and all blacks case we
remain with 6 possible codes. That is enough for the five robots team.

4 The Local Level

In this layer we have the local control system that runs in each robot.
A robot is an autonomous unit considering a short time frame. The robots are

capable of retaining a queue of tasks to be performed. These tasks may include
following a specified trajectory, holding the ball, passing it along to another team
member or maybe shooting for goal. The local control system tries to enforce those
orders in the predefined sequence.

Next we describe the basic mechanical and electrical design of the robots.
The robots are fitted with two differential wheels. The wheels are driven

independently by separated stepper motors. There is no third wheel and the robot is
sustained by a pod. A castor would result in a more complex mechanical design as
well as an increased uncertainty in its dynamical model.

The robots are presently powered by embedded Ni-Cd batteries. The motors are
driven by two H-bridges that are directly powered from the batteries. The on board
controller is a 8-bit RISC microcontroller (Atmel AVR90S4414). All digital
circuitry gets its power from a low dropout linear regulator.
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Two small single frequency RF modules (433 MHz and 418MHz) are used to
communicate with the external global controller. Only one can be used at a time.

5 Future Work

A disclaimer must be made at this point: between now and the competition there
is yet a lot of time to make changes in the described setup. As we test the
performance of each subsystem and find better alternatives we will try to implement
them. We want  the overall system to show a more robust and efficient operation.
There is the possibility of adding some kind kicking device to some of our robots.

The Decision System is, right now, very defensive and not very actively
cooperative in the attack. That is being improved.

6 Conclusions

In this paper we described the 5dpo team and the solutions we found to this
problem. Recognizing the overall system state (the ball position and speed, our
team’s robots’ state and the adversarial robots’ state) using vision is still a very
difficult task. And the quality of the team behavior is very dependent from the
accuracy of that system.

The decision of what to do, even with accurate knowledge of the system status, it
is a major task on its own. The range of options, some discrete and some continuous
has many dimensions and cannot be easily searched. A lot of heuristic rules must be
used to trim the possibilities and the best framework to represent and find them is a
matter that requires still a lot of research.

We hope to achieve a performance level that can leave us with the idea that our
approach to this problem was justified and worthy of more development.
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Abstract. This paper describes the team FU-Fighters that won the sec-
ond place in the RoboCup’99 F180-league competition.
The paper presents the mechanical and electrical design of our robots,
including a kicking device. We also explain the hierarchical control ar-
chitecture we used to generate the behavior of individual agents and the
team. This reactive approach is mainly based on the Dual Dynamics con-
cept developed by H. Jäger. In addition we describe, how the problems
of vision and radio communication have been addressed.

Our group was a first-time participant in the RoboCup competition. Our
main motivation was to use RoboCup as a platform for developing approaches
for problems like vision and control using neural networks and learning [2]. Our
main design goal for RoboCup’99 was to build a reliable team of robots that
utilize innovative kicking devices and that are controlled by a new hierarchical
reactive approach.

1 Mechanical and Electrical Design

Our robots were designed in compliance with the new F180 size regulations.
We built four identical field players and a goal keeper. All robots have sturdy
aluminum frames that protect the sensitive inner parts. They have a differential
drive with two active wheels in the middle and are supported by a passive sphere
that can rotate in any direction. Two Faulhaber DC-motors allow for a maximum
speed of about 1 m/s. The motors have an integrated 19:1 gear and an impulse
generator with 16 ticks per revolution. One distinctive feature of our robots is a
kicking device (Fig. 1) that consists of a rotating plate that can accumulate the
kinetic energy produced by a small motor and release it to the ball on contact.

For local control we use C-Control units from Conrad electronics. They in-
clude a microcontroller Motorola HC05 running at 4 MHz with 8 KB EEPROM
for program storage, two pulse-length modulated outputs for motor control, a
RS-232 serial interface, a free running counter with timer, analog inputs, and
digital I/O. The units are attached to a custom board containing a stabilized
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Fig. 1. Sketch of the kicking device.

power supply, a dual-H-bridge motor driver L298, and a radio transceiver SE200
working in the 433MHz band that can be tuned to 15 channels in 100kHz steps.

The robots receive commands via a wireless serial link with a speed of 9600
baud. The host sends 8-byte packets that include address, control bits, motor
speeds, and checksum. The microcontroller decodes the packets, checks their in-
tegrity, and sets the target values for the control of the motor speeds. No attempt
is made to correct transmission errors, since the packets are sent redundantly.

The robots are powered by 8 + 4 Ni-MH rechargeable mignon batteries. To
be independent from the charging state of the batteries, we implemented a closed
loop control of the motor speeds. The microcontroller counts the impulses from
the motors 122 times per second, computes the differences to the target values,
and adjusts the pulse length ratio for the motor drivers accordingly.

2 Tracking Colored Objects in the Video Input

The only physical sensor for our control software is a S-VHS camera that looks
from above at the playground and outputs a video stream in NTSC format.
Using a PCI-framegrabber we input the images into a PC. We capture RGB-
images of size 640×480 at a rate of 30 fps and interpret them to extract the
relevant information about the world. Since the ball as well as the robots are
color-coded, we designed our vision software to find and track multiple colored
objects. These objects are the orange ball and the robots marked with two
colored dots in addition to the yellow or blue team ball.

To track the objects we predict their positions in the next frame and then
inspect the video image first at a small window centered around the predicted
position. We use an adaptive saturation threshold and intensity thresholds to
separate the objects from the background. The window size is increased and
larger portions of the image are investigated only if an object is not found.

The decision whether or not the object is present is made on the basis of a
quality measure that takes into account the hue and size distances to the model
and geometrical plausibility. When we find the desired objects, we adapt our
model of the world using the estimates for position color, and size.
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Fig. 2. Sketch of the control architecture.

3 Hierarchical Generation of Reactive Behavior

In 1992, the programming language PDL was developed by Steels and Vertom-
men for the stimulus driven control of autonomous agents [5]. This language has
been used by a number of groups working in behavior oriented robotics [4]. It
allows the description of parallel processes that react to sensor readings by influ-
encing actuators. Many primitive behaviors, like taxis, are easily formulated in
such a framework. On the other hand, it is difficult to implement more complex
behaviors in PDL that need information about slow changes in the environment.

The Dual Dynamics control architecture, developed by Herbert Jäger [3],
describes reactive behaviors in a hierarchy of control processes. Each layer of the
system is partitioned into two modules: the activation dynamics that determines
whether or not a behavior tries to influence actuators, and the target dynamics,
that determines strength and direction of that influence. The different levels
of the hierarchy correspond to different time scales. The higher level behaviors
configure the lower level control loops via activation factors that determine the
mode in which the primitive behaviors are. These can produce qualitatively
different reactions if the agent encounters the same stimulus again, but has
changed its mode due to stimuli that it saw in the meantime.
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Our control architecture is based on these ideas, as shown in Figure 2. A
more detailed description is given in [1]. The robots are controlled in closed
loops that use different time scales. We extend the Dual Dynamics scheme by
introducing a third dynamics, namely the perceptual dynamics shown on the
left side. Here, either slow changing physical sensors are plugged in at higher
levels, or readings of fast changing sensors, like the ball position, are aggregated
to slower and longer lasting percepts. Since we use a subsampling in time, we can
afford to implement an increasing number of sensors, behaviors and actuators in
the higher layers without an explosion of computational costs.

The behaviors are constructed in a bottom up fashion: First, processes that
should react quickly to fast changing stimuli are designed. Their critical param-
eters, e.g. a mode parameter or a target position, are determined. When the fast
processes work reliably, the next level can be added to the system. This level
can now influence the environment either directly by moving slow actuators or
indirectly by changing the critical parameters of the processes in the lower level.

Each of our robots is controlled autonomously from the lower levels of the
hierarchy using a local view to the world. For instance, we present the angle and
the distance to the ball and the nearest obstacle to each agent. In the upper
layers of the control system the focus changes. Now we regard the team as the
individual. It has a slow changing global view to the playground and coordinates
the robots as its extremities to reach strategic goals.

4 Summary

We designed robust and fast robots featuring a kicking device, reliable radio
communication, and high speed vision. To generate actions, we implemented a
reactive control architecture with interacting behaviors on different time scales.
The system worked as designed at the RoboCup’99 F180 competition, where we
finished second, next to Big Red from Cornell University.

We thank the companies Conrad ELECTRONICS GmbH, Dr. Fritz Faulhaber
GmbH & Co KG, Siemens ElectroCom Postautomation GmbH, and Lufthansa
Systems Berlin GmbH for their support that made this research possible.
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1 Introduction

Figure 1 describes the overview of our team's system. The concept of our team

is to employ simple, inexpensive robots and to control them by high-speed and

actual vision feedback. The special hardware for color detection is developed and

employed for our vision system to exract coordinates of ball and markers. Global

strategy for the team is realized by rule based logic on the host computer.

Camera
Color Detection
System

Coordinate
Extraction

Determination
of Action Strategy

Radio
Transmitter

PC

PCRobots

Fig. 1. Overview of \Linked99" system

2 Team Development

Team Leader: Junichi Akita

Team Members:

Jun Sese

{ Dept. of Complexity Science and Eng., University of Tokyo, Japan

{ graduate student

{ did not attend the competition

Toshihide Saka

{ Dept. of Architecture, University of Tokyo, Japan

{ undergraduate student

{ did not attend the competition

Masahiro Aono
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3 Sensing

The vision system is composed of two parts; real-time color detection system
implemented by special hardware, and coordinate extraction implemented by
the software processing of PC.

NTSC
 -> RGB

A/D
Conversion

RGB
 -> HSV

Color
Detection

RGB
 -> NTSC

fH=15.7kHz 6bits x 3 18bits -> 16bits

Fig. 2. Structure of real-time color detection system

Figure 2 shows the structure of our real-time color detection system. The
video signal from global vision CCD camera is converted to RGB signal at �rst
and then converted to digial signal of 6bits respectively. The pixel's signal pair
of RGB signal is then converted the pair of HSV, Hue and Saturation and Value,
which is more invariable to lighting condition than RGB which is implemented
by look-up table of 4Mbits ROM. The color information of each pixel expressed
in HSV is then judged the following four color detectors, which each detects that
all of hue, saturation, and value are put in the preset ranges, and converted to
gray NTSC signal according to the color detected, to be captured by gray scale
frame grabber of PC, which is three times faster than full-color frame grabber.
The details of these system will be presented in [1].

The gray-scale image based on color detection generated by previous color
detection system is captured by gray-scale frame grabber, PX610 by PC, and
then they are labeled for each color independently, and then the coordinates
of ball and each marker are calculated as their center of gravity. It is easy to
process these sequences in video frame rate, since it is not needed to process
for color information. The CPU, OS and programming language of the PC are
PentiumII/450MHz, Windows95, and VisualC++4.0, respectively. These coor-
dinate informations are sended to the other PC to determine the robots' action
strategy through Ethernet.
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4 Communication

The host PC for strategy issues motion commands for each robot. The commands
are one byte short format; step go forward, step turn left or right, step go back.
The employed radio module uses frequency of 318MHz, and its transfer bitrate
is 4800bps.

5 Skills

(a) (b)

Fig. 3. Photograph of player robot(a) and goalie robot(b)

We have developed very simple, inexpensive robot, by assuming the high-speed
and actual control based on the information of global vision camera. The player
robot, as shown in Fig.3(a), has a �xed arm to handle the ball when it goes
forward.

Figure 3(b) shows the photograph of developed goalie robot. The goalie robot
has special structure; three ultra-sonic sensors to detect coming ball, one DC mo-
tor and four wheels to move horizontally, and wall detection sensor to recognize
its position aroud the goal.

6 Strategy

Control model of this system is a Hierarchical Behavior Controller with rule-
based decision making processor. This hierarchy consists of three layer; local
controller, behavior rules, strategy-base. The lowest control level: local control is
mounted on robots. This sub system can accept and execute six radio-commands
such as 'go forward', 'turn right'. This process may execute by local processor
(PIC) on each robot.
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To estimate the e�ciency of RoboCup special image processor, strategy is
constructed in a simple style. Global strategy for the team is realized by rule
based logic on the host computer. Robots role is as follows.

1. goalie: 1 robot, have reactive motion control on its local processor, to make
a ball clear just in front of his goal.

2. defense: 1 robot, just help the goalie. The goalie can not kick a ball from area
near the goal to the middle of the pitch, thus the defense robot should kick
it. This robot have ability to play role as forward play. It, however, places
side form like as the goalie to assist him, and will get a position between
goal and ball.

3. forward: 3 robots, make the game in middle of �eld through the opponent
goal. They are in triangle position each other. These robots have each roles;
ie. right wing, left wing, center top. Both side robots pass the ball simply to
the point middle of between center top robot and the opponent's goal.

7 Special Team Features

We have newly developed the custom LSI for fast color detection as preprocessing
for image processing PC, and we developed the very simple, inexpensive robot
to be controled by visual feedback.

8 Conclusion

We employ very simple robot, with the high-speed and actual control based on
the information of global vision camera. The special hardware for color detection
is employed in order to high-speed and actual vision system.

In RoboCup99, we have learned that our motion commands for each robot
does not work well, and we are planing to employ the robot control protorol for
real-time control, such as radio-controlled car, with continuous transimission of
motor states of each robot by host computer.

We are also improve our strategy algorithm, with developing basic library of
robot action.
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1 Introduction

OWARI-BITO team consists of 5 small robots, each of which is sized in 10 cm
wide, 10 cm deep and 17 cm high (except an antenna). The purposes of the
research project are the study on the cooperation among robots, the advanced
local vision system and the robust communication environment, in addition to
be able to win the game.

The competition results in RoboCup 99 was 0 - 3 in the round robin group
C.

2 Team Development

Team Leader: Tomoichi Takahashi
Team Members: Team members are listed in the above title �eld.
Web page http://kiyosu.isc.chubu.ac.jp/robocup

3 Hardware

3.1 Robot

The features of robot hardware are the followings.

{ Two processors are in the robot, named a main processor and a vision proces-
sor, respectively. The main processor controls the robot and communicates
with the host computer. The vision processor processes the images captured

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 675−678, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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by the camera on robot. These processors are connected through the parallel
ports.

{ Two motors drive the robot. Each motor is a DC brush motor with an
encoder.

{ There are twelve proximity sensors and two acceleration sensors. The prox-
imity sensors are composed of an infrared LED and a photo diode. Sensing
range is about 20 cm. Each robot has four sensors both in front and back
side, and two both in left and right side. The acceleration sensors measure
the accelerations in x-direction and y-direction.

{ A radio system uses a spectrum spread method with 2.4 GHz band that is
in accordance with the RCR STD-33A. The maximal communication speed
is 38.4 kbps, however, we use 19.2 kbps communication for ensuring the
reliability. Our radio system has four communication modes. We use one
(host) to many (robots) packet communication mode.

{ The video capturing hardware can capture 30 images (size 323 � 267 pix-
els/image) per second in maximum.

3.2 Host system

A host processor is a typical AT-compatible computer. The host processor com-
putes the team strategy and processes the images captured by the global vision
camera set at the ceiling. A radio communication system is connected to the
processor through a serial line. The operating system for this processor is the
LINUX.

4 Sensing

We employ a global vision system and a local vision system. The global vision
system, which is implemented on the host processor, senses the �eld and cal-
culates the positions of the current robots and ball. The local vision system,
which is implemented on each robot, is employed to track the ball. These vision
systems work exclusively. The timing that the local vision system is invoked is
determined by the strategy process. In this section, we describe a summary of
the global vision process. (See section 8 for local vision system.)

Initial positions of robots and ball are given by human. Once they are given,
the global vision sistem tracks these positions as follows.

{ The world image (size:640� 480pixels) is captured.
{ A local window (size: 71 � 71 pixels) is extracted for each robot and ball.

Its position is determined by the previous image of the center positions of
robots and ball.

{ A new position of robot is determined in the local window. If it misses, the
whole image has to be searched.

The position data are sent to the strategy process.
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5 Communication

In the packet communication mode, each radio system has its own identi�cation
number(ID). We use the master-slave communication, where the host is a master
and the robot is a slave. The host establishes the connection line to a robot
by designating the ID of the robot. The broadcasting communication is also
available, using special ID.

To reduce the communication overhead, �ve move-commands (one for each
robot) are put together into one packet and broadcasted to all the robots. Each
robot gets the packet and extracts his own command. When the robot gets his
move-command, current executing move-command is canceled. Approximately,
a half of the total communication time is reduced, compared with the case of
one packet for each command.

A host processor makes an above packet and sends it to all robots at the
time when the strategy process have determined the motion of each robot. In
our system, this communication is able to occur 15 times per second.

6 Skills

All actions of the robots are planned by the predicted future ball position which
is calculated from the current ball position, moving direction and speed. If none
of our robots keep the ball, two robots which are close to the ball move to the
place where is the ball to get it. In the attacking circumstance, attacking robots
move to the place where they can kick to the opponent goal. In the defending
circumstance, defending robots move to the position between the ball and our
goal to disturb the shoot of the opponent robot. To kick the ball, the robot
moves along the shortest path between the ball and the robot itself. We don't
have special dribble skill now. When the dribble is necessary, the robot repeats
a small kick.

7 Strategy

A strategy of OWARI-BITO is based on the simpli�ed strategy of human soccer.
Distinctive features are the following three points.

{ Each robot is having a basic role such as Forward or Mid�elder. However, it
exibly changes its role depending on the game situation.

{ When our team is not having a ball, two robots which are close to the ball
approach to the ball and try to get it. We call this action "Press".

{ When our robot attacks the opponent goal, if the opponent robots surround
it, it tries to put the ball out to the open space. It makes the other attackers
to have the chance of free shoot.

The basic role of the �ve robots are a Forward (FW), two Mid�elders (MF),
a Defender (DF) and a Goalkeeper (GK). All robots other than GK can change
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their role dynamically in the game. For example, if three of our robots (other
than GK) are in our side, two robots close to the ball change into MFs and try
to press. The remaining robot changes into DF and defends the goal. The role
of the robot is determined by the present position, not by the present role.

The basic strategy is as follows,

Attacking: FW and two MFs attend to the attack. DF and GK remain in our
side to defend the opponent's counter attack. In the opponent side,if MF
keeps the ball, it kicks the ball to the opponent goal direction. FW moves in
front of the opponent goal and catches the ball which the MF passes. If FW
can keep the ball, it shoots immediately. If all three attacking robots move
to the ball, tere will be jammed. To avoid the jam, at least one attacking
robot stands in an open space, away from the ball. The robots, in the jam
area, try to pass the ball to the robot, in the open space. The robot, in the
open space, tries the passing action, if it catches the ball.

Defending: Two MFs, DF and GK attempt the defense, and only FW remains
in the opponent side to make counter attack. In the defense area, two MFs
press the ball. DF moves to the place to disturb the opponent shooting.

8 Special Team Features

There are two kinds of local vision systems, a normal-vision and an omni-vision.
The goal keeper robot and one of mid�elder robots have the omni-vision systems
and remaining robots have the normal vision systems. Each robot has the world
model of the �eld. If he �nds the ball but does not �nd the goal in his eye, he
pushes the ball to the goal using the world model. In case of �nding both the ball
and the goal, he pushes the ball using real model. (Obstacle avoidance algorithm
is not implemented yet.)

9 Conclusion

Main issues for future work are the followings.

{ It is necessary to compensate the positional error caused by the slip. For
example, a compensation using the acceleration sensors, or a compensation
using a GPS-like positioning system should be considered.

{ In a local vision mode, as the landmark such as goals and �eld corners are
often occluded by the other robots, it may happen not to detect the landmark
correctly. A robust algorithm to overcome such a case should be developed.

{ To elaborate the strategy, a precise simulator of the robot motion should be
developed.

This article was processed using the LATEX macro package with LLNCS style
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Abstract. This paper describes the main features of the new Rogi Team and
some research applied focused on dynamics of physical agents. It explains the
vision system, the control system and the robots, so that the research on
dynamical physical agents could be performed.  It presents part of the research
done in physical agents, especially consensus of properly physical decisions
among physical agents, and an example applied to passing.

1 Introduction

Our team started in 1996 at the first robot-soccer competition as the result of a
doctorate course in multiagent systems.  In 1997 and 1998 it took part at the
international workshops held in Japan and Paris. The main goal has been always the
implementation and experimentation in dynamical physical agents and autonomous
systems.   This year a step further towards the platform to develop this type of
research is done

1.1 New Features in the 1999 Generation

The new team has evolved from past generations. This new generation has solved
many important problems existing in previous versions and are more focused to deal
with dynamical physical agents.  Here, dynamical means related to dynamics of the
robots, from the point of view of automatic control.  This generation is designed to let
study further the impact of dynamics of the body in the co-operative world.

� The robots have been improved and its structure has changed in order to have
a better-fit dynamical behaviour for control.

� The new vision system is able to process up to 50 frames/sec, locating ten
robots a and a ball, with a dedicated hardware result of our research.

� A rational physical agent’s approach is operative for robots co-operation, for
instance, applied in passing actions.  This is also result of our research.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 679−682, 2000.
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2 Team Description

The system that implements micro-robot soccer is made up of three parts: robots,
vision system and control system. The vision and control systems are implemented in
two different computers. The control system is also called the host system. The
control system and the vision system are connected by means of a LAN, using TCP/IP
protocol. This fact allows remote users to perform tests over the micro-robots
platform and lets co-operative research.  The vision system provides data to the
control system that analyses the data and takes decisions. The decision is split up into
individual tasks for each robot and is sent to them using a FM emitter at the host
computer.

2.1 Robots’ Description

The robots have on board 8 bits microprocessors 80C552 from Philips and
RAM/EPROM memories of 32kBytes. The robots receive data from the host
computer by means of a FM receiver. The FM receiver is prepared to work with two
frequencies 418/433 MHz in half-duplex communication. The information sent by the
host computer is converted to RS-232C protocol.  The two motors have digital
magnetic encoders with 265 counts per turn. They need 9V to work and consume
1.5W at a nominal speed of 12.300 rpm. 9 batteries of 1.2 V supply the energy.  It is
compensate to have clear dynamics, which is non-linear but linear piece-wise.

2.2 Vision System

A specific hardware has been designed to perform the vision tasks, merging specific
components for image processing (video converters, analog filters, etc.) with multiple
purpose programmable devices (FPGAs). A real time image-processing tool is
obtained, which can be reconfigured to implement different algorithms.

Fig. 1. Top view with the team-colored Ping-Pong ball and orientation patches.

According to RoboCup F-180 League Rules, each robot has to be marked using a
yellow or blue Ping-Pong ball mounted at the center of their top surface. In order to
provide angle orientation, additional color markings are allocated to the top of the
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robots. As shown in Fig. 1, purple and olive-green color patches have been added as
the orientation patches in a basic configuration for our team robots. However, the
robots may incorporate additional color patches to be distinguished from each other.

2.2.1 Algorithm

In order to locate the robots and the ball, the first step consists in their segmentation
from the scene. The discriminatory properties of two color attributes, hue and satura-
tion, are used so as to segment the objects. In this way, a pixel labeling of the image is
obtained.

Since the size of the objects to track is rather small (5-6 pixels of diameter)
mathematical morphology is applied in a 3· 3 neighborhood of the processed pixel.
Erosion and dilation operations are performed at video rate by using the tracking
processor. In this way, particles smaller than the tracked patches are removed from
the image and the remaining blobs are classified. The position and orientation of the 5
robots is computed using the blobs and the knowledge of the robot-patches geometry.
A data association process solves the temporal matching problem at the highest
abstraction level. However, the identification process is executed periodically to
check that the data association has kept track properly of the robots’ locations. As a
last step, the measured locations of the objects are filtered in a sequence of images by
means of an Extended Kalman Filter.

The low-level image processing operations are performed in hardware, while
identification, data association, post-filtering and prediction are implemented in
software. The cycle time is 20 ms, being limited by the PAL video standard.

2.3 Control System

The control system contains the strategy and the team decision making. The control
system, using the positions of the robots and the ball provided by the vision system,
has to determine which is the best decision to score a goal or to prevent the opponent
team from scoring a goal. The system has been implemented using Lab-Windows.
There are some advantages, but some problems have come up using it.

3 Research Challenges

The research is based on physical agents and focuses on the dynamics of the agents.
We try to demonstrate that considering it when deciding prevents from undesirable
situations. Knowing that a controller modifies the dynamics of the agents, we propose
agents that are aware (introspection) of the set of controller their physical body has.

AGENT0 is used as an agent language. In this language an agent is described as an
entity whose state consists of mental components such us beliefs, capabilities, choices
and commitments. In our point of view, the capabilities are precisely the ones that let
us represent the dynamics of the system. We believe that some of the capabilities are
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associated to the control of the system and we proposed them as a way for the agent to
be aware of what it can or cannot do.

As a first approach our research is applied to passing the ball between two robots.
This experiment consists on having to robots with crossing trajectories, that is, the
trajectories have a common point and which will be the meeting point of one robot
and the ball. We consider that there are no obstacles in the trajectories and the robots
have several controllers to move forward in a one-dimensional linear movement. We
know the transfer function of the robots and the ball.

The undesirable situations in this example could be that the robot 2 is too slow to
be in the crossing point at the same time that the ball, or that the robot 1 does not give
the necessary impulse to the ball to arrive to the crossing point, etc. Both robots have
to agree on the time of doing the pass based on the knowledge they have of their
dynamics. To do the pass, robot 1 will apply an impulsive kick to the ball and robot 2
will catch it in the crossing point. We want the ball arrives there at the same time that
robot 2. Thus, the amplitude of the impulse will depend on distance to the meeting
point, on the way in which the ball responds to this impulse (its transfer function) and
on the time needed by robot 2 to arrive to the meeting point. But the latter condition
depends on distance and on the transfer function of robot 2. The way to do it is
modifying the parameters of the controllers. Once agreed, the robot 1 must kick the
ball and robot 2 must be in the crossing point at the same time that the ball.

Fig. 2 Distances went over by robot 2 and ball, the crossing point and the agreed time.

Visit our web page at http://rogiteam.udg.es, especially the demos at
http://rogiteam.udg.es/descrobots.html#sequencies

Crossing point Distance went over by robot 2

Distance went over by the ball

Time agreed by the two agents
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1. Introduction 

TPOTS is a Team of small size robots designed using a hybrid control architecture 
distributed among the robots and the host computer. The major characteristic of the 
RoboCup soccer competition is the dynamic nature of the environment in which 
robots operate. The only static object in the competition field is the field itself. Team 
and opponent robots as well as the ball can be placed anywhere in the field, be it a 
purposeful strategic positioning, a missed action or a forced displacement. This has 
led many researchers to shift from the traditional model-based top down control  [1,2] 
to a reactive behavior based approach [3,4,5,6,7]. Robots need not waste a huge 
amount of resources building maps and generating paths that might prove useless at 
the time of action. Instead robots are supposed to react to the actual changes in the 
environment in a simple stimulus-response manner [8]. However due to the size 
limitations imposed by the RoboCup small robots league (15cm diameter circle) and 
rich visual input, on-board vision proved to be a complex and expensive task.  
The 1999 RoboCup competition was the first world RoboCup experience for TPOTS. 
The team played three games in the round robin stage during which it scored 13 goals 
and conceded 10 (Table 1). 

 
 CMUnited Linked 99 Rogi2 

TPOTS 0-4 9-0 4-6 

Table 1. Temasek Polytechnic RoboCup team-tpots games results 

In this Paper we will describe the overall architecture of  TPOTS. Detailled 
descriprion of the Multi-Agent System (MAS) architecture can be found in [9].  

 

2. TPOTS Development 

Our approach in implementing the control architecture of the robots is based on 
dividing each robot controller into two parts: Embedded agent running on the on-
board processor and situated in the environment (field) and Remote agent running in 
the off-board host computer and situated in an abstract model of the field. The 
embedded agent consists of several reactive behaviors competing with each other 
through the use of activation levels (inhibition and suppression). The main role of the 
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embedded agent is to execute commands issued by the remote agent and navigate 
safely the soccer field while avoiding other robots and obstacles. The remote agent on 
the other hand implements strategies generated by the reasoning module. 

Team Members: 

Nadir Ould Khessal 
• Affiliation:  Temasek Eng. School 
• Country:  Singapore.  
• Position: Lecturer. 
• Attended the competition. 

Sreedharan Gopalsamy 
• Affiliation:  Temasek Eng. School 
• Country:  Singapore.  
• Position: Lecturer. 
• Attended the competition. 

Lim Hock Beng 
• Affiliation:  Temasek Eng. School 
• Country:  Singapore.  
• Position: Lecturer. 
• Did not attend the competition. 
  

Kan Chi Ming, Dominic 
• Affiliation:  Temasek Eng. School 
• Country:  Singapore.  
• Position: Lecturer. 
• Attended the competition. 

Chia Loong Suan, Alex 
• Affiliation:  Temasek Eng. School 
• Country:  Singapore.  
• Position: Technical Staff. 
• Attended the competition. 

Hang ping 
• Affiliation:  Temasek Eng. School 
• Country:  Singapore.  
• Position: Student. 
• Attended the competition. 

3. TPOTS System Architecture 

The system hardware consists of a Pentium host computer, a vision system based on 
Newton labs Cognachrome vision card, RF transmission system and five robots 
(figure 1). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. System Overview 

RF Transmitter 

 

Video 

Radio 

Video 
Camera Cognachrome 

Vision Card 

Player Robot  

684 N.O. Khessal



www.manaraa.com

3.1 On-Board Perception 

Each robot is equipped with three infrared sensors capable of detecting objects within 
the range of 20 cm. The on-board agent to avoid other robots placed in its path uses 
these sensors. 

3.2 Off-Board Perception 

Remote agents use the vision system as their perceptual module. A global vision 
system, which consists of color camcorders and a special image processor 
(MC68332), is used. The system is able to segment and track the robots and ball at a 
high frame rate. Each robot has two color pads. The image processor is trained to see 
the different colors and gives the locations of the center of gravity of the two color 
pads. Hence the orientation and robot position are known. Color pad areas are used to 
distinguish between different robots and minimize latency.  

3.3 Agents Communication 

The host computer transmits commands to the robot via radio transceivers utilizing 
UHF radio waves.  Each robot has its own transceiver and a unique node address.  
The low-powered wireless system transmits less than 1mw of power and is effective 
over distances of 3 to 30 meters.  Two-way communication rates of up to 38.4Kbps 
are possible.  The command set is transmitted as text code piggybacking on the 
transmission protocol.  Commands are sent and received from the transceiver using an 
RS-232 interface. 

4. TPOTS Behaviors and Skills 

4.1 Embedded Agents 

Obstacle avoidance is the main autonomous task done by the robot. Using the three 
infrared sensors, the robot moves away from obstacles using the Avoid Left and Avoid 
right machines. The robot than moves a certain distance until a straight-line path to 
the target position is clear. The remote agent detects that the robot is out of the 
previously computed path and re-computes and transmits a new path.  

4.2 Remote Agents 

Intercept_ball: This machine enables the robot to move behind a predicted ball 
position before kicking it towards a target area. The target area could be the opponent 
goal keeper area (in an attempt to score a goal), a clear area in front of a team member 
(ball passing) or simply the opposite side of the field, in the case of a defending robot. 
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Follow: This machine is designed to keep the robot following a target object. The 
target can be the ball, a team robot or an opponent robot. This is done to keep the 
robot nearer to the ball and therefore in a better position to intercept the ball.   
Homing: Depending on the strategy being executed robots could be required to be 
placed at a certain position for the purpose of forming a defense wall for example.  
 

5. Conclusion and Future Work 

We will continue our research on developing further the distributed MAS 
architecture. However, work towards entering the Melbourne 2000 competition will 
focus on the development of a robust vision system, capable of adapting to the 
varying lighting conditions. 
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Abstract� The VUB AI�lab team is mainly interested in the two loosely
linked aspects of on�board control and heterogeneity� One major e�ort for
fostering both aspects within RoboCup�s small robots league is our de�
velopment of a so�to�say robot construction�kit� allowing to implement a
wide range of players with on�board control� For the �		 competition� the
existing RoboCube controller�hardware has been further improved� In
addition� some solid and precise mechanical building�blocks were devel�
oped� which can easily be mounted on di�erently shaped bottom�plates�
On top of these engineering e�orts� we report here a computational in�
expensive but e
cient algorithm for motion�control� including obstacle
avoidance� Furthermore� we shortly address the issue of increased di
�
culties of coordinating so�to�say multiple teams due to the possible vari�
ations based on heterogeneity� Operational semantics based on abstract
data�types and patter matching capabilities can be a way out of this
problem�

� Introduction

As we already pointed out in a contribution to RoboCup��� �BWB����� RoboCup
is not laid out as a single event� but as a long�term process where robots� con�
cepts� and teams co�evolve through iterated competitions� Within this process�
we belief that two loosely linked aspects are especially important� namely the
exploitation of heterogeneous systems and on�board control�

Heterogeneity is an almost kind of �natural	 aspect for soccer systems� Body
aspects as well a behavioral aspects are typically linked to trade�o
s like for
example speed versus strength� Thus� there are no generally optimal players�
but only suited players for certain situations� Heterogeneity of a team� including
a rich set of players on the bench� allows to adapt the set of players on the �eld
by substitutions much like in real soccer� Furthermore� diversity in the body
features and behavioral aspects of the players plays an important role in the co�
evolutionary process of iterated competitions� leading to constantly improving
teams and scienti�c insights�

On�board control is in so far linked to heterogeneity as it is desirable to have
a kind of construction�kit� which allows to design a wide range of di
erent types
of robot�players� including an easy implementation and change of motor and
mechanical aspects as well as sensor systems� When using �string�puppets	� i�e��
radio�controlled toy�cars with o
�board computation on a host� a support of a
wide range of motor and sensor features is severely restricted due to bandwidth
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limitations� But there is an additional reason for the signi�cance of on�board
control within the RoboCup framework� Namely� RoboCup is an ideal testbed
for the investigation of Autonomous Systems� i�e�� networked embedded devices
with physical interfaces in form of sensors and motors as well as stand�alone
capabilities� This type of devices has in shortest time grown into a signi�cant
market and it will be one of the key technologies of the new millennium�

� The body aspects

For RoboCup���� the VUB AI�lab team focussed on the development of a suited
hardware architecture� which allows to implement a wide range of di�erent
robots� The basic features of this so�called RoboCube�system are described in
�BKW��	� For RoboCup���� the system is further improved and extended�

In addition to improvements on the electronics and computational side� the
mechanical approach for our robots has completely changed� Instead of using
mechanical toy�kits like LEGOTM as we did in the previous year� we developed
a solid but still 
exible solution based on metal components�

Fig� �� The drive unit �left� as a mechanical building�block� which can be integrated
into several di�erent robots like e�g� the one shown on the right�

Keeping the basic philosophy of construction�kits� a �universal� building
block is used for the drive �gure �� left side� of the robots� The drive can be
easily mounted onto di�erently shaped metal bottom�plates� forming the basis
for di�erent body�forms like e�g� the one shown in �gure � on the right side� The
motor�units in the drive exist with di�erent ratios for the planetary gears� such
that several trade�o�s for speed versus torque are possible�

Other components� like e�g� shooting�mechanisms and the RoboCube� are
added to the bottom�plate in a piled�stack�approach� i�e�� four threaded rods
allow to attach several layers of supporting plates�
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� On�board control

Based on these engineering e�orts� it is now possible to implement quite some
di�erent types of robots with on�board control capabilities� But to actually use
them� two major issues have to be solved� namely the software implementation
of on�board control with the limited computational means of the RoboCube and
the coordination of the so�to�say multiple teams due to the possible variations
based on heterogeneity�

In this section� the on�board control is discussed� For a general discussion of
this issue� the interested reader is referred to �BKW����
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Fig� �� A kind of potential �eld for motion�control based on Manhattan distances�
Each cell in the grid shows the distance to a destination �marked accordingly with
Zero� while avoiding obstacles�

For the RoboCup��� team� we signi�cantly increased the amount of process�
ing� which is actually taking place on the robots� In addition to the basic control
of driving and shooting� the complete motion�planning and simple strategies are
computed on the robots themselves�

Especially the motion�planning� including obstacle�avoidance� is with most
common approaches rather computationally expensive� We developed a kind of
potential��eld algorithm based on Manhattan�distances� Given a destination and
a set of arbitrary obstacles� the algorithm computes for each cell of a grid the
distance to the destination while avoiding the obstacles 	�gure 
�� Thus� the cells
can be used as gradients to guide the robot� The algorithm is very fast� namely
linear in the number of cells�

� Team�coordination and heterogeneity

As mentioned before� heterogeneity is an important feature for soccer with hu�
man as much as with robot players� It is the main basis for adaptation of a team�
let it be to di�erent opponent teams within a tournament� or to the general
progress of a particular game� or to very momentary situations� Heterogeneity
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within soccer can range from high�level di�erent roles of players in a team like
forward or defender� down to di�erent body features covering a wide�range of
physical trade�o�s like e�g� speed versus torque�

Straight�forward approaches to team coordination with the expressive power
of �nite state automata are doomed to fail under such a wide�ranges of hetero�
geneity due to the combinatorial explosion of states� Therefore� we investigate
coordination schemes based on operational semantics� which allow an extremely
compact and modular way of specifying team behaviors� One step in this direc�
tion is the Protocol Operational Semantics �POS�� an interaction protocol based
on abstract data�types and patter matching capabilities� So far� it has only been
tested in simulations� but the results are very encouraging� A detailed description
can be found in �OBK����

� Conclusion and Acknowledgments

The paper describes the RoboCup��� small robots league team of the VUB AI�
lab� Our main interest is in on�board control and heterogeneous agents�

The VUB AI�Lab team thanks Sanders Birnie BV as supplier and Maxon
Motors as manufacturer for sponsoring our motor�units� Andreas Birk is a re�
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Abstract. This paper describes theAgilo RoboCuppers 1 { the RoboCup
team of the image understanding group (FG BV) at the Technische Uni-
versit�at M�unchen. With a team of �ve Pioneer 1 robots, equipped with
CCD camera and a single board computer each and coordinated by a
master PC outside the �eld we participate in the Middle Robot League
of the Third International Workshop on RoboCup in Stockholm 1999.
We use a multi-agent based approach to represent di�erent robots and
to encapsulate concurrent tasks within the robots. A fast feature extrac-
tion based on the image processing library HALCON provides the data
necessary for the onboard scene interpretation. In addition, these fea-
tures as well as the odometric data of the robots are sent over the net to
the master PC, where they are veri�ed with regard to consistency and
plausibility and fusioned to one global view of the scene. The results are
distributed to all robots supporting their local planning modules. This
data is also used by the global planning module coordinating the team's
behaviour.

1 Introduction

The aim of our activities on robot soccer is to develop software components,
frameworks, and tools which can be used exibly for several tasks within di�er-
ent scenarios under basic conditions, similar to robot soccer. This can be used
for teaching students in vision, arti�cial intelligence, robotics, and, last but not
least, in developing large dynamic software systems. For this reason, our basic de-
velopment criterion is to use inexpensive, easy extendible standard components
and a standard software environment.

2 Hardware Architecture

Our RoboCup team consists mainly of �ve Pioneer 1 robots [1] each equipped
with a single board computer. They are supported by a master PC or coach,
and one monitor PC for displaying the robot's data and states. Since the team
size was reduced to four robots, the �fth robot is used as a substitute. The
single board computers are mounted on the top of the robots, �rmly �xed {

1 The name is derived from the Agilol�nger, which were the �rst Bavarian ruling
dynasty in the 8th century, with Tassilo as its most famous representative.
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Fig. 1. Hardware architecture.

mechanically and electrically. All robot computers are linked via a 10 Mbps radio
ethernet network [4, 5]. A master computer is located outside the soccer �eld and
is linked to the radio ethernet, too. It can also be used for debugging purposes,
monitoring the robots' planning states and feature extraction processes. The
operating system for all computers is Linux. Figure 1 gives an overview of the
hardware architecture.

Figure 2 (a) shows one of our Pioneer 1 robots. Each of them measures
45 cm� 36 cm� 56 cm in length, width, and height and weighs about 12 kg. In-
side the robot a Motorola microprocessor is in charge for controlling the drive
motors, reading the position encoders, for the seven ultrasonic sonars, and for
communicating with the client. In our case this is a single board computer (EM-
500 from [2]) which is mounted within a box on the topside of the robot. It
is equipped with a Pentium 200 MHz processor, 64MB RAM, 2:5" hard disk,
onboard ethernet and VGA controller, and an inexpensive BT848-based [7] PCI
video capture card [3]. PC and robot are connected via a standard RS232 serial
port. A PAL color CCD camera is mounted on top of the robot console and
linked to the S-VHS input of the video capture card. Gain, shutter time, and
white balance of the camera are adjusted manually.

3 Fundamental Software Concepts

The software architecture of our system is based on several independent modules,
each these performs a speci�c task. Software agents control the modules, they
decide what to do next and are able to adapt the behavior of the modules they
are in charge for according to their current goal. For this, several threads run
in parallel. of our system. The modules are organized hierarchically, within the
main modules basic or intermediate ones can be used. The main modules are
image (sensor) analysis, robot control, local planning, information fusion, and
global planning. The latter two run on the master PC outside the �eld, the others
on the single board computers on the robots. Beside the main modules there are
some auxiliary modules, one for monitoring the robots, extracted sensor data and
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Fig. 2. (a) Odilo { one of our Pioneer 1 robots { and (b) what he percepts of the world
around him.

planning decisions, one for interacting with the system or with particular robots,
and one for supervising the running processes. A large number of basic functions
de�ne fundamental robot behaviors, provide robot data, and realize di�erent
methods for extracting particular sets of vision data. For the communication
between di�erent modules, we strictly distinguish between controlling and data
ow. One module can control another by sending messages to the appropriate
agent. Data accessed by various modules is handled in a di�erent manner. For
this, a special sequence object class was de�ned. This o�ers a consistent concept
for exchanging dynamic data between arbitrary components [9].

4 Vision

The vision module is a key part of the whole system. Given a raw video stream,
the module has to recognize relevant objects in the surrounding world and pro-
vide their positions on the �eld to other modules. This is done with the help of
the image processing library HALCON (formerly known as HORUS [8, 6]). This
tool provides e�cient functions for accessing, processing and analysing iconic
data, including framegrabber access and data management. The framegrabber
interface was extended to features for capturing gray scale images and color
regions at the same time. For this we use the YUV-image data provided by
the video capture card. The color regions can be achieved very fast by a two-
dimensional histogram-based classi�er, which describes color classes as regions
in the UV-plane and uses a brightness intervall as an additional restriction. Gray
scale images, color regions and the extracted data are provided by sequence ob-
jects as described in section 3. As a compromise between accuracy and speed we
capture the images with half the PAL resolution clipping the upper 40 percent.
This results in a resolution of 384 � 172 with a frame rate of 7 to 10 images per
second.

In general, the task of scene interpretation is a very di�cult one. However,
its complexity strongly depends on the context of a scene which has to be inter-
preted. In RoboCup, as it is de�ned in the present, the appearence of relevant
objects is well known. For their recognition, the strictly de�ned constraints of
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Fig. 3. Data ow diagram of the vision module.

color and shape are saved in the model database and can be used. These con-
straints are matched with the extracted image features such as color regions and
line segments (see Fig. 2 (b) and 3).

Besides recognizing relevant objects with the help of the color regions, a sec-
ond task of the image interpretation module is to localize the recognized objects
and to perform a self-localization on the �eld if needed. To localize objects we
use the lowest point of the appropriate color regions over the oor in conjunction
with a known camera pose relative to the robot. From this we can determine
their distance and position relative to the robot. Self-localization is performed
by matching the 3D geometric �eld model to the extracted line segments of the
border lines and { if visible { to a goal. A subpixel accurate edge �lter performed
on the gray-scale image (Y-channel) supplies contours from which, after remov-
ing radial distortions, straight line segments are extracted. Both, an absolute
initial localization as well as a successive re�nement, compensating the error of
the odometric data have been implemented.

Building up and maintaining a RoboCup team is a great challenge and needs
huge personal e�orts and a lot of time. Thus we hope that we will still have
enough resources in future to continue our interesting and promising work.
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1 Introduction

Azzurra Robot Team (ART) is the National Italian Team for F-2000 RoboCup
league, developed within the RoboCup Italia project. ART99 is formed by six
academic groups and Consorzio Padova Ricerche. ART started with RoboCup-
98, and its goal is to exploit the expertise and ideas from all groups in order
to build a team where players have di�erent features (hw and sw), but retain
the ability to coordinate their behaviour within the team. ART99 obtained the
second place in RoboCup-99 F-2000 league, and coordination among players is,
in our view, the most signi�cant achievement of the team.

2 Team Development

In ART99 each group was responsible either of developing a robot and/or of de-
veloping speci�c hw/sw components to be used by the other team groups. Each
group had a local coordinator, typically a Faculty, who is listed �rst, PhD stu-
dents and undergraduate students. The project has been managed by scheduling
regular team meetings, a one-week school (Rome, February 1999), to provide the
necessary background to the students involved in the project, a one-week �nal
preparation stage in Padova.

Team Leader: Daniele Nardi email:nardi@dis.uniroma1.it
TeamMembers:Univ. Genova: Maurizio Piaggio, Antonio Sgorbissa (Phd),

Alessandro Scalzo; Univ. Padova: Enrico Pagello, Alessandro Vaglio, Walter
Zanette, Robert Rosati, Nikita Scattolin, Alberto Speranzon, Roberto Polesel,
Alessandro Modolo, Mattia Lorenzetti, Paolo De Pascalis, Massimo Ferraresso,
Matteo Peluso; Univ. Parma: Giovanni Adorni, Stefano Cagnoni(Fac.), Mon-
ica Mordonini (Phd), Carlo Bernardi, Cristiano Rota; Univ. Palermo: Pietro
? The project has been supported by all the institutions the authors are a�liated with,

Consiglio Nazionale delle Ricerche - Progetto \Robot Calciatori", Facolt�a Ingegneria

\La Sapienza" Roma, Politecnico Milano, Facolt�a Ingegneria Padova, Sony Italia,

Vesta Pneumatics, ImageS, Tekno.
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Storniolo (PhD), Rosario Sorbello (PhD), Carmelo Amoroso, Vito Morreale; Po-
litecnico Milano: Andrea Bonarini, Paolo Meriggi, Michele Lucioni, Paolo Aliv-
erti, Andrea Marangon, Nicoletta Ghironi; Univ. Roma "La Sapienza": Daniele
Nardi, Luca Iocchi(PhD), GianPaoloPucci, Claudio Castelpietra, GiorgioGrisetti,
Alberto Gilio, Luca Luminari, Piero Tramontano, Domenico Mastrantuono.

Web page: http://www.dis.uniroma1.it/�ART

3 Robots

ART99 includes several types of players, that are built on top of two hw bases:
BaseART and Mo2Ro. Below we briey describe them and present the main
features of each type of player that we have developed on top of them.

BaseART was developed in preparation to the 1998 RoboCup by assem-
bling several out-of-the-shelf, low-cost components, with the goal of keeping it
very standard in terms of hw and, therefore, easily extensible with new devices.
The mobile basis is the Pioneer 1, where we added a conventional PC, running
LINUX, for onboard computing. We have reached a compromise between weight
and power consumption, where the player has enough autonomy to play games.
We also have a wireless high bandwidth connection that is used during develop-
ment to obtain accurate information about the situation onboard, and supports
the exchange of information among the players during the game, but it is not
used to transfer raw data among the players. The vision system which is consti-
tuted by a low-cost frame grabber based on the BT848. At Robocup-99 we have
used a Sony XC-999P color camera with about 100o aperture angle. The cam-
eras are positioned di�erently on di�erent types of players. Finally, BaseART
provides a kicking device driven by air pressure, with two actuators di�erently
arranged on the players, that enable di�erent types of kicks (left, right or both).

Mo2Ro is a Modular Mobile Robot base designed and implemented at Po-
litecnico di Milano Arti�cial Intelligence and Robotics Lab. as a general purpose
robot matching the Robocup speci�cations, but also to support other needs.
Mo

2
Ro can run up to 60 cm/sec, and may have more then 40 kg as payload.

The hw is functionally layered, and any module can be easily added or removed.
At the �rst level, we have mounted, in the di�erent implementations of Mo2Ro:
a sonar belt, bumpers, encoders, and di�erent vision sensors; among these: two
di�erent types of omnidirectional sensors [3], and a camera mounted on top of a
5 DOF arm. Among the actuators that we have adopted up to now, we have two
DC motors for movement, a kicker, and the arm. On the second layer, control
and data acquisition can be done either by commercial or by home made cards,
including one based on a Motorola 68HC12 fuzzy chip, for low level control.

TinoZo� is the goal keeper of ART99. The physical layout of the goalie is
considerably di�erent from the other players' structure. This goalie has a vision
system based on two wide-angle cameras placed on top of it, having an aperture
angle of about 70o vertically and 110o horizontally. This allows the robot to
extend its �eld of view to over 200o, considering that the �elds of view of the
two cameras overlap by about 20o in the central region right in front of the
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goalie. As for its cinematics, the two driving wheels are located in the middle of
the chassis, one on the front and the other on the rear. This makes translational
movements more precise and accidental turns less likely. Balance is ensured by
a pair of spheres, on which the robot leans, that are positioned along an axis at
90o to the wheel axis, and passing through its center. Turning is possible because
the two wheels can be operated independently. Just ahead of the front wheel is
a pneumatic kick device, whose air hangs just above. The vision system and the
self-localization method developed for it are described in [1].

RonalTino and TotTino are middle�eld players developed on BaseART.
Their essential features from the hw viewpoint are: a specialized vision system
with a camera rotating on 360o and infrared sensors to better control the kicking
when the ball is close to the kickers. The control system of these players is
designed on top of SAPHIRA, an environment developed to implement the robot
control both in terms of actions, realized as programs in the Colbert language,
and in terms of fuzzy behaviours, that are executed by a fuzzy controller. In
[5] we discuss our experience in the design of the control system for RoboCup
based on fuzzy rules. We have developed several tools to support the designer
in the debugging and experimental activities. We also implemented several self-
localization methods relying on the vision-based recognition of the goals, on the
information coming from the compass and on the vision-based analysis of the
lines in the �eld [6]. We have compared them trying to identify the conditions
under which each source of information for localizing the player is reliable.

Rel�e,Bart andHomer are middle�eld players, developed on baseART, pro-
vided with di�erent settings for the kicking device and characterised by a novel
sw planning and control architecture based on the ETHNOS real-time program-
ming environment [8]. ETHNOS exploits the Linux RT multithreaded operating
system and provides additional support from di�erent points of view. From the
communication perspective it supports and optimises transparent inter-robot in-
formation exchange and co-ordination across wireless media. From the runtime
perspective it provides support for the real-time execution of periodic, sporadic
and background tasks (called Experts), schedulability analysis, event handling,
and resource allocation and synchronisation. From the sw engineering perspec-
tive it provides support for rapid development, platform independence and sw
integration and re-use. The whole set of sw modules for controlling the players,
managing communication, as well as the vision system, have been developed
over the ETHNOS' Kernel. ETHNOS' Kernel has been selected because of the
exibility of its architecture, allowing the real time scheduling of both occasional
Experts, that are conditionally activated, such as the arbitration module, and
periodic Experts (i.e. Vision Experts, and Map Building Experts).

Rullit is implemented on a Mo2Ro base. Its design is centered around the
omnidirectional vision sensor we have implemented for Robocup. It consists of a
mirror studied to exploit at best all the camera de�nition both in the neighbor-
ough of the robot and at a large distance: the ball corresponds to a reasonable
number of pixels from 10 to 400 cm all around the robot. The vision system is
implemented mimicking natural mechanisms for fast tracking and color interpre-
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tation: we have distances from all the visible, classi�ed objects at a rate higher
than 20 frames/sec. This makes it possible to implement behaviors and strate-
gies that take advantage of the knowledge about most of what surrounds the
robot. A self-localization module also has enough reliable information to provide
an approximate, but satisfactory extimation of the position in most of the sit-
uations. Behavior modules are implemented in ETHNOS and a fuzzy low-level
control system provides reliable actuation to the fuzzy behaviors.

4 Special Team Features and Conclusion

The most characterizing feature of ART99 has been the ability to coordinate the
behaviour of players developed by di�erent groups on di�erent hw and on di�er-
ent sw platforms. This variety originates from the organization of the project at
a national level, involving several research groups each one bringing its technical
solutions. Coordination has been achieved through a communication layer based
on broadcast TCP and on a coordination protocol based on the exchange of
information concerning the state of the world and the robot's intentions. Such
information was used both to adjust the robot's viewpoint of the world and
to dynamically assign the role of each player (excluding the goalie). We have
also set up the protocol to allow for di�erent team strategies, but we have not
actually adopted this feature during the competition.

Not withstanding the di�culties that we had to overcome to coordinate the
activities of groups operating in di�erent sites, we had two major outcomes
from a nation-wide project. The �rst one is that the non-homogeneity of the
players has been an advantage, especially considering that the Pioneer-1 based
architectures have been pushed at the maximum of their capabilities. The second
outcome is the focus on coordination issues that have been critical for the success
of the overall team.
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Abstract. This paper presents the hardware and software design princi-
ples of the medium size RoboCup Team CoPS which are developed by the
image understanding group at the Institute for Parallel and Distributed
High Performance Systems (IPVR) of the University of Stuttgart. By
adapting already successfully tested multiagent software concepts by our
group to the domain of robotic soccer we intend to improve those con-
cepts at the field of realtime applications with uncertain sensory data.

1 Introduction

Multiagent theory has become a popular research area in the context of artifi-
cial intelligence. Although applied to many domains, the full potential of this
paradigm developes especially in situations where decisions have to to be made
upon uncertain data or partial information as e.g. in robotics. Deficiencies of
a single agent in perceiving its environment and having only partial knowledge
about its surroundings shall be compensated by its ability to exchange informa-
tion with other agents.

Furthermore multiagent systems support the idea of the whole being more
than the sum of its parts, meaning that the problem solving potential of a
multiagent system exceeds by far the capabilities of the agents within the system.
This can be achieved by providing the agents with proper communicational
abilities to negotiate and coordinate their actions.

The research group Image Understanding of the Institute for Parallel
and Distributed High Performance Systems has been working for several
years in the field of multiagent-systems developing a multiagent architecture
[1], a theoretical framework for cooperating agents [2] and applying cooperative
concepts in computer vision [3]. With our medium size robotic soccer team CoPS
(Cooperative Soccer Playing Robots) those developed concepts are tested and
adapted to the real world application of a soccer match.

2 Hardware Equipment

Our RoboCup Team consists of 5 Nomad robots of type Super Scout equipped
with additional sensorics and a kicking device. The onboard computer system of
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the Super Scouts consists of a Pentium 233 MMX with 64 MB and a hard disc
of 4 GB capacity. The two wheel differential drive allows robot motion with a
maximum speed of 1m/s and an acceleration of 2m/s2.

Each of these robots is already equipped with odometric sensors, a tactile
bumper ring of 6 independent sensors and 16 ultrasonic sensors arranged around
the outside perimeter of the robot. The 6 tactile sensors allow a coarse localiza-
tion of physical contacts with the environment in the front-left/center/right or
the rear-left/center/right of the robot.

The ultrasonic sensors are merely used for obstacle avoidance purposes. Nev-
ertheless, there are situations where physical contacts with the environment are
inevitable. In those cases the bumper sensor information is needed to react ap-
propriately (e.g. stopping a backward movement, if the bumper sensor in the
rear is activated).

Ultrasonic

Front

Rear

Bumpers

Fig. 1. Pre-installed Sensorics of the Super Scout

2.1 Modifications and additions

We installed a 1/3′′-Chip CCD camera with a 752x582 resolution delivering a
video signal to a MATROX frame grabber on the Pentium board. By image
processing algorithms the ball is extracted from the grabbed pictures and its
current position relative to the robot is estimated.

As the precision of the odometric sensors degrades constantly with every
movement of the robot, we equipped each robot with a SICK laser range finder 1

for a more robust and exact self localization. Within an angle of 180◦ the range
finder provides depth information with a resolution of 0.5◦ and an accuracy of
5cm. To derive the actual position from the laser data the measured laser image
is iteratively rotated and shifted until it fits best a predefined model of the
football field. For a faster computation of the robot’s position by laser we make
use of the odometric data which is taken as starting point for the iterative search.
After accomplishing the self localization the odometric values are updated with
the new values. However, because of this rather time consuming procedure, a
localization by laser should be applied as rarely as possible.

For further computational power a Toshiba Portégé 7010 CT Laptop was
mounted on top each robot. The Pentium board as well as the notebook are

1 We’d like to thank the SICK AG,Germany for lending us three Laser Range Finders
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Radio-Ethernet

Ultrasonic-Sensors

Bumper ring

Laptop 

Laser Scanner 

Camera 

Kicking Device 

Fig. 2. Equipment of a soccer robot

connected to a radio-ethernet HUB enabling communication between the board
and the laptop as well as communication with other robot agents.

For passing and kicking the ball we constructed a special kicking device which
is driven by two solenoids. The camera, laser range finder and kicking device are
mounted towards the front of the robot players. Only the goalkeeper’s sensors
are shifted by 90◦ as it only moves unidirectionally forwards or backwards to
defend the goal.

3 Software Concepts

3.1 Agent Architecture

In our software model each robot consists of a set of concurrent software modules,
so called elementary agents (EA). Each EA has special plans to perform tasks
which can be requested by other elementary agents. We classify EAs into three
categories according to the level of abstraction of the tasks they perform.

EAs concerned with simple control tasks of the sensors and actuators are
situated at the lowest layer within the architecture, the reflexive layer. Re-
flexive tasks generally involve only simple planning or no planning at all, guar-
anteeing an immediate response on a request. The Pilot-EA e.g. performs tasks
like driving a given route straight ahead and rotation by a given angle, while
the Localizer-EA determines the current position by odometric and laser range
finder data.

More complex tasks are performed by the EAs at the tactical layer of
our software architecture. An EA concerned with scene-detection aggregates
and evaluates information from the sensors of a robot and builds a model of
the environment which can be requested by other agents. A navigator-EA, also
located at this level and responsible for vehicle control, is concerned with tasks
like getting the ball or moving towards the goal. Planning such tasks requires
information about the environment which is provided by the scene-detection.
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EA EA EA.  .  .  .

EA EA EA.  .  .  .

EA EA EA.  .  .  .

EA : Elementary Agent

 : Communication/Task Request

Strategical Layer

Reflexive Layer

Tactical Layer

Fig. 3. Cooperative Agent Architecture

Finally, at the strategical layer, the Strategist-EA is concerned with long term
goals and team coordination. It generally has to react only on external signals
like e.g. start of the game, goal and end of the game. All EAs can send task-
requests to each other within the same robot as well as to elementary agents
of other robots. Thus, data-uncertainties concerning the environment can be
compensated and a means for coordinating joint actions is provided. For a more
detailed description of our software architecture we refer to our technical paper
[4].

3.2 Implementation Issues

The elementary agents were all designed as separate multi threaded processes
on a LINUX system, a communication thread waiting for task requests from
other agents and further executional threads processing requested tasks. For
interagent communication we used the freely available CORBA implementation
MICO which facilitated the distributed agent modelling a lot.

References

1. P. Levi, M. Becht, R. Lafrenz, and M. Muscholl. COMROS - A Multi-Agent Robot
Architecture. In DARS 3. Springer-Verlag, 1998.

2. M. Becht, M. Muscholl, and P. Levi. Transformable multi-agent systems: A specifi-
cation language for cooperation processes. In Proceedings of the World Automation
Congress (WAC), Sixth International Symposium on Manufacturing with Applica-
tions (ISOMA), 1998.

3. N. Oswald and P. Levi. Cooperative vision in a multi-agent architecture. In LNCS,
volume 1310, pages 709–716. Springer-Verlag, 1997.
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1 Introduction

One of the interesting challenges in designing a successful robotic soccer team
is the need to cover the entire loop from sensing over deliberation to acting.
For example, successful ball passing needs good estimations of the position and
velocity of the other players and the ball, projections into the future, planning
ahead in order to create and exploit opportunities, and, �nally, it requires to act
accordingly.

One of our main goals in participating in RoboCup'99 was to enhance the de-
sign of our team CS Freiburg [5], which participated successfully in RoboCup'98
[1], in a way such that the robots can pass balls and are more exible in their role
assignment. For this purpose, we worked on enhancing the sensor data gathering
and sensor data interpretation components, redesigned the deliberation compo-
nents, and re�ned the behavior-based control module. The hardware design is
basically the same. While we are aware of the fact that there are better alterna-
tives for the basic platform and the kicker design, we decided to live with their
limitations because they have proved to be reliable and robust enough for our
purposes.

In RoboCup'99, our team lost the �rst game in its entire history, the semi-
�nal against the Italian team. Nevertheless, we count the game as a success since
this game was a pleasure to watch. In addition, we were able to demonstrate our
ability to pass a ball (intentionally!). All in all, we came out as the 3rd in this
competition. Counting our 1st place in RoboCup'98 (July 1998), the 1st place
in the German open VISION RoboCup'98 (October 1998), and the 1st place in
the German open VISION RoboCup'99 (October 1999), CS Freiburg is one of
the most successful robotic soccer teams.

2 Team Development

Bernhard Nebel is head of the team, Ste�en Gutmann is the main designer and
coordinator of the development team, and Wolfgang Hatzack is responsible for
the software development process, the global fusion component, and the user

? This work has been partially supported by Deutsche Forschungsgemeinschaft (DFG)
as part of the graduate school on Human and Machine Intelligence, by Medien- und

Filmgesellschaft Baden-W�urttemberg mbH (MFG), and by SICK AG, who donated
a set of new generation laser range �nders.
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interface. In addition, the following graduate students (re-) designed and im-
plemented components of the system. Boris Bauer and Andreas Hill (behavior
redesign), Markus Dietl (global fusion, in particular ball position estimation),
Burkhard D�ummler (integration of new laser scanners), Immanuel Herrmann
(all mechanical components, in particular kicker design), Kornel Marko (sim-
ulator), Christian Reetz (tactical decision making and behaviors), Augustinus
Topor (path planning), and Maximilian Thiel (vision and low-level interfaces to
the Cognachrome board).

3 Robots

The robot hardware we use is described in detail [5]. As in last year's compe-
tition, we used Pioneer 1 robots enhanced by custom-built kickers, SICK laser
scanners, and the Cognachrome vision system. For local information process-
ing we used Librettos 110CT. For communication between the robots and the
o�-�eld computer, the WaveLan radio ethernet was employed.

4 Perception

The main sensors we use are laser range �nders (now the new LMS 200 range
�nders, which have an accuracy of 1cm) and the commercially available Cog-

nachrome vision system [5]. In the '98 team design we used only 5 laser scans
and 8 frames per second, although the devices could give us 35 laser scans and up
to 60 frames per second. Furthermore, we only had very inaccurate time stamps
for the measurements. In order to raise the data rate to the maximal possi-
ble rate, we modi�ed the Cognachrome software and implemented new modules
for gathering the data. Additionally, we started to use a real-time extension of
Linux | RTLinux [2] | in order to cope with the high data rate from the laser
range �nder (500 KBaud) and to assign millisecond accurate time stamps to all
measurements. Using the higher data rate, we got much better estimates for the
velocity of moving objects on the �eld.

While self-localization based on the laser range �nders give us very accurate
and robust estimations of our own positions [6], the estimations of the ball is
not very accurate. In the vision module, we now use the shape of the ball to
exclude false positives and to increase the accuracy of the estimation of the ball
position. Additionally, in order to compensate for the lack of stereo vision, we
use the entire group of robots to estimate the ball position more reliably and
precisely than any single robot with monocular vision can do using ideas from
[4].

5 World Model

The world model is similar to the one we developed for RoboCup'98 [5]. Each
robot builds a local world model about its own position on the �eld, the ball
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position, and the position of other players. This model is extended by the re-
sults of the global fusion component that runs on the o�-�eld computer and
combines all estimates from all other players. While this component gives much
more accurate estimations, in particular of the ball position, and enables us to
distinguish friends and foes, it is always a bit out-dated (100{200 msec).

6 Communication

Our robots communicate { using the WaveLan radio ethernet { in order to build
up the global world model, to negotiate about which robot is going to the ball,
and to initiate ball passing.

7 Skills

The basic ball handling skills are, from our experience, very important. However,
it is very diÆcult to implement them in a robust way. For example, when arriving
in Stockholm we noticed that our behaviors had to be tuned to the carpet
which was signi�cantly di�erent from the one we used on our exercise �eld in
Freiburg. While one robot can handle a ball usually adequately, we were not able
to implement a reliable ball intercepting behavior because the responsiveness of
the Pioneer is not adequate.

8 Strategy and Tactics

One of the main di�erences to our '98 team is that we use now a more principled
way for choosing actions. We use an approach based on behavior networks as
developed by Maes [7] and re�ned for the purpose of playing (simulated) robotic
soccer by Dorer [3]. This approach enabled us to express our tactics in much
more modular and extensible way so that we were able to modify our tactics in
a signi�cant way even during the competition in Stockholm. Furthermore, we
extended our cooperative play approach. First of all, we do not have �xed areas
of competence anymore, but roles that can be �lled (and reassigned), such as
defender, mid-�elder, and forward. In connection with that, the players negotiate
which robot is going to the ball. Secondly, we have true cooperative play when
the ball has to be passed. The player possessing the ball calls for a team mate
to go to good position and plays the ball when the team mate signals that it has
reached this position. Another signi�cant di�erence to the '98 team is our new
path planning component. Now we use a potential �eld approach that tries to
stay away from obstacles, while in 1998 we used a geometric path planner that
tried to compute the shortest path.

9 Special Team Features

Our special feature used to be that we use laser range �nders in order to do self-
localization and object recognition [5,6]. This year, the teams from Stuttgart and
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T�ubingen used laser range �nders as well. As it turned out, laser range �nders
alone do not guarantee success.

Furthermore, other teams, such as the Italian and the Munich team demon-
strated that reliable and accurate self-localization can be done solely based on
vision. Although we demonstrated that our team is still competitive, the other
teams proved to be very good (either at RoboCup'99 or the German open VI-
SION RoboCup'99). In particular, we noticed that the factor of speed (who is
�rst at the ball?) seems to become a crucial issue once the sensor interpretation
and world modeling problem appears to be \solved."

10 Conclusion

Although we were satis�ed (well, . . . ) with our performance at RoboCup'99,
there are, of course, a number of points where our team can be improved. Some
of these points are on an abstract level such as model-based object recognition,
cooperative path planning, situation adapted placement of players, adaptable
tactics, more adaptive vision, and so on. Other points are on the hardware level
such as improving the responsiveness and speed of our players and improving
the robustness of the vision (using other cameras and vision hardware), building
better kickers, etc. Which of these points we are able address until the next
competition is not clear. However, we intend to participate in the next RoboCup
and hope to increase th level of play again.
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Abstract. The annual Robocup soccer competition is an excellent op-
portunity for our robotics and agent research. We view the competition
as a rigorous testbed for our methods and a unique way of validating
our ideas. After two years of competition, we have begun to understand
what works (we won the competition in Tokyo 97) and what does not
work (we failed to advance to the second round in Paris 98). This paper
presents an overview of our goals in Robocup, our philosophy in building
soccer playing robots and the methods we are employing in our e�orts.

1 Introduction

The annual Robocup soccer competition is an excellent opportunity for our
robotics and agent research. We view the competition as a rigorous testbed for
our methods and a unique way of validating our ideas. As everyone knows, it is
often easy to build robots and program them with algorithms that work well in
controlled environments. However, in order to build robots that are robust and
exible, we feel it is essential to be able to test these ideas in more challenging
arenas. Robocup provides us with such an environment. We have learned a great
deal from two years of experience in the Robocup competition. We have begun
to understand what works (we won the competition in Tokyo 97) and what does
not work (we failed to advance to the second round in Paris 98). Using this
experience, we plan to �eld a team of robots in Stockholm this year that will
showcase our abilities in building autonomous physical agents and the state-of-
the-art in robotic soccer.

2 Philosopy and Goals

Our primary goal in the Robocup project is to build autonomous physical robots
that can function robustly in a challenging environment. Obviously, this implies
two things about our robots:

Requirement 1: They must be autonomous.
Requirement 2: They must be robust.
These requirements have signi�cant implications on the methodology we use

to build and program our robots. In particular, Requirement 1 implies that pro-
cessing must be distributed and on-board. No remote computing or centralized
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control is allowed. Requirement 2 implies that algorithms and hardware must
be simple enough to guarantee reliability. Indeed, a guiding philosophy in build-
ing these robots is to favor robustness over sophistication. However this does
not mean that we are satis�ed with simple robots. Instead, we see our robots
as evolving, becoming more advanced every year. (In fact our robots from two
years ago already seem arcane to us.) This is an ongoing process and we continue
to make signi�cant improvements.

Adhering to the requirements outlined above, our e�orts can be decomposed
into three speci�c specialties; hardware, vision and learning. Section 2 below
describes the hardware of our physical robots, section 3 describes our vision
system and section 4 describes learning. Section 5 has a brief description of our
soccer playing algorithm.

3 Hardware

Unlike many of the other teams at Robocup in previous years, our robots are
entirely constructed from scratch and by our team. We feel this is a signi�cant
strong point of our robots and an area of expertise that our team brings to the
competition. The exibility to modify our custom-built robots gives us an added
dimension for experimentation. As we learn more about what capabilities are
needed by an autonomous physical agent interacting with its environment, we
are able to easily adapt and extend our custom-built robots. (For example, in
the past two years alone, we have been able to add dual cameras, replace motors,
and redesign the base.) The next paragraph describes the hardware of our robots
in detail.

The base of each robot is a modi�ed 4-wheel, 2x4 drive DC model car. Specif-
ically, we have lowered and widened the base for added stability. The wheels are
independently controlled, allowing in-place turning and easy maneuverability.
We have replaced the stock motors with stronger, heavy-duty motors to support
the increased weight of the car. Mounted above the base is an on-board com-
puter. It is an all-in-one 133MHz 586 CPU board extensible to connect various
I/O devices. Attached to the top of the body are twin commercial digital color
QuickCam cameras made by Connectix Corp. One faces forward, the other back-
ward. Also, we have a�xed �sh-eye lenses to each camera to provide a wide-angle
view of the environment. The two drive motors are independently controlled by
the on-board computer through two serial ports. The hardware interface between
the serial ports and the motor control circuits are custom built by our team. The
images from the cameras are sent into the computer through a parallel port. On
board are three batteries, one for each of the two motors and one for the CPU
and cameras.

This year, we plan to incorporate additional hardware. In particular, we are
going to extend the sensory capabilities of the robot by adding touch sensors to
the body. This will allow the robot to avoid obstacles more e�ectively. Also, we
are going to add shaft encoders. These devices allow the robot to measure the
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actual revolution of the wheels. We hope this will allow the robot to move about
more accurately.

4 Vision

We view color-based vision as one of salient challenges in the Robocup initiative
and one of the scienti�c issues on which we intend to focus. Building an accurate,
reliable vision system that can work under a variety of conditions is one of
our team's primary goals. We are continually improving this component of our
robots.The following describes our current vision system.

Our vision system is entirely custom-built. It is a specialized software com-
ponent developed speci�cally for detecting balls, goals and other robots. Visual
information is extracted from an image of 658x496 RGB pixels, received from
the on-board camera via a set of basic routines from a free package called CQ-
CAM, provided by Patrick Reynolds from the University of Virginia. Since the
on-board computing resources for an integrated robot are very limited, it is a
challenge to design and implement a vision system that is fast and reliable. In
order to make the recognition procedure fast, we have developed a sample-based
method that can quickly focus attention on certain objects. Depending on the
object that needs to be identi�ed, this method will automatically select certain
number of rows or columns in an area of the frame where the object is most likely
to be located. For example, to search for a ball in a frame, this method will se-
lectively search only a few horizontal rows in the lower part of the frame. If some
of these rows contain segments that are red, then the program will report the
existence of the ball (recall that the ball is painted red). Using this method, the
speed to reliably detect and identify objects, including capture time, is greatly
improved; we have reached frame rates of up to 6 images per second.

A signi�cant drawback of our current vision system is its sensitivity to light-
ing conditions. Its parameters must be hand-tuned to a speci�c environment
and this is a time consuming task. We are currently exploring more automated
approaches that will reduce this burdensome task.

5 Learning

Any robot situated in a dynamic environment must be able to discover new
things at run-time.We view autonomous learning as our holy grail and the dream
that we are striving for. We also consider it the most di�cult scienti�c issue.
There are many well-known learning algorithms that work well in simulations or
on a desktop, but what happens when you attempt to run these algorithms on a
physical, situated robot? In our Robocup project, we have found that there is a
large gap. In particular, we found that our e�orts in learning have been limited
by the previous two areas, hardware and vision. But we feel that we are �nally
beginning to achieve a critical mass in those areas to allow implementation of on-
board learning algorithms. Some of our team members are actively involved in
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research in the �eld of multiagent learning and our team has signi�cant expertise
in the area of agent learning. We are trying to apply this work to our physical
robots as a validation of the research.

6 Programming Approach

Our robotic soccer team consists of four identical robots. They all share the same
general architecture and basic hardware. However, they di�er in their program-
ming. We have developed three specialized roles; the forward role, the defender
role and the goalie role. Each role consists of a set of behaviors organized as
a state machine. For example, the forward role contains a shoot ball behavior,
dribble ball behavior, a search for ball behavior, etc. The state transitions occur
in response to percepts from the environment. For example, the forward will tran-
sition from the search for ball behavior to the shoot ball behavior if it detects
the ball and the goal from its sensory input. At game time, each robot is loaded
with the program for the role it has been assigned. Note that each robot has
the integrated physical abilities to play any role (i.e. detect ball, move forward,
turn, etc...). We feel this is a natural, exible, e�cient approach to programming
the robots to play soccer.

7 Conclusion

In summary, we have stated that our primary goal is to advance the state-of-art
in building autonomous, robust physical robots. We aim to accomplish this goal
by focusing on three important areas; physical hardware, robot vision and agent
learning. We view Robocup as an exciting, rigorous testbed for our project and
hope to prove the viability of our ideas and approaches by success in the soccer
tournaments.

This article was processed using the LaTEX macro package with LLNCS style
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Description of the GMD RoboCup-99 Team

Ansgar Bredenfeld, Wolf Göhring, Horst Günter, Herbert Jaeger, Hans-Ulrich
Kobialka, Paul-Gerhard Plöger, Peter Schöll, Andrea Siegberg, Arend Streit,

Christian Verbeek, and Jörg Wilberg

GMD, Sankt Augustin, Germany

Abstract. This article gives a brief sketch of the scientific and engi-
neering approach taken at the GMD RoboCup Team. We sketch (i) the
robot hardware, (ii) the “Dual Dyanmics” model of behavior control that
we develop, and (iii) the integrated “Dual Dynamics Designer” environ-
ment that we use for programming, simulation, documentation, and code
generation.

1 Introduction

Kicking a ball into the right direction is a very hard task for robots, and designing
such robots is an equally hard task for human engineers. From a traditional
engineering perspective, it cries out for a modularized, hybrid approach.

However, there are indications that the classical divide-and-conquer approach
is not fully appropriate for football-playing robots [2]. Classical modular system
consist of subsystems that communicate with each other over relatively narrow
channels according to strict protocols, hiding from each other most of what is
going on inside them. In our opinion, this kind of modularity is too inflexible to
enable the kind of swift, “holistic”, dynamic responses required from a football
robot.

Thus, a fundamental challenge for mobile robotics is to reconcile, (i) the
need for some sort of modular design, which results from the necessity of bringing
together diverse techniques, with (ii) the “holistic” way in which the robot should
respond to the situation.

At the Behavior Engineering (BE) research group at GMD we explicitly
address this challenge. On the robot side, we develop a mathematical model
of a behavior control system which aims at an integration of modularity and
hierarchical structuring with the flexibility of self-organizing dynamical systems.
This is the Dual Dynamics (DD) model [3]. On the other hand, we develop and
utilize a design tool that fosters a close collaboration of engineers, by providing
everyone with a unified access to the the entire robot control system under
construction. This is the Dual Dynamics Designer (DDD) tool [1].

In this article, we first describe our robot hardware (Section 2), then give a
quick overview of the DD model (Section 3), and finally describe the DDD tool
(Section 4).

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 711−714, 2000.
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2 Our robots

We have built our robots from scratch1. They feature the following equipment:

PC and wavelan. Each robot carries a small laptop Pentium PC and a wave-
lan ethernet card.

Micro-controllers. Three C 167 micro-controllers host elementary sensor in-
terfacing and motor control routines.

CAN communication. The computer components are linked to each other
via a CAN-bus.

Vision system Our vision system is a Newton Lab “Cognachrome” system
mounted on a pan unit.

Obstacle avoidance sensors. A bumper ring features custom-built force de-
tectors with a wide measuring range. For detecting distant objects (up to 60
cm), an IR-based range detector (exploiting triangulation) is mounted on a
“radar”-like sweeping servo.

Motor and chassis. We use two 40 Watt, high-quality Maxon motors that are
mounted on a very solid, mill-cut aluminium frame.

Figure 1 shows one of our robots in a pose that is reminiscent of Rodin’s
thinker.

Fig. 1. One of our robots and one of our balls.

Morale. Building and maintaining one’s own brand of robots, as opposed to
buying an off-the-shelf system, does not make life easier, nor cheaper. Nobody
knows so well how the perfect robot should be made as the ones that know all
the loose wires by name, and have no time and money left to build the perfect
one.
1 We are indebted to Karl-Ludwig Paap and his group for their generous assistance
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3 Our formalism

The Dual Dynamics scheme is a mathematical model of a behavior control system
for autonomous mobile robots. It has grown from three roots: the behavior-based
approach to robotics, the dynamical systems approach to cognition, and the
mathematical theory of self-organizing dynamical systems [3].

A DD model specifies a collection of behaviors as a comprehensive dynamical
system. It consists of many coupled subsystems, each of which is responsible
for controlling a particular behavior. These behavior subsystems are specified
through ordinary differential equations.

Behaviors are ordered in levels in the DD scheme. At the bottom level of a
DD behavior hierarchy, one finds elementary behaviors. These are sensomotoric
coordinations with direct access to external sensor data and actuators. Typical
examples are kick and bumpRetract. Higher levels are constituted by increas-
ingly comprehensive behaviors. They also have access to sensoric information but
cannot directly activate actuators. Typical examples are attack and defend.

Elementary behaviors are made from two subsystems. This has given the
approach its name, “dual dynamics”.

The first of these subsystems is called the target dynamics. It calculates target
trajectories for all relevant actuators.

The other subsystem of an elementary behavior is its activation dynamics.
It regulates a single variable, the behavior’s activation.

Only the activation dynamics is allowed to undergo bifurcations. The control
parameters which induce these bifurcations are the activation variables of higher-
level behaviors. This is the core idea behind DD. The ways of how, exactly, these
bifurcations are induced, are highly constrained. These constraints warrant the
transparency of the DD scheme.

Emphatically, an elementary behavior is not “called to execute” from higher
levels. The level of elementary behaviors is fully operative on its own and would
continue to work even if the higher levels were cut off. The effect of higher
levels is not to “select actions”, but to change the overall characteristics of the
elementary level.

Morale. A good mathematical model of what one is doing is really satisfac-
tory for the mathematically inclined. But it is also good for debugging.

4 Our development environment

In order to come closer to the ideal of a robot that behaves “holistically”, the very
design process must be maximally transparent. To this end, we have developed a
unified software developing environment, the “Dual Dynamics Designer” (DDD).

The primary graphical user interface for designing a DD model is shown in
Fig. 2. It includes icons of sensors, sensor filters and intermediate sensor rep-
resentations, elementary and higher-level behaviors. Important global variables
and constants (time constants, especially) appear highlighted besides the con-
cerned icons. By clicking on the icons, context-sensitive editor windows pop up
in which equations and/or ODEs can be specified in an intuitive syntax.
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Fig. 2. The primary DDD user interface.

After designing the network of behaviors and preprocessing filters, a syntax
check, global and local variable detection and checking for cyclic dependencies
between equations is performed in a compilation step.

By hitting the C, Java, and Robot buttons, executable standard C code, Java
code, and robot C++ code is generated. At the same time, a HTML documen-
tation of the entire current system is generated automatically. The Java code
can be fed into a simulation engine.

The DDD tool itself is constructed with the Rapid Prototyping Environment
APICES. Readers interested in software engineering aspects can find more details
on the software architecture and development process of the DDD tool in [1].

Morale. The DDD tool makes editing, code generation, simulation, and
documentation so easy that we just don’t understand why it still is so difficult
to make robots kick a ball into a goal.

5 Conclusion

Science can be fun and still be science, even the more so.
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Abstract. The SocRob project was born as a challenge for multidis-
ciplinary research on broad and generic approaches for the design of
a cooperative robot society, involving Control, Robotics and Arti�cial
Intelligence researchers. In this paper the basic aspects of last year im-
plementation as well as the improvements made meanwhile are briey
recalled and presented. Naturally, a special emphasis is given here to
the novel solutions proposed for this year implementation, the results
obtained and the expected future developments.

1 Introduction

The Arti�cial Intelligence and the Intelligent Control groups of the ISR/IST
have started almost two years ago a joint project on Cooperative Robotics, de-
nominated SocRob, to foster research on methodologies for the de�nition of func-
tional, hardware and software architectures to support intelligent autonomous
behavior and evaluate performance of a group of real robots, either as a society
and as individuals.

The utilization of real robotic agents to perform on real environments, for
instance, a robotic soccer game, raises several new questions and perspectives
that turn the development of a multi-agent system a much more di�cult and
challenging problem [5].

The robots used by the ISocRob team were developed from scratch, so that
both conceptual and implementation issues were considered [1]. For the 1999
competition, some adjustments and improvements were made both on hardware
and software components: new robot wheels, a kicker device, development of a
self-localization system, a friendly man-machine interface, and a new software
framework based on the multi-agent system paradigm.

2 Hardware and Software Description

Each robot hardware is divided in four main blocks: sensors, main processing
unit, actuators and communications. Currently, from the hardware architecture
standpoint, the population is composed of homogeneous mobile robots.
? This work has been supported by a grant from the Funda�c~ao Calouste Gulbenkian
and the Portuguese Foundation for Science and Technology (ISR/IST programmatic
funding).
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2.1 Hardware

The sensors and actuators available in each robot are those mentioned in last
year's team report [1]. In terms of sensors, the novelty for this year was the
development of a self-localization system (a pose sensor), but unfortunately this
sensor was not available at the time of RoboCup'99. In terms of actuators, it
has been developed a new kicking device similar for all robots.

Pose sensor Depending on the type of application involved, each robot of the
society needs to regularly update its current pose (position and orientation)
with respect to a reference frame (e.g., located in the �eld center). This may be
accomplished based on the triangulation principle using for instance a convex

mirror for full scene image system based on a vision camera and a mirror with
a special geometry. Since the RoboCup environment has available a su�cient
number of visual landmarks, the SocRob project team decided to experiment
the \mirror" solution. The idea is to allow robots, using only one vision camera,
to acquire images from the mirror, appropriately positioned above the robot, in
order to obtain a global view of the environment. If images are su�ciently broad
to include three di�erent and static beacons (e.g., goal plus two �eld corners),
robots may apply the triangulation principle to determine their position.

Kicker The kicking ability enables soccer players to move the ball into places
that otherwise would not be accessible. The kicker device is divided in two main
parts: electronic and mechanical structures. The kicker electronics is composed
of a micro-controller, an IR beam circuit and a power actuator. The micro-
controller runs the control program and generates a signal modulation to be
used in the IR beam. This signal consists of a square wave, rated 40kHz that is
fed to the ampli�er powering the IR led's. The 40KHz detector output is also
directly connected to the controller. If an object is obstructing the beam the
demodulator delivers a 0V constant signal, otherwise should a 40kHz IR beam
be received, a 5V constant signal is obtained. The controller output is connected
to the circuitry that drives the servo-motor. This solution can be seen as an
instinctive reaction when the robot senses the ball. However this behavior can
be disabled by the processor unit in order the robot to perform di�erent type
of actions. The kicker mechanics is based on a automobile door opening servo-
motor, which when powered with opposite polarities moves a piston in opposite
directions. The piston course is approximately 3cm.

2.2 Software

In what concerns software components, the two main improvements made this
year were the development of a man-machine interface and a multi-agent soft-
ware framework for programming each one of the robots. Instead of having a
set of procedures to implement each of tasks needed (e.g., motors control, im-
age processing, communications, behaviour control, etc.), it was implemented a
new software framework based on the multi-agent paradigm. For each task it is
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created a speci�c (micro-)agent1 prepared to perform the task. All micro-agents
are implemented using the concept of thread for multitasking programming and
communicate with each other through a common, but distributed, repository of
information (blackboard).

The man-machine interface allows to observe the behaviour of all robots
using telemetric information (encoder data), images acquired from the frontal
camera and some relevant parametric information. The interface permits also
to manually control the robots through a space mouse device or directly from
the keyboard, change some robot internal variables and specify certain game
parameters.

3 Functional Architecture

From a functional standpoint, the whole robot society is composed of function-
ally heterogeneous robots. The functional architecture is scalable regarding the
number of robots (or agents) involved. This means that, when a new robot joins
the society, no changes have to be made to the overall system. The functional ar-
chitecture establishes three levels: an organizational level dealing with the issues
common to the whole society, a relational level where groups of agents cooper-
ate/negotiate in order to establish a mutual agreement(commitment) concerning
the execution of a particular action or the achievement of some objective, and
an individual level encompassing all the available behaviors of each robot. A
behavior is a set of purposive primitive tasks sequentially and/or concurrently
executed. These primitive tasks consist of sense-think-act loops, a generalization
of a closed loop control system which may include motor control, ball tracking,
ball following, etc. For this year participation in RoboCup, some modi�cations
were made on the relational and individual levels, especially in what concerns
cooperation among robots [2].

Individual behaviors can be temporarily modi�ed to allow cooperative rela-
tions between teammates. The negotiation implemented concerns two Forward
players who actively try to get the ball. If two or more Forward players see the
ball, a communication protocol is used by all players involved in order to deter-
mine which player is closest the ball. So, all players broadcast the estimation of
its distance to the ball, and after that negotiate which player will follow the ball
and which should return to a pre-de�ned location near one of the goals.

4 Agent-based Programming Language

The idea beyond the development of a programming language specially ade-
quate for implementing multi-agent systems follows the work previously done
by some members of our team | an agent-based programming language called
RUBA [4]. The goal is to have a way for de�ning agents' architecture, creating
agents, establishing communication links among agents, specifying cooperation
mechanisms (based on a particular teamwork model), creating and deleting tem-
porary sub-groups, and removing agents.

1 Since this agent implements a primitive task running on a robot, it is called here a

micro-agent.
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The initial version of the computational model for the language consists of
two classes of objects: agents and blackboards. A blackboard is the basic com-
munication medium among agents, either to communicate among themselves, or
between them and the external world. In what concerns RUBA, the current lan-
guage speci�cations propose several improvements: extension of the blackboard
for a distributed system, e�cient blackboard indexing using a hierarchical name-
space, and event-driven programming.

Conceptually, a blackboard is a centralized repository of data. The idea
of a distributed blackboard is to distribute the information (data) among the
agents. Practically, a blackboard is a mapping of symbols (hierarchically orga-
nized in nested name-spaces, e.g. robot0.sensors.collision.2) to variables.
This scheme is supposed to uniformly implement several and di�erent processes,
such as message passing, shared memory, distributed data and local variables.
A blackboard is implemented with an hash table of names to variables. Each
variable has a set of attributes, such as scope, location, policy, type and lock.
Also, there are a set of primitives to access the variable: read, write, hook and
lambda [3].

5 Conclusions and Future Work

Currently, our robots are capable of simple but essential behaviors, composed
of primitive tasks, such as following a ball, kicking a ball, scoring goals and
defending the goal, using vision-based sensors and the other available sensors.
Our current and future work is centered on concluding the development of the
self-localization system based on a vision camera and a mirror, updating and
tuning of the low-level software, design and implementation of an agent-based
programming language suitable for multi-agent systems, study and development
of a teamwork model and its integration with our functional architecture.
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KIRC: Kyutech Intelligent Robot Club 

Takeshi OHASHI, Masato FUKUDA, Shuichi ENOKIDA, Takaichi YOSHIDA4 
and Toshiaki EJIMA 

Kyushu Institute of Technology 

1 Introduction 

Autonomous soccer robots should recognize the environment from the captured 
image from a video camera and plan to  proper behavior. Furthermore, when some 
robots play cooperatively, communication system between robots is important 
inputs. We choose simple vision and actuator system, then the gap between 
the real world and simulation environment are small. Our research target is to 
accomplish multiagent system using reinforcement learning. 

From the competition result, we had two wins, two losses and one draw. 
In this paper, our robots’ hardware and software are described. Then current 
problems and future works are discussed. 

2 Team Development 

Team Leader: Toshiaki Ejima, Prof., attended the competition 
Team Members: 

- Takaichi YOSHIDA, Associate Prof., attended 
- Takeshi OHASHI, Research associate, attended 
- Shuichi ENOKIDA, Graduate student, attended 
- Masato FUKUDA, Graduate student, attended 
- Yuudai KARASUYAMA, Graduate student, attended 
- Tatsuya ASAZU, Graduate student, attended 
- Four support students did not attend the competition 

Web page http://www.mickey.ai.kyutech.ac.jp/KIRC/kirc.html 

3 Hardware configuration 

Our robots were designed simple and low cost. Main parts are not special devices. 
Then the robot could be used for not only soccer play but also a general platform 
of an autonomous robot. A field player and a goal keeper are shown as Fig.1. 
The robots use a radio control tank chassis, a note type personal computer and 
a video camera. Main parts are listed in Fig.2. Its chassis is used a M4 Sherman 
base that has independent left and right motors and geareboxes and tracks. It 
can pivot on the spot and run over rough field. 

The field players mainly keep attention to  their front view. Beca.use their 
tasks are finding a ball and goals, avoiding other players and walls. Then they 
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Fig. 1. Our field player and goal keeper 

have a wide lens video camera toward front which tilt slightly down t o  remove 
the noise from the outside the field. 

The goal keeper should watch not only front but also left and right side. 
There are some solutions of this problem. They are using panoramic movable 
camera, using two or three cameras and using a fish-eye lens or a wide mirror. 
If it has a panoramic movable camera, it should keep consistency of its body di- 
rection and the camera direction. It will increase the computational cost in the 
action planning. If it has more than one camera system, image capturing and 
processing cost are in proportion to  the number of cameras. If it has a fish-eye 
lens or a wide mirror, viewable seen area is wider, but valuable image area in 
the image plain is reduced. We considered these merit and demerit. We choose 
the goal keeper have an omunidirectional vision system, because increasing the 
computational processing cost is more serious than reducing the image resolu- 
tion. Our omunidirectional vision system uses a video camera and a half sphere 
mirror. 

3.1 Motor controller interface 

This radio control tank kit has independent left and right motors and geareboxes. 
The digital control unit has two control mode. Mode 1 is simulating steering 
wheel system. Mode 2 is supporting direct control each motors separately. Our 
robot uses the mode 2,  then each motor is controlled separately. This controller 
is connected in parallel port of the computer through a CPLD(Comp1icate Pro- 
grammable Logic Device) interface unit. 

The digital speed controller received digital pulse signals. The duty ratio is 
variable from 6.8% t o  11.4%. If the duty ratio is higher than 9.1%, the motor 
rotates forward, else if the ratio is lower, it rotates back. The interface logic 
is written in Verilog-HDL and down load to  Xilinx CPLDX95108 board. The 
interface board has a parallel port adapter and DMD controller connecters and 
a serial port for rewrite the internal logic. 
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Fig. 2. Main components 
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Video cainera 

Fig. 3. Software modules 
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4 Software configuration 

Operating systein of the robots are ReelLSD 3.2-RELEASE with the P A 0 3  
iiiobilc packagc. Aii applicatioii prograiii is writlcii in  C++ Iaiigunge. Llnsc robot 
class has fundamental common API for primitive behavior aiitl coniinnnicatiori. 
Each robot prograin is written as tlcrivetl class. It is easy Co prcparc iiiaiiy kiritl 

of player, for example, the variation is depending on its positioiis aiid policy. 
Software modules diagram is shown in Fig.3. Most modules are written as 

POSIX threads and the motor control module is written as another process, 
because the motor controller use timer alarm to archive a fail safe. 
Image processing: The image processing module captures an image from a 
video camera and extract a ball, goals, walls and robots by their template colors. 
First, tlic captiirctl image iR covcrt from ItGI3 color space to YUV color Rpace. 
Ncxt, each pixcl is calciilatctl the tlistarice from tlie target objects' color. I f  tlie 
distance is lower than a threshold value, the pixel is labeled as the target object. 
Last, the labeled image is scanned same labeled area, if the area size is larger 
than a threshold value then the target is found out. Same processes are applied 
for the other targets. 
Motor control: FreeBSD 3.2-RELEASE has a special device, for example 
/dev/ppiO, which is used for direct access from user land process to a parallel 
port. The robot has  ten primitive actions, slow forward, fast forward, forward 
left, forward right, pivots left, pivot right, back left, back right and back. A 
primitive action selected by tlie action planning module is sent to the motor 
control module with a valid interval. The motor control modrile sets ail alariii 
for valid iiitcrval of tlic action. The alarm is ovcrritle for cadi coribrol iiicsmgc. I f  
the alarm iiitcrrript is invoked, the motor is stopped. I'lris niccliariistii coiitjiiiucs 
the same or sirriilar actions without aiiy stop, but it avoids going out of coiibrol 
wlicti IICW actioiia arc lod or latc. 
Communications: The communication module is consisted by two threads, 
one is to send the processed result as a broad cast packet to other robots over 
wireless LAN, another is to receive any data from other robots or a start/stop 
controller. Communication protocol uses UDP packet and does not wait ACK, 
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because sometime during the competition the wireless LAN would down, it 
avoids the dead lock state. This protocol is similar to  human players shouting 
protocol. 
Dolinvior plannixig: 1Saclr rohot select8 same primitive actioiis, h i t  it should 
choice a proper action that tlcl)cntls oir the silualion. 

5 Future works 

From the result of our experience to attend RoboCup-99, fundamental compo- 
nents, which are recognize the environment from the image processing, agent 
communication over wireless LAN and prior knowledge based action planning, 
worked well. However, the following problems were realized. 

1. Under the high lighting field, YUV color space has larger white and black 
area. I t  is hard to separate the color objects. It causes the radius of the 
sciisablc arca i R  reduced. 

2. Our robots do not have a kicking device. I t  makes ambiguit,y of dribble arid 
sItootR, it is tliIliciilt lcarir I)y rciiiforcciiiciit Icariring. 

’Ib eolvo blic first, prohlciii, wc will iiec ’W1, color sl)acc[l] wlricli is iirorc roI)irst 
than YUV color space. In the future, ItoboCup will remove the walls. We coiisider 
making a line detection module and use them for the action planning. 

We want applies the reinforcement leaning method to  the real and compli- 
cated tasks. Our current research interest is how too approximate to the actual 
action value function using continual base functions[2] and layered reinforcement 
learning[3]. In addition, we will study about multiagent cooperative work. We 
want applies these approaches to real robot competitions. 
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Abstract. This paper describes our research interests and technical information
of our team for RoboCup-99. Our robots have been developed to have
advantages for playing soccer. That is, the capability of kicking a ball and high
mobility. We developed pneumatic kickers and omnidirectional bases.

1.  Concept   

We study and analyze robots of the RoboCup-97, 98 to design our robots, and
decide the design concept as follows

• Kicking device
• High mobility

Considering the kicking device, only a few teams such as the CS Freiburg team [1]
and the UTTORI United team [2] equipped it. Kicking device will change the tactics
of the RoboCup dramatically in the middle size league. It will be a pass-based tactics
like the modern soccer.

To accomplish the tactics, there are a lot of hard problems to be solved. Mobility is
a key point. The matches at RoboCup-97 and 98 show that most robots were like
tortoises. Thus, we developed robots that have a fast and an omnidirectional mobile
capability.

We learned from RoboCup Japan Open 99 that the complicated system is no use
for the real robot soccer games. To make the robot system simple and reliable,
standard PC/AT notebook computers were adopted as the processing system of our
robots.  Because the notebooks have been designed to deal with the nocks and shocks,
moreover have excellent batteries such as the lithium ion batteries.

Fig.1 shows one of our robots. It measures 390mm × 360mm × 330mm in length,
width, and height. The weight is about 8kg with a laptop PC and two 12VDC, 2.2Ah
sealed lead-acid batteries.

The vision system is the most important of all sensorial systems. Commercial
video capture PCMCIA cards (IBM Smart Capture Card and Ratoc System REX-
9590) are used for the vision system. These capture cards can capture 320x240
images at a frame-rate of 30 per second and have device drivers for Linux. Capturing
performance is based on CPU power. Therefore we used powerful CPUs such as
Mobile Cerelons 300MHz and Mobile Pentium IIs 333MHz.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 723−726, 2000.
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Fig. 1.  One of our robot: HIKARU

2. Architecture

We developed the actuator system and the interface system for RoboCup-99.

2.1 Actuator System

Kicking Device: The kicking device is composed of an air tank, an electric valve and
an air cylinder as shown in Fig.2 (a) and installation as shown in Fig.2 (b).

Omnidirectional Mobile System: The omnidirectional mobile system has been
developed for two of our robots (the rest of robots are conventional mobile system).
This type of system has also adopted by several teams, e.g. RMIT[3], Uttori United
[2]. Those teams have developed a new system. Our system is conventional, however
the reliability is very high and the max speed 2.0m/s is expected. There are 4 pairs of
omniwheels as shown in Fig.3 (b) and 4 DC gearmotors as shown in Fig.3 (a). Each
pair of omniwheels is simply driven by the DC motor.

         (a) Kicking  Device    (b) Kicking Device and Base
Fig. 2. Kicking device
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(a)  Omnidirectional Base                             (b) Omniwheel
Fig. 3. Omniwheel

2.2 Interface System

Interface System: A small notebook computer is suitable for a processing system of
the mobile robot. Because it is reliable and self-contained.
   However, the interface system between the PC and other devices (sensors, motors)
is few and expensive on the market. Therefore we developed the interface system
composed of a hub and motor drivers.
   Fig.4 shows the hardware architecture of our interface system. The interface system
can be two-way communication. The character of the interface system is that each
device is connected by a serial bus with the SPI (Serial Peripheral Interface) protocol
[4]. It provides support for a high bandwidth (1 Mbps) network connection amongst
CPUs and other devices.

Hub:  The hub unit transforms a signal between PC and the device (motor drivers,
sensors). Hub unit works as the FIFO buffer, too. Power of the devices is supplied
from the hub unit. Therefore it is need only one cable, when we increase a new
device. The communication speed between the hub unit and the device is about 10
Kbps.

Motor Driver: It is the H-bridge PWM motor driver. The control unit of the motor
driver is composed of the PIC micro controller (PIC16F84)[5]. Therefore, it gives
intelligent PWM control for a DC motor. The frequency and the resolution of PWM
are about 1 kHz and 5Bit.  The frequency of PWM is low, but it is sufficient for the
middle size league and easy to clock up by replacing the micro controller.  The cost of
the motor driver is less than  $50.
   

725The Concept of Matto



www.manaraa.com

Fig. 4. Interface System

3. Conclusions

This article presents the details of our team. RoboCup-99 is our first challenge. We
have been spent a lot of time to build our robots. Developing a reliable and suited
robot platform for the soccer game is very important not only to win the competition,
but also to make the study.

Therefore, we have developed the interface system, the kicking device and the
omnidirectional base. They are indispensable to accomplish the pass-based tactics.
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The RoboCup-NAIST

T. Nakamura K. Terada H. Takeda
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1 Introduction

Through robotic soccer issue, we focus on “perception” and “situation and
behavior” problem among RoboCup physical agent challenges [1]. So far, we
have implemented some behaviors for playing soccer by combining four prim-
itve processes (motor control, camera control, vision, and behavior generation
processes)[2]. Such behaviors were not sophisticated very much because they
were fully implemented by the human programmer. In order to improve the per-
formance of such behaviors, a kind of learning algorithm would be useful during
off/on-line skill development phase.

To acquire purposive behavior for a goalie, we have developed a robot learning
method based on system identification approach. We also have developed the
vision system with on-line visual learning function [3]. This vision system can
adapt to the change of lighting condition in realtime. This year, we refined some
behaviors using such learning algorithms. Furthermore, we constructed a new
robot equipped with an omnidirectional camera in addition to an active vision
system so as to enlarge view of our soccer robot. Using this omnidirectional
camera, such robot can recognize its location in the soccer field.

In the RoboCup99 competition, our team had 9 games including roundrobin,
wild card match, and finals. We won 5 games and lost 4 games. Finally, our team
reached the quaterfinals. But, our team lost the game against the CS Freiburg.

2 Team Development

Team Leader: Takayuki Nakamura
Team Members:

– Hideaki Takeda, Aossicate Professor, who attended the RoboCup since
1998.

– Kazunori Terada, Ph.D candidate student, who attended it since 1998.
– Akihiro Ebina, Master course student, who attended it for the first time.
– Hiromitsu Fujiwara, Master course student, who attended it for the first

time.
Web page http://robotics.aist-nara.ac.jp

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 727−730, 2000.
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3 Robots
We have developed a compact multi-sensor based mobile robot for robotic soccer
as shown in Fig.1. As a controller of the robot, we have chosen to use a Libretto
100 (Toshiba) which is small and light-weight PC. We utilize a wireless LAN PC
card (WaveLAN(AT&T)) for communication on our soccer robot.
Motor control system
A motor control system is used for driving two DC motors and is actually an
interface board between a portable PC and motors on the chassis of our soccer
robot. This control board is plugged into a parallel port on the portable PC.
The motor speed is controlled by PWM. To generate PWM pulses, we use a
PIC16C87 microcontroller. The motor control command is actually 8 bits binary
commands for one motor. This board can receive control commands from the
portable PC and generate PWM signals to right and left motors.

IBM Smart
Capture Card II

Libretto 100
MMX Pentinum166 /32M

parallel port serial port

WaveLAN
/PCMCIA

SONY
EVI D30NIKKO

BLACK BEAST

Motor Driver
Board

IBM Smart
Capture Card II

Tactile sensors

keyboard
    port

Omnidirectional
camera

(a) (b)

Fig. 1. Our soccer robot.

4 Perception
Tactile sensing system
We constructed a cheap tactile sensing system [2] by remodeling a keyboard
which is usually used as an input device for PC. A keyboard consists of a set of
tactile sensors each of which is a ON/OFF switch called a key. If a key is pressed,
the switch is ON. If not, the switch is OFF. By using these sensors which are
set around the body of soccer robot., a tactile sensing system can detect contact
with the other objects such as a ball, teammates, opponents and a wall.
Visual sensing system
We use an active vision system and an omnidirectional camera system. As an
active vision system, we have chosen a color CCD camera (SONY EVI D30,
hereafter EVI-D30) which has a motorized pan-tilt unit. An omnidirectional
camera system consists of a hyperbolic mirror and a color CCD camera of which
optical axis is aligned with the vertical axis of the mirror. In order to capture
two images from both vision systems, we use two video capture PCMCIA cards
(IBM Smart Capture Card II, hereafter SCCII) which can be easily plugged into
a portable PC.
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Vision Module

The vision module provides some information about the ball, goal and teammates
in the image. The vision module provides the area of the targets(ball, goal and
a colored marker), the coordinates of their center and the both maximum and
minimum horizontal coordinates of the goal and so on.

We actually implemented a color image segmentation and object tracking
processing in the vision module. Even if surroundings such as lighting condition
changes, our vision module can adapt to the change since such vision module
with on-line visual learning capability based on fuzzy ART model [3].

5 World Model

In order to control our hardware systems, we use a shared memory and 5 software
components which are the motor controller, camera controller, tactile sensor
module, vision module and behavior generator. All software components read
and write the same shared memory in order to acquire and give the states of
our hardware systems. Using this shared memory, they can communicates each
other asynchronously. For example, the behavior generator takes the state of
camera, vision, tactile and motor in the shared memory as input vectors. Then,
it combines these information with programmer’s knowledge and decides the
robot’s action at next time step. Finally, it writes the motor command for the
motor controller on the shared memory.

6 Communication

There is no communication between our robots in the competition.

7 Strategy

The behavior generator decides the robot’s behavior such as avoiding a wall
(called avoiding behavior), shooting a ball into a goal (called shooting behavior)
and defending own goal (called goalie behavior). We make a simple strategy for
shooting the ball into the goal. To shoot the ball to the goal, it is important
that the robot can see both ball and goal. Therefore, the robot must round
the ball until the robot can see both ball and goal with the camera toward the
ball. Finally, the robot kicks the ball strongly. Fig. 2 (a) shows the shooting
behavior. Avoiding behavior is implemented in a reflex way based on the tactile
information.

8 Special Team Features

A word is enough to the wise. We are pursuing research issues focused on the
realization of such learning capability. We’re going to develop a robot learning
method based on system identification approach. Our method utilizes GMDH
algorithm[4] which is a kind of system identification method and expands it so
that multiinput-multioutput type system can be applied to. Suppose that a set
of visual information is input data and a set of motor commands to the robot is
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output data, identifying a mapping function between input and output data is
equivalent to resolving skill acquisition problem.

Now, our robots succeeds in acquiring a simple strategy for preventing a ball
from entering a goal. When a ball is approaching to our goal, our robot can move
left/right with the center of robot body toward a ball. The home position of the
goalie is the center of a line close to our goal. The goalie only moves along that
line. Fig. 2 (b) shows the goalie behavior.

(a) (b)

Fig. 2. Sequences of shooting and goalie behaviors

9 Conclusion

An accurate localization method is a key technology for successful accomplish-
ment of tasks in cooperative way. Next year, we will develop a method for esti-
mating position and orientation of multiple robots using multiple omnidirectional
images based on geometrical constraints.
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Abstract. This paper describes an Autonomous Mobile Robot team which
plays football, developed by the Group of Automation and Robotics at the
Industrial Electronics department of the University of Minho, in Guimarães
(Portugal). In this competition each team is free to use and/or build all the
different electronics, sensory systems, playing algorithms, etc. as far as they
cope with the rules imposed by the organisation. Instead of using several
different sensors increasing electronics complexity, this team decided to use
only one major sensor: a vision system with a small colour camera. All the
image processing algorithms were developed from scratch and they consist on
the heart of the whole project. This vision system uses an innovative approach:
in order to see the whole field, a convex mirror was placed at the top of the
robot looking downwards with the video camera looking upwards towards the
mirror. This way, the robot can see all around itself with a top view, which
means continuous vision of the ball, goals and other robots.

1 Introduction

Autonomous mobile robots are ever increasing their number of different applications,
even in ludic applications or in sports. In the last few years, several robotic football
competitions have been organised with participating teams from all over the world.
The University of Minho (Portugal) decided to accept the challenge of participating in
this competition and found it to be a quite interesting experience and a lot was
learned. The final classification of this team at RoboCup'99 was not as good as
expected mainly due to problems that have nothing to do with the RoboCup'99
competition. The robots arrived at Stockholm only after the competition had started;
equipment had been damaged in the transport; the postponing of some games forced
this team to play 4 games in one day with the robots not completely assembled.
Besides all these problems, some other teams did not take into consideration the
collision avoidance rule, crashing and destroying some of our robots. Our robots were
properly programmed to avoid collisions but not to run away from other dangerous
robots. However, participating was an extremely good experience, and this team
expects to participate again next year hopefully without all these problems.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 731−734, 2000.
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2 Robots

The robot base used was one from another competition and is made up of very light
wood. It consists of a two levels platform with the two wheel voids. On the bottom
level was placed the DC/DC converter (between the two wheels) and the two 12V
7Ah batteries (one at the front side and the other at the rear side). At the top level, it
was placed the computer mother board and respective boards (video and graphics
boards). The hardware consisted on a personal computer mother board with a Pentium
processor running at 200 MHz (MMX), with 32 Mbytes of memory (although the
DOS operating system was used and therefore only 1Mbyte was used). The hard disk
had 2 Gbytes. A colour video camera is used with a frame grabber type Bt848. The
communication hardware and software was not ready in time for the RoboCup99
competition and therefore each robot played on his own.

Fig. 1. Photograph of a team's Robot

3 World Model

At any given time, these robots are aware of the ball (knowing its direction), both
goals direction and their own approximate position on the field. Robots on the field
are also seen but not distinguished whether their belong to own or opponent team.
This information is kept in the form of a direction variable, and when required they
move towards it, updating that direction variable at every frame captured. These
robots do not memorise anything else.

4 Perception

The only sensor to perceive all the items needed to play a game, is a simple colour
camera with its frame grabber plugged on a computer slot. To perceive all those
items, these robots grab one image every 20 ms, and the software finds the peak of a
certain colour (after removing noise). For example, to track the ball, the software
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searches a peak of red. Since colours depend very much on the light conditions, a
calibration is made prior to a game, in order to inform the software what is the
minimum value for a red to be a ball. The software tracks down the following  items:
the ball (by its red colour); the two goals (also by their yellow and blue colours); all
other robots (mainly black coloured); the field surrounding walls (mainly white
coloured).
These robots avoid collisions, by perceiving as uncollidable items all the black and/or
white items. This is the way they avoid walls (mainly white) and other robots (mainly
black). The white lines on the green field are ignored because what the robot sees is
not "mainly white" due to the slim thickness of the lines.

5 Communication

It was this team intention to implement communication, but due to lack of time this
was not ready in time for the competition. However, the system is hereby described. It
consists of a radio frequency module containing an emitter and a receiver, plugged in
each robot, plus one more module in a remote computer allowing to "see" what is
going on, on the field, through a graphical animation.
Each of these modules are able to send a message to a certain robot of to all robots.
The message is not longer than 255 bytes and contains instructions about actual
information (a position, or a decision) or what to do next, and these messages have
different levels of importance. Each robot can communicate with one other particular
robot or with all of them at the same time. Being so, a complete confusion could be
generated and therefore different levels of importance are used. This level depends on
the owner position, or distance to the ball, goals, opponent robots, etc. The robots
communicate only when it is needed (not all the time) in order to keep the radio
environment free for urgent messages to pass through.

6 Strategy

In order to drive the ball, these robots use an arch with a re-entrance of 7cm (allowed
by the rules). This way, ball control is achieved just by pushing it, although a sudden
change of direction might mean loosing the ball. These sudden changes of direction
are avoided by the robot's software by following longer and wider trajectories.
These robots intercept the ball very easy. When they see the ball, they just go towards
it, avoiding collisions with the opponent robot, but insisting and never giving up, until
the opponent robot looses the ball. Once they have the ball, they move towards the
opponent goal dribbling the opponents (and avoiding collisions). In case they loose
the ball, instantaneously start the procedure "following ball" again.
When owning the ball near the opponent goal, these robots do not kick the ball. They
run into the goal pushing the ball with their body. This means a disadvantage since
most goalies are very good and attack the ball sufficiently fast to avoid scoring.
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This team’s goalie is different from the other players only what concerns the direction
of the wheels. These are rotated 90 degrees in order to be fast defending the goal
rather than moving towards the front. The goalie software is very simple and consists
of looking and observing the ball all the time. That is possible with that convex
mirror. It then moves sideways in order to keep its body always in the ball’s direction
no matter how distant this is. When the ball approaches, the goalie kicks the ball with
its arch rotating its body, doing a movement like a tennis player with its racket. This
movement is very beautiful and improves the quality of the game. This technique not
only avoids a goal but also kicks the ball far away from its goal.
Since these robots always have an eye on the ball, their reaction is very simple and
efficient. When they don't have the ball, they go towards it and don't give up until
they get the ball. Once they have the ball they go towards the opponent goal in order
to score, and avoiding obstacles. If, for some rare reason they don't see the ball, they
start moving in a spiral until they see the ball (avoiding the walls, of course).

7 Special Team Features

The image processing was the most important aspect of this team. It proved to be very
consistent, fast and original. All the video drivers were re-written in assembly
language in order to take the most out of the video board. This way, 50 frames per
second were achieved making the rest of the control program an easy task. All the
image processing routines were written in assembly language in order to increase
speed and it proved to be very necessary. The general control program and strategy
were written in C language since it did not need to be extremely fast. Sometimes, in
two consecutive cycles the same image was analysed (giving the same result as the
previous cycle), proving that it was not necessary to have a so fast processor. The
mirror technique also proved to be very efficient since everything can be seen at all
time. With everything on sight, it is much easier to make the flux control program.

8 Conclusions

As main conclusions it can be said that the image processing developed and used by
this team is the most important characteristic. It is very reliable, consistent, fast.
The robot movements are very smooth and acceptably unpredictable unlike a typical
algorithm with known steps used by many teams.
All the hardware and software of the robots was designed, developed and built by
graduate students at the University of Minho. Only four robots were built due to lack
of budget. These 4 robots were designed, built, programmed and tested by three
industrial electronics students only, plus the team leader making a team of 4.
Even though this team had had many problems during its participation on RoboCup,
the team learned a lot and gained experience. The rules are now clear, new ideas came
up by looking at other teams playing, and new improvements will be implemented.
This team intends to participate next year, after improving the robots.
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Abstract.  The hardware and software architectures of the Real MagiCol robots are
presented. The hardware remains the same as the 1998 Robot Cup one, our research
bearing on the cooperative architecture based on agent concept. The Real Magicol
soccer players team for Robot Cup 99 is based on a Behavior Oriented Commands
(BOC) architecture extension which combines reactive and deliberative reasoning by
the distribution of the knowledge system into modules called behaviors.

1. Introduction

The middle size team "Real MagiCol" (Realismo Mágico [1] Colombiano) is a joint
effort of  institutions in France and Colombia. In addition to participating in
RoboCup99, the robots will be used in the future for research and educational
activities in Colombian universities and will be employed in a permanent exhibit of
the interactive science museum "Maloka". In fact, we are the first Latin-American
middle size team in RoboCup.

We decided to build our own robots for ROBOCUP 98. This allows a greater
insight and a complete mastering of the robot's technology. We designed an open,
easily reconfigurable PC based architecture in order to allow for future evolutions.

The Real MagiCol team features our hybrid software architecture called Behavior
Oriented Commands (BOC) [2] [3]. It allows a soccer robot to plan complex
deliberative actions while offering good reactivity in a very dynamical environment.
BOCs provide a high level distributed intelligence model which is directly translated
into a real time application.

This article presents the main aspects of the robots hardware and vision system, as
well as their control architecture and the team strategy.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 735−740, 2000.
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2. Robot Description

The Real MagiCol team consists of five robots sharing the same hardware design.
Each robot has an external diameter of 44 cm and a height of 18 cm (37 with the
optional turret and vision system). Lineal speeds of almost 2m/s with accelerations of
1 m/s2 are possible. The hardware architecture of the robots is shown in Figure 1.
Figure 2 shows our goalkeeper in action.
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Fig. 1. Hardware Architecture of MagiCol Robots.
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Fig. 2. General View of Robot and Ball

3. Local Vision System

Each robot possesses a color mini-camera with a 3.8 mm focal distance and a  51°(h)
x  40°(v) vision field. The images are acquired in the RGB color model [4]. The
detection algorithm of the elements (color-objects) of the terrain (ball, robot markers,
goals, etc.) uses thresholded LUTs applied to the three color fields. A logical function
between these images results in eight binary images, one for each color-object. A
composed 8-bit image is obtained after bit-shifts and combination of the binary
images. While performing the last step a LUT is applied to discriminate and label
ambiguous pixels.  A 9-level image is finally constructed.

The attributes of each color-object are obtained after segmentation of the 9-level
image. For each detected color-object, the center of gravity, the surface and the
enclosing window are calculated in image coordinates. Color-objects presenting a
small size are rejected. The vision system was calibrated to carry out a 3D position
reconstitution of the objects, taking advantage of the fact that the height of the ball,
goals and robots are known to reduce the unknown variables in the camera model.

The local map is the set of objects recently seen by the robot. An object is
characterized by its relative position, speed and uncertainty in local coordinates. The
color-object information provided by the image treatment module and the odometer
allows to estimate the position and speed of objects. Newly detected objects are
incorporated into the map with an initial uncertainty value based on their distance and
image surface. Objects re-detected in new images are updated. The uncertainty of
undetected objects is increased until they reach the forget threshold.

The robot localization is carried out using objets known to be static. We plan to
integrate the information from the local modules in the different robots into a global
map, in order to improve the precision of the position and speed estimates of objects
of interest.

We expect to improve the robustness by implementing an HSI (Hue, Saturation,
Intensity) model based algorithm for the color-objets detection. These model could
allow the color camera calibration under unstable illumination conditions.
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4. Roles and Formations

In a soccer game robots need to be organised to play coherently [9]. Our robots
incorporate the rules to execute individual actions depending on its role, team
formation and game context.

A role assigns responsibilities and actions to a robot. The generic roles of goalie,
defender and attacker are defined. The goalie stays parallel and close to the goal,
trying always to be directly between its goal and the ball. The attacker moves to the
ball trying to kick towards the opponent’s goal; when the ball is in the attacking side
it attempts to have a good non interfering attacking position. The defender maintains a
good defending position between its goal and the ball/opponent, to move near the ball
and pass it to the attackers; it also tries to place itself between the ball and its own
goal when the ball is far [5][6]. We also define a new role, the coach. It performs
global localisation, role and formation distribution, supervision activities, and
manages external information.

The generic roles are specialised in sub-roles according to the robot playing region
in the field and its attitude towards the game. The field is divided into three regions:
left, right and central allowing to decline the roles as left-handed, right-handed and
central. Robots can also play a role having different attitude towards the game, for
example, a defender may be prudent (always staying in a defensive position) or
aggressive (always trying to kick the ball). This specialisation by attitude allows to
easily built teams playing different tactics without modifying its formation.
A formation is a team structure that defines a set of roles in a particular game [6]. A
formation assigns a specialised role for each robot. The selection of the team
formation depends on the game situation, particularly on the score and opponent’s
strategy. At start information concerning global team formation affects the way
individual sub-role rules are interpreted which allows to have collective conscience.

5. BOC Implementation

A real time control architecture should be used to implement a soccer mobile robot
that deals with a dynamic environment. Our robot control system is implemented
using the hybrid architecture BOC, which combines reactivity and deliberative
reasoning by the distribution of the knowledge system into modules called
behaviours. A BOC is a service carried out by a set of cooperative associated
behaviours (ABs) executing in parallel. The co-ordination of the ABs is performed by
a control unit (CU) using synchronisation signals.

A general description of MagiCol robots using the BOC architecture was presented
in our previous paper [3]. Figure 3 presents relevant aspects of the actual BOC model
implementation of our goalie; ellipses and rectangles represent behaviours and
control units respectively.
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Fig. 3. BOC Model of our Goalie for RoboCup98.

The coach assigns roles by requesting a high level BOC to each robot. The
command parameters include zone and attitude specialization attributes of the role. In
our goalie, UC_GOALIE activates the behavior Coord_Goalie, which decides the next
action to execute. Two possible high level goalie actions are defined: Keep_Line and
Kick_Away. A request to the concerned UC is performed. When the action is finished
an acknowledge is received, the state is modified and the next action to perform is
selected using the control rules embedded in the behavior.

The execution control of the command Keep_Line is performed by
UC_KEEP_LINE that activates three ABs. The behaviour Position_Line modifies the
attraction point to make robot move to the best defensive position over its line
(parallel to the goal entry). The behavior Keep_Line_Motivation monitors if the
motivations for doing this action are still valid, when motivation falls under a
threshold (specified by Coord_Goalie) an end signal is generated thus stopping all
ABs and finishing the BOC. The third AB Move_To drive the robot to arrive to the
attraction point specified by other cooperative behaviors. High level behaviors have
access to sensors and actuators through low level commands.
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6. Conclusions

The hardware and software architectures of  the Real Magicol Robots were presented.
These robots were built for the RoboCup competition, but future research in other
subjects has also been considered.

The BOC architecture was used with few modifications and proofs to be well
adapted to this kind of challenge, allowing a straightforward well structured real-time
implementation of the proposed concepts.

In our current implementation, collective behaviours emerge as a result of role
attribution and team formation. We plan to extend the task parallelism to the team as a
whole by adding explicit communication between the players. The increased
information exchange, should also allow our coach to detect specific strategy patterns
from the opponent team in order to adapt our own strategy.
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1 Introduction

The RMIT Raiders team is composed of three custom-made robots and one
Pioneer1 robot. The most signi�cant feature of the custom platform is a powerful
kicking device, which proved itself in the �rst game by kicking a goal from the
centre of the �eld. Compared with previous competitions, our custom robots
were much more reliable and the batteries lasted much longer.

The strategic component of the system is based on a commercial agent de-
velopment system, JACK2 [4]. Due to the di�culties of testing with physical
robots, we developed a simulator for testing and debugging of plans.

We kept our existing vision mechanism but made some improvements in
terms of robustness of recognition under varying lighting and improved distance
estimation.

Our competition results were: 1-0, 0-1, 0-3, 0-6, 1-2.

2 Team Development

Team Leader: Lin Padgham, Associate Professor

Team Members:

{ Daniel Bradby, Undergraduate student, did attend competition

{ James Brusey, Graduate student, did attend competition

{ Andrew Jennings, Professor, did attend competition

{ Mark Makies, Design and Development Engineer, did attend competition

{ Chris Keen, Senior Technical O�cer, did not attend competition

{ Anthony Kendall, Honours student, did not attend competition

{ Dhirendra Singh, Undergraduate student, did attend competition

Web page: http://www.robocup.rmit.edu.au

? Lin Padgham is currently on secondment to CSIRO, though still fully involved in

the RMIT RoboCup project.
1 Pioneer robots are produced by ActivMedia Inc., http://www.activrobots.com
2 JACK is a java based agent programming system developed by Agent Oriented

Software, http://www.agent-software.com.au

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 741−744, 2000.
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3 Robots

We use two types of robot bases: a Pioneer Model 1 for the goalie, and a custom-
made robot (called a Socbot) for the three other players. All robots use the same
vision sensor, a Logitech QuickCam VC camera, and all have wheel encoder
based odometry [1, 2]. The Socbots also have an electronic compass. The Socbots
have a special kicker described below, while the Pioneer uses a less powerful,
solenoid actuated kicker. We use Pentium II laptops for the majority of the
computation, including vision processing. Each robot has a Lucent WaveLAN
PCMCIA card for communication with other robots. Figure 1 summarizes the
system architecture.

The Socbot uses two 6W MAXON motors controlled by a PID (Proportional
Integral Derivative) controller. The controller makes use of wheel encoders that
give 1800 counts per wheel revolution. It runs on a Motorola M68HC11 micro-
processor and makes use of a Xilinx XC3090 Field Programmable Gate Array
for some functions.

The Socbot's kicking device is spring loaded (using a bungee cord). It is
wound up using a worm drive motor, and then held in a loaded position by a
custom-made clutch. The clutch is released by a solenoid. A microswitch is used
as a trigger to ensure that the kicker is not �red until the ball is close to the
optimum position. The kicker is quite powerful. In testing we found that, at full
setting, it could kick the ball over 20 metres, and then take only about 5 seconds
before being ready to kick again.

Laptop Computer
Upper Level Software (ULS)

Microprocessor: 
M68HC11F1

Socbot Vehicle (SBV)

Power & Control
Electronics

Vehicle Control Module (VCM)

FPGA:
Xilinx XC3090A

Compass:
Vector V2X

Touch
Sensors

Power
System

Kicking
Device

Left

Right
Motor &
Encoder

Motor &
Encoder

LAN
Wireless

Camera
Port
Parallel

Serial port

Vision Module

Strategy Module

Vehicle Control

Parallel port

Serial port

Network

Fig. 1. Architecture of soccer robot and a picture of the Socbot. For the goalie, a

Pioneer substitutes for the Socbot but uses the same software
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4 Perception

The robots attempt to perceive the ball position, the position of other robots,
and the position of the walls, through the vision system. Also, some information
is broadcast to other robots to assist them building a world model.

The vision system is based on an inexpensive, parallel port camera: Logitech's
QuickCam VC. The vision system outputs distance and angle information for
each object that it �nds. Although we had used the QuickCam in the previous
tournament, we made some signi�cant improvements in colour recognition using
techniques described elsewhere [3]. Also, we changed from using the size of the
image segment as the determinant of distance and used the vertical angle to the
base of the object instead. We still check the size of the image segment, however,
to see if it roughly matches the distance obtained from the vertical angle.

We use information about wall segments, together with information from the
compass, in order to correct for errors in odometry.

5 World Model

We used an allocentric (i.e. non-egocentric) view of the �eld, so that objects were
represented in terms of �eld coordinates rather than relative to the robot. The
robots keep information about own position and heading, the ball position and
velocity, and other robots' position and velocity. Own position and heading is
determined through wheel encoders with correction from the compass and wall
sightings. The vision gives relative position to other objects and this is translated
into an absolute position. The world model is updated from this using a simpli�ed
Kalman �ltering approach.

In addition, there are interpreted state variables, such as ags for whether
the robot is lined up for a shot at goal.

6 Communication

The robots communicate via a radio ethernet LAN using multi-cast packets. All
robots transmit where they think they are and where they think the ball is. This
information is sent from each robot about ten times per second. We noticed that
the communication was speci�cally helpful to the goalie in tracking the ball when
the ball was far away, however we had some problems with wrong information
being transmitted back and forth between robots.

7 Skills

To get to the ball, our robots used a series of waypoints to avoid bumping into the
ball when trying to get to the other side of it. Due to the explicit modeling of the
ball in the world model, they were able to do this without seeing the ball for much
of the man�uver. When the ball is close to the front of the robot, the kicking
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mechanism is \armed", which means that the kicker will �re automatically when
a microswitch triggers on the front of the robot. If the kicker doesn't �re for some
reason, we will still try to dribble the ball by constantly trying to move towards
it, as long as it is still roughly in line with the goal.

The goalie robot has special code for blocking the goal. Since our goalie is
quite slow, we use some of the prediction mechanism available from the world
model to try to predict the path of the ball.

8 Strategy

The robot's basic strategy is straightforward: Find the ball by spinning; line up
the ball and the goal; approach the ball and kick it. While doing all of this, it
avoids collision with other robots and uses a modi�ed approach for when the
ball is near the wall. Much of the sophistication of the software is in building a
model of the �eld.

9 Conclusions

Although the game scores do not reveal it, we believe that the team has greatly
improved over previous years and is beginning to look competitive. Our main
failing was to rely heavily on the compass, which behaved unpredictably in the
electromagnetically noisy environment. The robots turned out to be slower than
expected, largely due to the software limitation of only being able to turn when
stopped. The defence was poor mainly because no defensive plans had been
written. Our kicker worked excellently however, and in general the systems were
robust and reliable.

Next year's competition will be held in Melbourne, Australia and so we want
to �eld a much more competitive team. The main areas that we will attempt to
improve are the vision system, where we plan to use a digital signal processor
(DSP) to perform much of the computation, and the strategy component, which
will be rewritten to make more use of the JACK agent architecture. Part of this
rewrite will include improvements in cooperation.
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Abstract. Arvand is a robot specially designed and constructed for
playing soccer according to RoboCup rules and regulations for the medium
size robots. This robot consists of three main parts: mechanics (motion
mechanism and kicker), hardware (image acquisition, processing unit and
control unit) and software (image processing, wireless communication,
motion control and decision making). The motion mechanism is based
on a drive unit, a steer unit and a castor wheel. We designed a special
control board which uses two microcontrollers to carry out the software
system decisions and transfers them to the robot mechanics. The soft-
ware system written in C++ performs real time image processing and
object recognition. Playing algorithms are based on deterministic meth-
ods. We have constructed 4 such robots and successfully tested them in
a soccer �eld according to RoboCup regulations for middle size robots.

1 Introduction

In order to prepare a suitable ground for research in many aspects involved
in Robocup, we designed and constructed all parts of the robots by our group
members. These robots have a controllable speed of maximum 0.53 m/sec. In
addition to the basic movements of robot, the special design of its mechanics,
allows it to rotate around any point in the �eld. In practice, the distance between
ball center and robot geometrical center is calculated and the robot can be
commanded to rotate around the ball center until seeing the opponent team
goal.

The machine vision system uses a widely available video camera and a frame
grabber. Our fast image processing algorithm can process up to 16 frames per

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 745−749, 2000.
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second and recognize objects in this speed. Objects are recognized according
to their color and size. Communications between robots are done using wire-
less network under TCP protocols. The non deterministic software algorithms
are designed based on object oriented methods and are written in C++ using
DJGPP compiler in MS/DOS.

2 Mechanical Architecture

According to the motion complexity of a soccer player robot, proper design of its
mechanics can play a unique role in simplifying the playing algorithms. In this
regard, a speci�c mechanism was designed and implemented that together with
the sensors and control feedbacks, to a good extent, veri�ed our expectancy.

2.1 Motion Mechanism

Arvand consists of two motion units in front of the robot and one castor wheel
in the rear. Each motion unit has a drive unit and a steer unit. The functionality
of drive unit is moving the robot and that of steer unit is rotating the drive unit
round the vertical axis of its wheel. The drive unit consists of a wheel which
is moved by a DC motor and a gearbox of 1:15 ratio [1]. The steer unit uses a
DC motor and a gearbox of 1:80 ratio. For controlling the steer unit, the optical
encoders are mounted on the respective motor shafts and their resolutions are
such that one pulse represents 0.14 degrees of drive unit rotation.

This mechanism has the following capabilities:

1. By rotating the drive unit round its vertical axis the rotation center of the
robot changes accordingly and this allows the robot to turn around any
point in the plane. This point can be selected inside or outside the robot. It
is necessary to adjust the speed of two drive units according to the following
formula [2]:

v1:r2 = v2:r1 (1)

where v1 and v2 are speeds of the left and right motors respectively, r1 is the
distance of the left drive unit from the rotation center and r2 is the distance
of the right drive unit from the rotation center. Therefore, the robot rotation
center will not depend on the robot gravity center and on the position of
drive units in the robot.

2. In our software system we can set the drive units to be parallel to each other
and also have a speci�c angle related to robot front. This mechanism is useful
for taking out the ball when stuck in a wall corner and also dribbling other
robots.

3. The kicker consists of simple crowbar that connects the solenoid to a kicking
arm. The kicking power is controlled by duration of 24 DC voltage applied
to it.
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3 Hardware Architecture

The goal of our hardware architecture is to provide a control unit independent
from software system as much as possible and also reduce the robots mechanical
errors.

Arvand hardware system consists of three main parts: Image acquisition
unit, processing unit and control unit.

For all robots including the goal keeper we used a PixelView CL-GD544XP+
capture card which has an image resolution of 704x510 with the frame rate of
30 frames per second. The image acquisition system of goal keeper consists of a
Topica PAL color CCD camera with 4.5 mm lens in front and two digital Con-
nectix Color QuickCam2 for the rear view. For other robots we used a Handycam
in front which could record the robot vision too.

The processing unit consists of an Intel Pentium 233 MMX together with a
main board and 32MB RAM. Two serial ports onboard are used as communi-
cation means with the control unit. A oppy disk drive is installed on the robot
from which the system boots and runs the programs.

The control unit senses the robot and informs the processing unit of its
status. It also ful�lls the processing unit commands. Communication between
the control unit and the processing unit is done via two serial ports with RS-232
standard[3]. Two microcontrollers AT8952 and AT8951 [4] are used in control
unit. They control the drive units, steer units, kicker and limit switches. Two
limit switches are mounted on each steer unit. Microcontroller counts the number
of pulses generated by the encoders mounted on a motor shaft to control the drive
unit rotation. Each pulse represents 0.14 degrees of the drive unit rotation. The
motors speed are controlled by PWM pulse frequency of about 70kHz

4 Software Architecture

Software architecture of Arvand consists of four main parts: Real time object
recognition, Motion control, Communication and Decision making module. Due
to the object oriented design of the software, we have de�ned 5 classes such as:
Camera class (all related functions for working with frame grabber), Image class
(machine vision functions), Motion class (motion functions which is the interface
between software and hardware), Communication class (all TCP related wireless
networking) and Motion class (all robot playing methods and algorithms).

4.1 Real time object recognition

Object recognition is based on detecting its color. We used HSI color model [5].
In this model a color can be detected by determining its domain in HSI space. To
�nd all objects in a scene the image matrix is processed from top to bottom only
once. In order to speed up this routine, instead of examining each single pixel in
the image matrix, only one point from subwindows of size mw �mh (that can
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be the size of the smallest object) is tested. If this point has the desired color,
then move one pixel upward until hitting a border point.

At this point a clockwise contour tracing algorithm is performed and border
points of the object are marked. If the object size is larger than a prede�ned
threshold then it is recognized as an object, otherwise it is marked to be a noise.

To �nd the next object the search is continued from the start point from
which the previous object was found. In our search for the next object the marked
points are not checked again. At the end of this step, the objects marked as noise
are deleted and for the remaining objects their size, distance from camera and
angle are calculated.

4.2 Motion Control

This module is responsible for receiving the motion commands from the "Deci-
sion Making Module" and putting the hardware to work. As it is mentioned in
the hardware architecture section, the communication between the processing
unit and the control unit is via two onboard PC serial ports using RS-232. So,
just some basic computations are done in this module and commands are sent
via serial ports to the microcontroller where they are executed.

For example, some commandsare kick, go(forward), go(backward), rotate(left),
rotate(right), rotate round(left, 10) (this stands for rotation around a point 10
centimeters straight from the robot geometrical center) and etc.

4.3 Communication

Communication between robots is done by wireless LAN under TCP protocol.
The main kernel of communication class can be downloaded from [6]. Each robot
has a wireless network card, and there is a server machine outside the �eld which
coordinates messages between robots. The server also provides a useful user
interface to command robots manually. Server's main responsibility is to receive
the robots messages and inform them about each robot status. For example, if
one robot knows that another robot is holding the ball it will not go for the ball.

4.4 Decision making

Principally, the Decision making module is referred to that part of Arvand
software that processes the results of Real time object recognition, decides ac-
cordingly and �nally commands the Motion control software. We have taken
deterministic approach in these routines. This module is a �nite state machine
(FSM) whose inputs come from changing state are machine vision results, motion
control hardware feedbacks and server messages. Each robot playing algorithm
kernel is �nding the ball, catching it, �nding the opponent goal and �nally car-
rying the ball toward the goal and kicking. But there are a large number of
parameters that a�ect this main kernel and cause interruppts in its sequence.
For example, the main method for �nding the ball is rotating. When our robot
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is moving inside the �eld it tries not to collide with other robots. This is done
by calculating the distance and angle of other robots and change the speed of
its motors such that object collision is avoided.

In addition, robot ability to measure the motors current feed back, allows it
to determine the stuck situations and thus making appropriate move to come
out of that state.

5 Conclusion

Arvand is the 2nd generation of robots constructed by our team. One advantage
of Arvand is its mechanics capability to rotate around any point in the plane.
This makes it possible for the robot to rotate around ball center while �nding
the goal position. In practice, this capability enabled us to implement special
individual playing techniques in dribbling, coming out when stuck and taking out
the ball from a wall corner. Another advantage of our robot is its use of MS/DOS
operating system, because it can be executed on a oppy disk which is a cheep
and reliable device on mobile robot. Our robots showed a good performance
in real games and we are going to improve our software algorithms based on
individual techniques and also team play. The wireless LAN system used in our
robots enabled the communication between robots which is the key to the success
of team play algorithms and also many individual techniques.
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The Team Description of Osaka University “Trackies-99” 

Sho’ji Suzuki’, Tatsunori Kato’, Hiroshi Ishizuka’ , 
Hiroyoshi Kawanishi’, Takashi Tamura’, Masakazu Yanase’, 

Yasutake Takahashi’, Eiji Uchibe’, and Minoru Asada’ 

Dept. of Adaptive Machine Systems, Graduate School of Engineering, 
Osaka University, Suita, Osaka 565-0871, Japan 

Abstract. This is the team description of Osaka University “Trackies” 
for RoboCup-99. We have worked two issues for our new team. First, 
we have changed our robot system from a remote controlled vehicle to  a 
self-contained robot. The other, we have proposed a new learning method 
based on a Q-learning method so that  a real robot can aquire a bhevior 
by reinforcement learning. 

1 Introduction 

We are interesting in how a robot acquires a behavior in dynamic environments 
and how robots cooperate without explicit communication. in the context of 
cooperative distributed vision [l]. We have applied a &-learning method, one of 
major method of reinforcement learning, to real robots and tested in RoboCup 
competitions[2] [3]. 

However, the performance of the behavior is not enough because; 

1. the control1 of the robot is not reliable. 
2.  the applied method is not enough to adapt to the real robot. 

In RoboCup-99, we will improve these problems by building a new platform and 
propsing a new learning method. In the rest of this paper, we describe our new 
robot and propse a new learning method. 

2 The Robot of Osaka University “Trackies-99” 

In RoboCup-97 and 98, we used a radio controlled model car as a robot body 
and equiped a CCD camera and a video transmitter on it. The image captured 
by the camera was transmitted to a host computer and it sent control signals 
to the robot. We could test various image processor and software development 
tools, however, the control of the robot was not reliable due to noises on radio 
links[2][3] and it brought poor performance of the robot’s behavior. 

To escape from noise problem, we have build a self-contained robot where 
the host computer is equiped on the robot. Figure l (a )  shows the robot of the 
team of Osaka University “Trackies-99”. Figure l (b)  shows configuration of its 
controller including following devices: 

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 750−753, 2000.
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base of the vehicle is a product of Mechatro Systems. Left and right wheel is 

CCD Camera is Sony EVI-D30. Pan  and tilt angle of the camera is control- 

CPU and Operating System Linux is running on Pentium MMX 233MHz. 
image processor is Hitachi IP-5005. I t  is a fast color image processing board 

LAN WaveLAN is used for monitoring and debug. 
video transmitter is used for monitoring a processed image 

The  size of the robot is 400[mm] of length, 360[mm] of width, and 450[mm] of 
height. The  weight is lO[Kg]. 

driven by a DC motor and other two wheels are caster. 

lable from CPU via serial communication. 

where basic operations are installed. 

(a) overview (b) controller 

Fig. 1. Robots of Osaka University “Trackies-99” 

3 A Learning method for a real robot 

We propose a continuous valued &-learning for real robot applications. Unlike 
the conventional real-valued &-learning methods, the proposed method dose not 
need well-defined quantized state and action spaces to  converge. The  basic idea 
for continuous value representation of state,  action, and reward in Q - learning 
is t o  describe them as contribution vectors of representative states, actions, and 
rewards. 

First, we tessellate the state space into n-dimensional hyper cubes’ . The ver- 
tices of all hyper cubes can be the representative state vectors xi = (xi, xi,. . . xi) 

the unit length is determined by normalizing the length of each axis appropriately 
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i = 1, . . . , N (here, N denotes the number of the vertices), and we call each vertex 
the representative state si. The contribution value w? for each representative 
state si when the robot perceives the input z = (z1, xz,. . . z n )  is defined as 
follows: 

1. Specify a hyper cube including the input z = ( 2 1 ,  z2,’ 1 1 zn) .  
2 .  Tessellate the cube into 2" hyper boxes based on the input z (see Figure 2 

3 .  Calculate the volume of each hyper box. 
4. Assign the volume w? of the box diagonal to  the state si. 
5. If the input z is on the surface of the hyper cube, the volume can be reduced 

6. Any other contribution values for the states which do not compose the above 

for the two dimensional case) 

to  the area or the length. 

cube are all zeros. 

Mathematical formulation of the above process is given by 

n 

where 

k = l  

Figure 2 shows the case of two-dimensional sensor space. The area w? is 
assigned as a contribution value for state si .  The summation of contribution 
values w? for the input z is one, that is, 

N 

i=l  

Thus, the state representation corresponding to  the input z is given by a state 
contribution vector wx = (wp, . . . , wg). Similarly, the action representation 
corresponding to  the output u is given by an action contribution vector wu = 
(wy , . . . , WE), where M denotes the number of the representative actions aj in 
the tessellated action space. 

To show the validity of the method, we applied the method to a vision-guided 
mobile robot of which task is to  chase the ball. Figure 3 shows a sequence of 
the aquired behavior. Although the task was simple, the performance was quite 
impressive. 

4 conclusions 

This work was supported by the Cooperative Distributed Vision project in the 
Research for the Future Program of the Japan Society for the Promotion of 
Science (JSPS-RFTF96P00501). 
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Fig. 3. A part of video image sequence 
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5dpo-2000 Team Description

Paulo Costa(*)(1)(2), António Moreira(3), Armando Sousa(1)(2),
Paulo Marques(2), Pedro Costa(1), Aníbal Matos(1)(2)
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(2) PhD. Sutdent at the FEUP, (3) Assistant Professor at the FEUP

Abstract - This paper describes the 5dpo-2000 team. The paper will be divided
into three main sections, corresponding to three main blocks: the Global Level, the
Local Level and the Interface Level. These Levels, their subsystems and some
implementation details will be described next.

1 Introduction

This is our first participation in the Robocup Competition in the F-2000 League.
We have already played in the F-180 League and we tried to incorporate our
experience in the design of this team. We think the first and most important issue to
be dealt with is the sensorial problem. Without knowing their position and the ball
position, the robots are not able to deploy any kind of coherent action. So we are
trying to tackle the problem of extracting this information from multiple cameras
and other sensors. All the information is acquired by each robot and so we have
distributed system. The data must be fused, taking in account their reliability and the
communication influence: bandwidth, delays and possible interference.

Each robot has a video acquisition system and a radio link to communicate with
the  other robots and with the coach. In addition to the video there are other sensors
like, infrared and acoustic range finders, contact sensors, etc.

As the radio link cannot be completely reliable we tried to fit the robots with
some autonomy so that they can survive a small starvation of orders from the Coach.
That can ease the problem of lost packets over the air.

The whole team can be seen as a system divided in two basic levels.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 754−757, 2000.
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Fig. 1. Robots and Coach and the information flowing between them.

We will now describe the team and its subsystems.

2 The Coach

This is the global Control Level. The global state of the system is updated based
on the information flowing from the robots. Data fusion is attempted and adversary
robot moves are tracked. A rule based engine is used to classify opponents intents.
By observing the present system state as well as a global mid-term strategy, new
roles are assigned and sent to the players.

This level closes the global loop but there is some intrinsic lag that degrades its
optimal  performance. Each robot acquires the image, then some time is lost
processing it and more time is lost to transmit the data to the coach. There, the
reasoning unit must decide the new course of action and it is necessary to wait for
the next time slot to send information to the robots. That is why the local loop,
running in each robot, can show a much better performance in some tasks than the
globally closed loop.

Other role of the coach is to maintain a “official” global state that can be used to
ensure the coherency of the global system state viewed by each robot.

3 The Communications

The information flowing is used by all the robots to update their view of the
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global state. In that way we can have each robot gaining extra information from the
other robots’ sensors.

3.1 The Radio Link

The radio link allows sending and receiving short packets that carry messages
from the Coach to the robots and between robots. We have the radio channel time
slotted synchronously with a global clock. This global clock is kept by each robot
using the time of arrival of the radio signals to compensate any possible drift.

3.2 The Alternative Link

The quality of the communication system is paramount to the team performance.
So we are considering adding an alternative communication link, probably an
infrared link, to improve the reliability  of the overall communication system.

4 The Robots

A robot is an autonomous unit considering a short time frame. The robots are
capable of generating a queue of tasks to be performed. These tasks may include
following a specified trajectory, holding the ball, passing it along to another team
member or maybe shooting for goal. The local control system tries to enforce those
orders in the predefined sequence.

Some team tactics are maintained at all times like some defense mechanisms that
are enforced during the match. In any case, the defense robots stand in alignment in
such a way that the robot that holds the ball can’t easily shoot for goal. This implies
the presence of a path planner present in each robot.

Next we describe the basic mechanical and electrical design of the robots.
The robots are fitted with two differential wheels. The wheels are driven

independently by separated stepper motors. Two extra free wheels ensure the static
stability.

The robots are presently powered by embedded Lead-Acid batteries. The motors
are driven by two H-bridges that are directly powered from the batteries. The on
board controller is a 8-bit RISC microcontroller (Atmel AVR90S4414). A PC deals
with the higher level functions.

Two small single frequency RF modules (433 MHz and 418MHz) are used to
communicate with the coach and other robots. Only one can be used at a time.

The PC code was done in C++ in DOS with a 32 bits extender. That was the only
way to ensure the hard real-time nature of the tasks. Other operating systems could
not guarantee hard real-time behavior.

Our team uses a local vision system as a primary sensorial source for each
member. This is our positioning system for the robots, for the opponent robots and
for the ball.
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This system consists in one or more color video cameras, placed on the robot.
The TV signal from these cameras is feed to a video acquisition board placed in the
local PC. This board is capable of placing a digitalization of each image frame in
the PC memory without CPU intervention, thus wasting almost no processor time. In
the end of this process the board can signal the processor the conclusion of that task.

As we are using PAL cameras the image frequency is 50 Hz with alternating even
and odd frames. We are only using even frames therefore we have an image update
frequency of 25 Hz. Based on the acquired image we try to identify the ball position
and also the robots’ position and orientation.

5 Future Work

A disclaimer must be made at this point: between now and the competition there
is yet a lot of time to make changes in the described setup. As we test the
performance of each subsystem and find better alternatives we will try to implement
them. We want  the overall system to show a more robust and efficient operation.
There is the possibility of adding some kind kicking device to some of our robots.

6 Conclusions

In this paper we described the 5dpo-2000 team and the solutions we found to this
problem. Recognizing the overall system state (the ball position and speed, our
team’s robots’ state and the adversarial robots’ state) using vision in distributed
environment is still a very difficult task. And the quality of the team behavior is
very dependent from the accuracy of that system.

The decision of what to do, even with accurate knowledge of the system status, it
is a major task on its own. The range of options, some discrete and some continuous
has many dimensions and cannot be easily searched. A lot of heuristic rules must be
used to trim the possibilities and the best framework to represent and find them is a
matter that requires still a lot of research.

References

1. Arthur Gelb, Joseph Kasper Jr.,Raymond Nash Jr., Charles Price, Arthur Sutherland Jr.:
Applied Optimal Estimation, The M.I.T. Press, (1989)

2. J. Borenstein, H. R. Everett, L. Feng, S. W. Lee and R. H. Byrne: Where am I? Sensors
and Methods for Mobile Robot Positioning, (1996)

3. J. Carvalho: Dynamic Systems and Automatic Control, Prentice-Hall, (1993)
4. Huibert Kwakernaak, Raphael Sivan: Linear Optimal Control Systems, Willey-

Interscience, (1972)
5. Jean-Claude Latombe: Robot Motion Planning, Kluwer Academic Publishers, (1991)
6. Lenart Ljung: System Identification: Theory For The User, Prentice-Hall, (1987)

7575dpo-2000 Team Description



www.manaraa.com

Team ARAIBO

Yuichi KOBAYASHI and Hideo YUASA

The University of Tokyo

1 Introduction

Our team focused on manipulating the ball. We developed the kicking and head-

ing motion. Two kinds of neural networks are utilized in order to recognize the

ball and kick it. The recognition and manipulation did not work su�ciently, but

intdicates our interest of playing soccer with legged robots. We confronted the

team LRP and the team McGill in the round robin. We defeated McGill by PK,

and lost the game with LRP 0-2.

2 Team Development

Team Leader: Tamio ARAI

Team Members: Tamio ARAI

{ Dept. of Precision Machinery Engineering, The University of Tokyo

{ Japan

{ Professor

{ did not attend the competition

Hideo YUASA

{ Dept. of Precision Machinery Engineering, The University of Tokyo

{ Japan

{ Professor

{ attended the competition

Yuichi KOBAYASHI

{ Dept. of Precision Machinery Engineering, The University of Tokyo

{ Japan

{ Student in the doctor course

{ attended the competition

Masaki Fukuchi

{ Dept. of Precision Machinery Engineering, The University of Tokyo

{ Japan

{ Student in the master course

{ attended the competition

Jun'ichi IMANISHI

{ Dept. of Precision Machinery Engineering, The University of Tokyo

{ Japan

{ Student in the master course

{ attended the competition

Toru IWATA
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{ Dept. of Precision Machinery Engineering, The University of Tokyo
{ Japan
{ Student in the master course
{ attended the competition

Web page http://www.arai.pe.u-tokyo.ac.jp/robocup

3 Complete Robot Architecture

We did not integrate reex hehaviors such as avoiding obstacles or other excep-
tional behaviors. So the robots decided actions based on the recognition of the
ball and the information of self-localization.

When the robot does not recognize the ball, it continues to turn at the same
place with its head swinging. In order to avoid dead-rock state, it keeps the
time since the current walking command has been decided. If the walking action
does not change over a threshold time value, it changes its walking action by a
random value unconditionally.

4 Vision

The 8 channels of the color detector are set, orange, green, white, skyblue, yel-
low, pink, darkblue and red. Darkblue and red are the colors of robots. They are
recognized by the color detector but are not used for action dicision. When the
color pink is detected, upper and lower regions of the center of pink are refer-
enced. The type of the landmark is decided by comparing the number of pixels
of each color. The goals are recognized when skyblue and yellow are detected
without pink.

We made the color table as follows:

{ Take images and save in memory sticks.
{ Create image �le in the `ppm' format.
{ Pick up the region where we want to recognize.
{ Make a ppm image �le that consists of black and white. Black corresponds

to the color we want to recognize, and white other colors.
{ Pick up YUV values of each pixel which correspond to a black pixel.
{ Decide max and minimum YUV values of the color by collecting data.

In order to measure the ball position more precisely, we used Back Propaga-
tion algorithm. The ordinal way of recognizing the ball position is to utilize the
pan and tilt joint values of the head while the head is tracking the ball. This
way is not so much reliable especially when the ball comes near to the body. We
developed the way of re�ning the measurement by utilizing the four parameters
of the ball image.

First, we collect image data of the ball at a �xed position changing the pan
and tilt joint angles of the head. The pan and tilt joint angles are not always the
same even when the position of the ball is the same. The collected data consist
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of pan and tilt joint angle values and four parameters mentioned above. These
six variables are measured mostly around ten times with di�erent pan and tilt
angles.

The �rst neural network is used to calculate the ideal pan and tilt joint. Here
the word `ideal joint' means that the CCD camera captures the ball exactly in
the center of the visual �eld with the pan and tilt joint angles. In such a state,
these angles provides enough information to specify the position of the ball.
The stored data are used to solve the inverse problem. The training data of the
network consist of x and y value of the center of the ball in the visual �eld as
inputs and the pan and tilt joint values as outputs. After training, the ideal pan
and tilt joint value is calculated by giving this network the center of the visual
�eld.

Then the position of the ball is changed and �xed. The same process is
iterated by changing the ball position. The second neural network is used to
express the relation between six parameters and ideal pan and tilt joint values.
Input data consists of actual pan and tilt joint values and four image parameters.
Output data consists of ideal pan and tilt joint values which are calculated by
the �rst neural network. By training with the data set of them, ideal pan and tilt
joint values can be calculated from the actual joint values and image parameters.

5 Control

The manipulation actions for the ball are kicking and heading. When the robot
kicks the ball keeping the posture of standing, the ball does not go so far because
the reach of the kicking leg is limited. So, we gave up preserving the standing
posture during the kicking motion. First, the robot bends its right ( or left )
front leg. The robot begins to fall down, and then the robot extends its bent
leg. The ball gets farthest when the extending action sinchronizes with the fall
of the body.

When the goal is the side of the robot, it hits the ball by its head. Two
motions are combined to realize this heading action. One is the swinging motion
of the head, and the other is the translation of the body by the legs. shows
the motion of legs to translate the body. The heading action is achieved by the
conbination of this action and the swinging action of the head.

6 Localization

We used roughly estimating algorithm from only one landmark. When one land-
mark is recognized, the current direction of the robot can be estimated very
roughly.

When the position and posture of the robot is estimated in some way, these
variables are transformed to the relative relation between the robot and the goal.
The robot can update these relative relations by dead reckoning.
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7 Strategy

The main strategy of our robots is to `�nd the ball, and get close to the ball', and
to `manipulate the ball according to the direction of the goal'. The two modes
ball-searching and ball-tracking correspond to the most basic condition.

When the mode is ball-tracking, the robot approaches to the ball and decides
how to manipulate the ball. Here we mean kicking and heading action for the
word `manipualte'. The robot changes walking command so as to adjust the pan
angle of the head to zero.

If the pixel number of the orange ball exceeds a threshold value, it decides
the manipulation action according to the roughly estimated direction of the goal.

When the mode is ball-searching, the robot turns its body while swinging its
head. In order to avoid dead-rock state, it changes the walking action when the
same walking action continues over a threshold time.

8 Special Team Features

We developed learning system to realize `Kick the ball where the robot wants
to'. This architecture is based on Kohonen's Self-Organizing Maps(SOMs). Here
we used SOM as associative memory. Action and its evaluation data is stored
beforehand by the experiment. The weight vector of each node consist of as
state inputs, as action outputs and as evaluation signals. Here, the state inputs
are the ideal pan and tilt joint angle values calculated by the neural network.
The action outputs are the direction of the kicking leg. The evaluation signals
are the direction and distance of the ball after kicking. The distance is estimated
by the number of pixels in the visual �eld.

The best matching node is calculated with the state inputs and desired eval-
uation signals. Action outputs and estimation of evaluation signals are decided
by the best matching node. Actually the di�erence of the action output is not so
inuential with the direction of the ball. At least, this stored data can be utilized
to estimate the direction of the ball before kicking. When the robot knows that
the ball doesn't go to the disired direction with any action output, it can change
the position by walking.

But this learning architecture did not work su�ciently in Stockholm. This is
partly because the calculation of the ball position mentioned above is not precise
enough.

9 Conclusion

We are going to participate the league next year. Development of the ability of
ball operation is indispensable in order to realize more complicated strategy. We
should focus on recognition and manipulation of the ball in front of the body ,
continuously. Learning for acquisition of the relation between manipulation and
observation will be the main problem of our approach.
This article was processed using the LaTEX macro package with LLNCS style
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BabyTigers-99: Osaka Legged Robot Team

Noriaki Mitsunaga and Minoru Asada

Dept. of Adaptive Machine Systems, Osaka University, Suita, Osaka, 565-0871, Japan

1 Introduction

Our interests are learning issues such as action selection, emergence of walking,
and self localization without 3D-reconstruction. We implemented teaching, self
localization without 3D-reconstruction and embodied trot walking.

Our embodied walking showed the fastest movement in the all nine teams.
We got second place in the RoboCup Challenge. Although due to the fatal bug
revealed in the game, we lost in the semi-�nal game and we got the fourth place
in the competition.

2 Team Development

Team Leader: Minoru Asada
Team Members:

Minoru Asada
{ Osaka University
{ Japan
{ Professor
{ Attended the competition

Noriaki Mistunaga
{ Osaka University
{ Japan
{ Ph.D candidate
{ Attended the competition

Tatsuro Nohara
{ Osaka University
{ Japan
{ Master course student
{ Attended the competition

Web page http://www.er.ams.eng.osaka-u.ac.jp/

3 Complete Robot Architecture

Since everything changes rapidly in the real world, we consider it important
for the robot to make fast decisions. Then we adopted to execute the learned
movements rather than do planning during the games.

We wrote a program which consists of three objects. One is for the vision,
one for the walking and head movements, and one for cognition and decision
making.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 762−765, 2000.
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4 Vision

In the RoboCup Legged Robot League �eld [2], seven colors (aqua-blue, yellow,
orange, blue, red, pink, green) are used and robots need to detect and discrimi-
nate them. The Sony's legged robot has the color detection facility in hardware
that can handle up to eight colors at frame rate. To detect colors with this fa-
cility, we need to specify each color in terms of subspace in YUV color space.
YUV subspace is expressed in a table called Color Detection Table(CDT). In
this table, Y are equally separated into 32 levels and in each Y level we specify
one rectangle (umini; vmini),(umaxi; vmaxi) (i = 1; :::; 32).

In order to make CDTs, we used the same method used in last year. Briey,
1) take an image which includes the object to detect with the robot, 2) specify
pixels to detect with GUI program and make a list of YUV to detect, 3) order
the program to classify each pixel according to the Y level as they are classi�ed
in CDT and make a bounding box of UV in each level, 4) check if detection
satis�es the need and if not do 1) again. Iterate these procedure for each color
with several images.

If some parts of an object are detected by a CDT, but still other parts of it
remain not detected, one can extend the CDT with continuousness of color in
YUV space. We also made this kind of CDT expansion tool and used it (Fig.1).

(a) A partially detected
image by CDT

(b) Mostly detected im-
age by expanded CDT

Fig. 1. An example of expanding CDT

Objects recognition was done by extraction of connected areas with 8-neighbor
method in the color detected images. After connected areas are extracted, ob-
ject recognition, including landmarks (all landmarks are consisted of two colors)
recognition are done by concatenating the areas. To overcome noises in the image,
the order was determined empirically. Details of 1)-4) and objects recognition
are described in [1].
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5 Control

Since it is important to move fast and e�ciently, we developed an embodied trot
walking, which enables simple controlling program and fast movement. Details
will appear elsewhere.

For the posture control we used getting up program designed by SONY.
We wrote down the program to sense of falling down, and called the SONY's
recovering program when needed.

Head movement for searching and tracking the ball and observing landmarks
about 180 degrees have been implemented beforehand. Also we prepared six
discrete movements, forward, left forward, right forward, left turn, right turn,
and chase the ball for 2.4 seconds (four walking periods). Since we decided to
use teaching for behavior acquisition, we did not implement behavior such as
avoiding obstacles or keeping its own goal.

6 Localization

In order to determine the behavior to take, it is important to localize itself in
the soccer �eld. Location estimation with occupancy grids is time and memory
consuming and it is di�cult to do dead recogning with trot walking due to slip-
page. Although the 180 degree view is unique in most locations of the RoboCup
Legged Robot League �eld, the robot has to pan or memorize how the landmarks
were seen for 3-D reconstruction, due to the limited view angle of the camera.

To overcome such di�culties, we used the direction of the landmarks from
the robot for its localization. The robot sees landmarks panning the camera and
calculates in which direction they are and assigns the quantized direction to each
landmark. Depending on the directions of the landmarks and the ball, the robot
behaves as the human trainer taught. To reduce the time for panning, we also
implemented estimation of landmarks. The robot only observes if estimation and
current view of landmarks are not su�cient to determine an action to take.

7 Strategy

We used two kinds of programs. One is to demonstrate the fast trot walking,
which only chases the ball. The other is to play back the taught behavior. There-
fore our strategy mostly depended on the human trainer. Basic teaching policy
was, 1)if the ball can be seen, 1-a) chase the ball if the target goal can be seen,
1-b) otherwise, turn around the ball as to see the target goal, 2)if the ball can
not be seen, 2-a) if near the own goal, turn outside not to make own goal, 2-b)
otherwise, turn to center of the �eld expecting to see the ball. Unfortunately, we
have not considered team works in the teaching yet.
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8 Special Team Features

We have proposed and implemented a new method for decision making based on
information criterion. The basic idea is to construct a decision tree and predic-
tion trees of the landmarks, which enable a robot with a limited visual angle to
localize itself in the environment with fewer observations. The number of pan-
nings (observation) are reduced by predicting the locations of landmarks and
judging if the current observation and prediction of landmarks are su�cient for
the decision making. We used a teaching method to collect example data for
making the decision and prediction trees. Details will appear elsewhere.

9 Conclusion

We implemented an embodied trot walking and showed fast movements but had
di�culty in making small or steady movements. Embodied steady static walking
which can easily combined with dynamic walking should be developed.

We employed the direct teaching method for learning. For the self localiza-
tion, we used quantized direction of landmarks from the camera rather than
3-D reconstruction. We also implemented a decision making method to see or to
take an action dependent on estimation. Team work and self learning are future
issues.
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1 Overview

The robots used in this competition were generously provided by Sony [3]. The
robots are the same as the commercial AIBO robots except for slight hard-
ware changes and programming capabilities. These autonomous robots are about
30cm long and have 18 degrees of freedom. The neck pans ±90◦ allowing the
robot to scan the field with its on board camera. Six uniquely colored landmarks
are placed around the field (at the corners and center-line) to help the robots
localize. Each team consists of three robots. Like our team last year, CMTrio-
98 [5], we divided our team between two identical attackers and one goalie.

We divided our system into three main components: vision processing, local-
ization, and behaviors. The vision system is responsible for calculating distance,
angle, and confidence measures for all objects visible by the robot. The localiza-
tion is responsible for calculating the position of the robot on the field given the
movements executed and the landmarks seen (we did not implement goals for
localization this year). The behaviors are responsible for taking this information
and winning the game.

Results from our matches in RoboCup-99 at Stockholm show our algorithms
to be effective. Our team won all but one of its games, and the one it lost was lost
by only one goal. Our team was the only one in this year’s league to score goals
against opposing teams and never to score a goal against itself. Our goaltender
was the only one in this year’s league to score a goal itself.

2 Vision

The vision system processes images captured by the robot’s camera to report
the locations of the ball, the 6 unique location markers, the two goals, and
the robots. The main steps in vision processing are: 1) capture an image and
classify each pixel’s color in hardware using predetermined color thresholds, 2)
find connected regions of the same color, 3) merge close regions of the same
color, 4) use geometric filters to remove false positives, 5) calculate distance and
angle of objects in ego-centric coordinates.

The on-board camera provides 88x60 images in the YUV space at about
15Hz. Hardware Color classification is then performed on these images. The
thresholds for color segmentation are created by a supervised learning method
based upon hand labelled images captured from the dog’s camera. This results
in a new image indicating color class membership rather than raw camera colors.
This image is run length encoded (RLE) for further processing.
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The region finding [1] method employs a tree-based union find with path
compression. The algorithm outputs a forest of disjoint stubby trees correspond-
ing to a connected region in the image. We next extract region information. The
bounding box, centroid, and size of each region is calculated incrementally in
a single pass over the forest data structure. The regions are separated by color
and sorted by size (putting larger, more important blobs first).

A problem with connected components is that a single row of pixels incor-
rectly classified can separate an object into two components. We used a density
based merging scheme to try to overcome this problem. We merge close regions
of the same color if the resulting new region has a sufficiently high density.

The next step is to calculate the location of the various objects given the
colored regions. Various top down and geometric object filters are applied to
limit the occurrence of false positives and serve as the basis for confidence values.
The largest orange blob below the horizon is labelled as the ball. The confidence
value and distance is calculated based on image area and a circular object model.
The field markers are detected as pink regions with green, cyan, or yellow regions
nearby. The confidence is the ratio between the squared distance between the
centers of the regions and the area of each region. The distance is calculated from
the distance between the centers of the two regions. The goals are the largest
yellow or cyan regions below the horizon. The very course distance approximation
is based on the angular height of the goal in the camera image. The confidence
is based on the aspect ratio of the goal in the image. The final objects detected
are opponents and teammates. Due to the multiple complicated markers present
on each robot, no distance or confidence was estimated and the marker regions
are returned in raw form.

The system performed well in practice; it had a good detection rate and was
robust to the unmodeled noise experienced in a competition due to competitors
and crowds. The distance metrics and confidence values were also useful in this
noisy environment.

3 Localization
Our localization algorithm is based upon a classical Bayesian approach which
updates the location of the robot in two stages, one for incorporating robot
movements and one for incorporating sensor readings. This approach represents
the location of the robot as a probability density over possible positions of the
robot. Our localization algorithm, called Sensor Resetting Localization (SRL) [4],
is based upon a popular approach called Monte Carlo Localization (MCL) which
represents the probability density using a sampling approach.

MCL [2] represents the probability density for the location of the robot as
a set of discrete samples. The density of samples within an area is proportional
to the probability that the robot is in that area. We calculated the robot’s
position from these samples by taking their mean. We estimated the uncertainty
by calculating the standard deviation of the samples. We encountered some
problems implementing MCL for the robot dogs. MCL took more samples to do
global localization than we could actually run on the hardware. MCL also has
problems dealing with our large modelling errors.
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SRL is motivated by the desire to use fewer samples, handle larger errors
in modelling, and handle unmodeled movements. SRL adds a new step to the
sensor update phase of the MCL algorithm. If the sensor reading and locale belief
state disagree, we replace some of our samples with samples consistent with the
current sensor readings. In this way, we effectively through out our history and
reset. Note that when tracking is working well no resetting is done and SRL
behaves exactly the same as MCL.

This resetting step allows SRL to adapt to large systematic errors in move-
ment by occasionally resetting itself. SRL is also able to recover from large
unmodeled movements easily by using this same resetting methodology. Unex-
pected movements happen frequently in the robotic soccer domain we are work-
ing in due to collisions with the walls and other robots. Collisions are difficult to
detect on our robots and thus cannot be modelled. We also incur teleportation
due to application of the rules by the referee.

Robot movement was modelled as three Gaussians with hand measured pa-
rameters; one Gaussian for distance travelled, one for direction travelled, and
one for heading change. Sensor readings were modelled as two Gaussians, one
for distance and one for angle. Standard deviations were estimated by testing.

We used 400 samples in actual competition. We weren’t quite capable of
keeping up with real time this way if we saw a lot of markers, so we through out
some sensor readings from time to time to catch up. The localization is accurate
to about 10cm and 15◦ while the robot is looking around for markers and moving.
Performance drops somewhat when the robot goes long periods of time without
looking around for markers as often happens during play. We observed that the
localization algorithm quickly resets itself when unmodeled errors such as being
picked up occur.

4 Behaviors

Choosing behaviors for the robot is a difficult challenge. The robot must act
under uncertainty and varying amounts of localization information. The robot
can affect the amount of information available to it by actively localizing. Ac-
tively localizing involves stopping the robot and scanning for markers, a process
taking 15–20 seconds. Stopping the robot reduces the computational load on the
localization system allowing it to operate in real time. The behavior system has
to balance the time spent localizing with time spent acting. Every moment spent
looking around provides an opportunity to the opponent robots.

Our solution is structured as a finite state machine. Each state corresponds
to a set of behaviors that all accomplish the same goal. Each behavior expects
a different amount of information to be available. The best behavior that has
all its required information available is chosen to be executed. In this way, the
robot takes advantage of all the information that is available to it. We call this
approach multi-fidelity behaviors [6].

Switching between action and localization is controlled by timeouts that
switch the robot between states of the finite state machine. These timeouts make
sure that the robot localizes occasionally and that the robot spends enough time
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acting. The robot needs to localize occasionally to prevent the localization out-
put from drifting from reality without being detected. The timeout for action
ensures that the robot doesn’t spend all of its time localizing. The localization
timeout is turned off during behaviors that do not require localization informa-
tion.

Our behavior state machine has 5 main states: score, recover ball, search
for ball, approach ball, and localize. Search for ball and approach ball do not
require localization. Search for ball employs a random search method that al-
ternates between walking forward/backward random distances and rotating in
place a random number of degrees. Approaching the ball uses the visual input to
approach the ball. If localization information is available, the robot attempts to
approach a point behind the ball to save time. The scoring behavior circles the
ball (while facing it) to get behind it and then pushes the ball towards the goal.
If sufficient localization information is available, the robot: circles in the quickest
direction, avoids circling into the wall, and does not bother visually acquiring
the goal. The recover ball behavior backs up when the robot looses track of the
ball. This optimizes for the common case of the robot loosing the ball by walking
past it. The localization mode stops the robot and scans for markers.

We have specialized behaviors for kickoff and goal protection. At kickoff, we
charge the ball to ensure the best ball position possible. The outcome of the
kickoff often decided who would score next. Our goalie runs a specialized set of
behaviors. The goalie scans for the ball from its home position in front of its goal.
When the goalie sees that the ball is close enough, the goalie clears the ball and
then returns to the home position using the goals as landmarks for navigation.
When the goalie is clearing the ball, the goalie uses localization information to
hit the ball off-center such that the ball heads towards the opponents half of the
field. This tactic was sufficient to allow our goalie to clear a ball all the way into
the opponents goal.

Acknowledgments We thank Sony for providing the robots for our research.
We thank Tucker Balch for his many insights on this work.
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1 Introduction

The team members include students as well as members of the teaching stuff
from the Department of Computer Science at the Humboldt University. They
represent the groups of Artificial Intelligence, Responsive Computing, and Signal
Processing, respectively. It was the aim of the project to combine the skills of
these disciplines to program soccer playing legged robots.

An underlying idea was to use the experiences from the simulation league for
the general structure of the robot software. We still think that this concept is
realistic. But the restricted time forced us to use a very simple reactive approach
for the RoboCup 1999 world championship.

Our general research interests can be described as follows: We are interested
in the development of skills on higher level decision protocols using methods
from Machine Learning, especially from Case Based Reasoning. For knowledge
processing and deliberation we are using mental models from Artificial Intelli-
gence. We are specifically interested in developing normal consensus protocols,
collision avoidance protocols and would like to develop new models of faults,
e.g., the opposing soccer team would be considered as a new type of a fault. Fur-
thermore we are interested in novel algorithms for image processing and their
implementation in embedded systems. We would like to apply parallel comput-
ing structures for image processing using the pixel-bit parallelism principles of
distributed arithmetic. Scalable resolution allows simultaneous suppression of
noise, sharpening of discontinuities and labelling of important data.

2 Team Development

Team Leader: Prof. Hans-Dieter Burkhard

? This work was partly sponsored by TecInno GmbH Kaiserslautern, Daimler Chrysler
AG Research & Technology Berlin and PSI AG Berlin

?? This work has been supported by the German Research Society, Berlin-Brandenburg
Graduate School in Distributed Information Systems (DFG grant no. GRK 316).
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Team Members:
Prof. Hans-Dieter Burkhard
– leader of the AI group
– did lead the design and did consulting
– did attend the competition

Dr. Matthias Werner and Dr. Michael Ritzschke
– research assistent at the responsive computing / signal processing group
– did lead Aperios and OPEN-R integration / did lead design of vision

and did consulting
– did attend the competition

Dr. Frank Winkler and Peter Tröger
– research assistent at the signal processing group / undergraduate student
– did lead development of vision and acoustic tools and did consulting /

did implementation of acoustic communication
– did not attend the competition

Jan Wendler
– PhD student at the AI group
– did design and implementation of the world model
– did attend the competition

Helmut Myritz, Uwe Düffert and Andrej Georgi
– undergraduate students
– did the implementation and debugging
– did attend the competition

Web page http://
www.ki.informatik.hu-berlin.de/RoboCup/RoboCup99/index e.html

3 Complete Robot Architecture

We have distinguished four main parts which we call Cortex, Brain, Body, and
Communication. Messages are passed between these modules according to the
underlying control structure.

The general idea is to transmit the plans computed by the Brain to the Body
and perform it by the available skills. The Body controls the movement of the legs
in order to turn, move, kick etc. Additionally, there exists a direct information
flow between Cortex and Body for immediate actions, e.g., for keeping track of
the ball. This imposes some rudimentary layered architecture.

4 Vision

The Cortex uses the Color Detection Engine (CDT) to identify the objects in the
image by common procedures of image-processing to find the object parameters,
e.g. position, width, center-point.

It is well known, there are some possibilities to describe the colour in a
picture. Common colour spaces are for instance RGB, YUV (the PAL/European
standard for colour television broadcasting) and HLS, where H is for the Hue
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( the H value is a degree value through colour families), L for Lightness (1 =
white, 0 = black) and S fore Saturation ( that is the degree of strength of a
colour - greater is S, the purest is the colour).

The robot-eye use the YUV space and so we can analyze the YUV-values in a
robot-image. But we want to create CDTs for a wide range of lightness/darkness
and of saturation, because the robot sees different colours in the pictures if he
looks from different viewpoint to the same objects. On the other side we found
in our testing-period, that every robot had from the same viewpoint under the
same light conditions little different YUV-values. Therefore we realize a way to
develop our CDT’s with four steps:

– Shooting session to get some images from all relevant objects (ball, goals,
playerdress, landmarks), we use different viewpoints and - if enough time,
all our robots.

– Analyzing of the YUV values and transformation via RGB in the HLS space.
Our tool allows us to use the mouse for moving a reticule over the object.
With the help of the statistical componente we get for H,L,S the mean value
and the standard deviation.

– Now we use a second tool to simulate possible combinations of HLS around
the mean values of H,L,S - with the help of random numbers of the con-
stant distribution like radio noise. Every generated HLS-point (we use more
then 1000 points) will be transformated in the YUV space and the resulting
borderlines of YU and YV plane built our CDTs, which we can save in a file.

– We check the quality of our CDTs with a further program using originally
robot-images. This tool allows - if it is necessary - manually corrections of
the CDTs.

5 Control

We did not develop our own skills. This was a real drawback since the usage
of the available skills caused several problems, e.g. the main disadvantage was
a missed possibility to interrupt a movement in process. Another disadvantage
was a lack of movements’ precision.
We tried to overcome these disadvantages by several means:

– To interrupt a movement, we insert an interception function between the skill
module and the robot module. Its task was to catch outgoing commands and
to report success to the skill module.

– To improve the real-time behavior, we used a priority queue to transmit
commands to the body. Sent but not yet executed commands that became
superfluous are thrown away.

– Critical parts of a movement are executed in the step-wise mode. That shall
increase the movement’s accuracy.

However, the creation of a real-time walking and posture control is a mayor
objective to become an appropriate competitor in the next competition.
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6 Localization

The robot has to stop each time he tries to localize himself on the field. Then
he turns his head to scan the full area around him all seen flags and goals are
stored. The dog can now calculate his own position and body direction with
these informations. The calculations are most of the times correct, only if the
number of seen flags is very low or the distance to a flag or a goal is quite wrong,
than the calculation can went wrong very hard. Usually we have to wait a small
amount of time until the next localization is of advantage.

7 Strategy

The software architecture of the Brain is oriented on our simulation league
agents, the AT Humboldt team, which is using a BDI architecture for the mental
modelling. According to the BDI architecture the Brain transforms the received
data into an internal world representation (“belief”). It identifies possible options
(“desire”) and commits for useful plans (“intention”).

Actually, we did not finish the work on this concept for RoboCup. Instead,
we used a simple reactive approach:

– Look for the ball
– Run to the ball
– Search and positioning for the opponent goal
– Go with the ball to the opponent goal
– Kick if you are near the opponent goal

8 Special Team Features

Because of the hearing and speaking possibilites of the sony legged robot, we
decided to implement an acoustic communication. The speaking ability was a
big advantage for debugging, the robot could tell us what he had seen by playing
a predefined wave-file.

Unfortunately SONY did not supported the hearing capacity this year, there-
fore an acoustic communication between the robots was not possible.

9 Conclusion

We are very thankful to SONY for giving us the opportunity to work with such
an exciting device. We are full of plans for the next year.

In future we will continue to develop in a close cooperation of all groups
(Artificial Intelligence, Responsive Computing and Signal Processing). We will
try to optimize coordination of all movements of the robot. Additionaly the
problem of localization is another major point of interest in next years work.

During this year all three groups together are organizing one lecture ”Intelli-
gent Robotics”, where motivated students are able to work with the Humboldt
Heroes team. Certainly we don’t forget the simulation league, the AT Humboldt
2000 is already in preparation.
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1 Introduction

After a period of experimentation and investigation into the dog’s possibilities we
defined six core areas in which we would concentrate our development efforts. In
concert, we felt, these areas of functionality would give a strong system capable
of succeeding at the proposed challenges. The six major areas of functionality
can be roughly divided into two groups, informally labeled input and output.
Input consists of the tasks of Vision, odometry and localization/map-building.
Output embodies the tasks of moving, path planning and AI (decision making).
These areas are treated in greater detail in the remainder of this document, after
a brief overview of our system’s infrastructure.

2 Complete Robot Architecture

In this section we will briefly outline the underlying architecture of our system.
It is important to describe this in order to help make clear how the other areas of
our system (outlined above) were implemented. After receiving the hardware we
experimented extensively with different models for control, sharing and transfer-
ring of data and synchronization of separate modules of code. We implemented
several different versions of a core software engine, using different approaches,
and finally settled on the version we called ’monolithic’, for reasons which will
become clear in the next few paragraphs. First a couple of definitions:

– Core software engine, or engine will be used to refer to the code that is the
bottom layer of our system. While this code does not actually solve any
robotics problems in terms of the areas described in the rest of this article,
it nevertheless offers important functionality. It interacts with Aperios for
the other functional units of our system, and provides important scheduling,
synchronization and information management functionality for them.

– Object will be used to mean a C++ object.
– Oobject will be used to mean an Aperios Ooblet object.
– Process will be used to refer to one higher level functional unit of our system.

A Process is something like our Path Planner, or our Vision System.

During our experimentation it became clear that what we really wanted was to
have separate threads of execution in our code so that we might have indepen-
dent and easily separable functional units, whose code could be kept specialized,
focused and clean. We envisioned these functional units (e.g.: Vision System,
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Map, Path Planner, etc...) to be implemented as Objects, with simple APIs for
interacting with each other. Although this seems to be exactly what the mCOOP
layer of Aperios offers, we found synchronization and sharing of information to
be very difficult to achieve using the Observer/Subject communication channels.
Also, we found the architecture was conducive to designs that were fairly serial
in the way information and control was distributed among the Oobjects, or at
best pipelines. It was hard to see how really parallel software models were to be
implemented.

Aperios

OVirtualRobotComm Oobject

other Aperios Comonents...

Ping Oobject

MultiEngine Oobject

Fig. 1. The Architecture of our system within Aperios

All these considerations led us to the monolithic engine approach. We decided
to implement one very large Oobject, composed of a huge number of Objects
which would be our entire program, from vision to AI. Within this Oobject
is a layer which accepts control from Aperios, quickly processes any data the
message from Aperios may carry, and then calls an entry function in one of the
higher layers of code according to a well defined scheduling scheme. The higher
layers of code are also designed according to a well defined API to inherit from
a base class called ’Process’ and offer a simple interface consisting of a process
ID number and an entry point. The higher layers are written with the constraint
that any entry point which is called must be sure to return to its caller within
a fairly short time, certainly less than 8ms. This constraint is necessary because
there is no preemptive scheduling that we were able to access in the mCOOP
layer of Aperios. However, this also makes our synchronization tasks somewhat
easier, since we can guarantee that while our Oobject has control from Aperios,
no other code in this Oobject is executing at the same time, and we can change
variables or set flags without risk of being in the same critical section as another
functional unit. To transfer control back to Aperios we must return from our
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entry function. All this is implemented by having a master Object that contains
all the Aperios Ready/Notify functions for all the channels to which our system
needs access. The same object also maintains a list of Processes, basically an
array of references to Process objects and some associated information. Each
process is associated with a state flag, a process number, entry point, and a delay
value. During initialization each process is registered with the master object
(placed in the list). Whenever an entry from Aperios occurs, the master object
checks how much time has passed and decrements all process delays by this
amount. Any process whose delay drops below zero is placed in a round robin
queue for execution. Finally the process at the front of the queue is dequeued
and its entry function is invoked. When this function returns, control is returned
to Aperios, to give time to other parts of the OS to do their job and process
our requests. While testing this core engine we found we were not getting the
execution speed and frequency of entries from Aperios that we needed for reliable
operation. For this reason we added one more, extremely small Ooblet to our
system. Simply named ’Ping’, all this Ooblet is capable of is to receive a message
through its notify channel and upon receiving it, immediately send out a ready.
This Oobject is used to have a continuous exchange of messages from and to
our master object in the principle Oobject, so that we have more transfers of
control to and from Aperios. This resulted in the desired performance. We found
this engine to work extremely well, and to be fairly easy to write code for. Each
process was able to focus on its task, and it was easy to pass information between
and synchronize the processes. Other supporting code could simply be written as
single objects, and once compiled into the Oobject were available to any process.
No process had to deal directly with the Subject/Observer channels, and a good
API was implemented to enable to the processes to suspend, resume or wait on
each other, as well as set their delays or entry points. The shortcomings of this
architecture were the fact that there was no real preemption available to us, so
all processes had to be implemented to return control very quickly. This meant
that long operations had to be distributed over several entry points or iterations
of the same entry point. Great care had to be taken not to misuse the shared
memory or the scheduling and synchronization APIs.

3 Vision

During our experimentation with the dog’s camera and vision hardware, we took
many pictures of the playing field and relevant objects in order to accumulate
training data and find the appropriate setup for the hardware segmentation. In
doing this analysis we found it difficult to come up with good bounding boxes
that would adequately separate all the colours we were interested in detect-
ing and we decided that it might be worthwhile pursuing our own strategy for
segmentation. This work was begun by creating a representation of the colour
space for the robot that would allow us to detect all the classes of objects we
wanted. Since bounding boxes were not sufficient to capture the complexity of
the arrangement of the colour classes, we decided to represent the YUV space
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explicitly, as a 64 by 64 by 64 colour cube. Each element in this three dimen-
sional array was a single byte encoding two colour classes to which that point
might belong, the ’best’ colour class in the high order nibble, and the ’second
best’ colour class in the low order nibble. This allowed for 32 different colour
classes, and the resulting data structure occupied 256K on the memory stick.
In order to determine the best and second best colour class for each point in
YUV space, colour training is necessary. To do this, several utility programs
were written in C and Java which are also included in our source package. All
the pictures for a class are preprocessed manually, masking or cutting out those
areas unimportant to the colour class in question. The entire vision system is
implemented as a process in our overall control engine. The process begins by
requesting a new picture from the camera hardware. When Aperios delivers the
new picture, processing begins in a series of small steps. This is necessary to
ensure that Aperios and the other processes in the system receive enough time
to do their jobs. The vision process achieves the segmentation task by build-
ing blobs of like colour classes in the image, initially creating the first set of
blobs in a single pass over the image, and then processing the list of blobs thus
created until the segmentation is stable. A blob is simply a contiguous area of
pixels, associated with some information, for example giving the area’s size and
its best/second best colour class. The first pass over the image scans the image
row by row, assembling horizontal segments of like colour classes. A segment is a
straight line segment consisting of pixels with the same two colour classes. This
could be compared to run length encoding the image. Each segment thus found
is added to the list of discovered blobs according to the following rules:

– If the segment touches no other blobs with the same two colour classes,
create a new blob with this segment.

– If the segment touches one other blob with the same two colour classes, add
the segment to the blob, updating the blob information.

– If the segment touches more than one blob of the same two colour classes,
add it to one blob, but record the connections to the other blobs it touches.

After this operation has completed (in a single pass for the entire image) we are
left with a list of blobs and connections between them. We now want to simplify
this representation, until we are left with only the blobs belonging to relevant
objects in the game. To do this, we define 4 rules:

– Merge any two touching blobs with the same two colour classes.
– Define a minimum size, and a maximum size. Do not merge blobs larger than

the maximum size.
– Merge blobs smaller than the minimum size to any touching larger blob.
– Merge blobs between the maximum and minimum size if they have a neigh-

bour with the same best colour class.

Using these rules we iterate over the blob list until it converges (no more blobs
merge). During the iteration, we use only the first rule in the first pass, adding
the second rule on the second pass, and so on. The fourth and subsequent passes
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use all the rules. When merging, we merge a blob with the first matching blob
it touches. While this is clearly less good than merging with the best-matching
blob, it is faster, and it worked well in practice. The final step in our vision
system is to use the contextual information we have about the game to improve
our segmentation results. After our blob merging and the contextual analysis
are complete, we have a fairly reliable segmentation of the field, as well as in-
formation about possible occlusion relationships. We were very pleased with the
results of our vision system. Test we conducted showed that it was able to see
the ball at larger distances than when using the hardware vision, and was also
less prone to error when segmenting the difficult colours. The final version of
the system was delivering frame rates of 8-30fps, depending on the complexity
of the scene to be segmented.

4 Odometry

We considered good knowledge of the dogs position and pose important to solve
higher level tasks. Initial experimentation showed that computing the dogs po-
sition after some amount of motion using only the information from its internal
sensors would be a difficult task. Testing with the accelerometer and gyroscope
showed that these would be difficult to use for this purpose, the error on their
measurements too high to make them useful. Instead we considered the approach
of using the forward kinematics of the dogs joints to compute its change pose,
and to perform an integration on this operation over time to estimate the dogs
global position from a known origin. The goal was to obtain a level of accuracy
sufficient for playing the soccer game in the short term, with the position being
corrected by localization when possible. In addition, the odometry level of our
system was to include a complete API providing access to details of the robots
pose, allowing us to retrieve the head direction vector and head position, for
example, if needed by other parts of the code. The odometry is computed from
two consecutive robot poses. We assume in making odometry calculations that
the floor is level, and the robot’s roll, pan and ’up vector’ are the same in the two
poses. We obtain from this equations which are solved according to the forward
kinematics of the robot to recover the new x, y and orientation components of
the robot’s pose.

5 Mapping and Localization

Using the vision system described above as a base we thought it possible to
build a simple mapping and localization module for our system. Having a map
would allow the higher level AI layer of the system to deal with objects in
the dogs world in a practical high level way. The goal was to allow the AI
layer to query the map for information such as the ball’s location, etc, and
the map would provide these in the same coordinate system as used by the
path planner. At the same time the map would provide a good abstraction,
freeing the AI from having to deal with the vision system, converting observations
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into coordinates, and keeping information updated as events in the game (the
robot moving, falling over, relocalizing) change it. The mapping layer would
also incorporate the localization step. The reason for this design was that the
map, taking as input all the raw information from the vision, would be best
able to tell when there are sufficient markers or other visual cues in the input
to permit a robust attempt at localizing. In addition, the map is the principle
consumer of relocalization information, since relocalization changes foremost and
most importantly the information in the map. Our map was kept fairly simple,
essentially it can be thought of as a list of objects the robot has seen in the world.
The object’s locations are remembered in unlocalized coordinates. The map can
be queried for the absolute or relative position of an object. When absolute
positions are requested, the localization (see below) is taken into account. The
necessary localization information is stored as a matrix, so to recover the absolute
position of an observed object is a simple coordinate transformation. The objects
on the map are remembered for varying amounts of time after they disappear
from the robot’s field of view. The exact time depends on the role of the object
in the game, but is on the order of a few seconds. When an object is seen
many times in succession, its observed locations are combined in an average
location estimate, to make the map more stable. The localization operation
was not deemed critical to playing the game, but important to making some
higher level decisions. We decided to put the localization step into the mapping
logic of our engine, since the markers used for localization are objects on the
map, and it is this part of the controlling software that most easily permits
localizing at the right times. To recover our robot’s x y position and orientation
we proceed in two steps, first recovering the x,y position and then the orientation.
While both mapping and localization appeared to work fairly well, these are
hard things to test, and we were not really able to fully test either functionality.
Initial tests confirmed the map and localization to be functioning, while not
to perfect accuracy, to an accuracy that was very useable for the purposes of
playing soccer. We believe some work is needed in this are, particularly with
regard to establishing a good policy for the management of map information
over time. When an object disappears from the dog’s vision, should it be deleted
from the map? What should the update policy for the map be, particularly
with regard to destructive updates? Can much be gained by keeping a history
of object positions? (Would this allow, for example, some recovery of velocity of
an object?) All these questions deserve some attention in a future iteration of
our system.

6 Ambulation and Actuation

Clearly moving is a very important part of the robocup problem. Initially, we had
little knowledge of the complications and problems to expect when attempting to
obtain locomotion for a legged robot, although working on it has certainly given
us new respect for the problem. We considered writing our walking methods
important since better walking than that provided by Sony would probably give
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a significant advantage to our dogs, while not using the Sony walking APIs was
also attractive from the point of view of controllability of the robot. Our own
walking would permit us to work in our own kicks, have greater control over how
and when the robots stops and starts and performs transitions between different
modes of walking. Our system included three major layers of code for ambulation,
implemented in several process objects and utility objects. These layers consisted
of an interface layer for talking to the Sony APIs for walking in the OMLE2
Ooblet, a actuation toolkit layer to allow flexible control of all or some of the
dog’s joints over time, and a layer that used our actuation toolkit to achieve
walking. The interface to the Sony walking APIs was simple to implement, and
worked well from the outset. Essentially this layer was simply a wrapper for
the Subject/Observer channel to the OMLE2 object, so that we could treat
walking using Sony’s API and walking using our own system in the same fashion
from the higher layered functional units of our engine. The actuation toolkit
consists of several objects designed to be used by other processes in the system
to move the robots joints. These objects permit programming motions for the
dog in a fast and flexible manner. An object called ’Effector’ allows the buffered,
automated dispatch of vectors of joint commands to the dogs joints or a subset
of its joints. Lowest level joint commands (essentially lists of angles) are written
into the buffers in advance, and dispatched to the Aperios actuation drivers
when necessary. Another object, called ’MotionTable’ allows the creation of more
sophisticated motion sequences by allowing the programmer to set up a ’motion
program’ which is executed to generate the lists of low level joint commands. We
found ambulation a very difficult problem to solve for our system. We believe
that while our actuation toolkit worked extremely well for other types of motion,
its architecture of creating and executing larger predefined motion sequences was
not well suited to walking. An architecture allowing instantaneous control of the
joints based on frequently and rapidly computed decisions would be better suited,
and we feel a system that actively took into account sensors and situation when
computing a gait could have made for better walking. Another thing that made
developing ambulation very difficult was the lack of precise timing and process
control in the mCOOP layer of Aperios. To effectively develop walking we would
like to be able to use interrupt driven routines and timer driven routines, to
allow us to control the robot with greater precision and respond more quickly to
problems. Improved walking would definitely be an area worth investigating for
next year’s robocup, although the problem seems so difficult, and other areas
also need attention, that using Sony’s walking seems like an attractive option.

7 Path Planning

Our path planner allowed the robot to move to a desired x-y point on the field
with a desired final orientation. The path planner retrieved the robot current po-
sition information from the Localization process, the other objects position from
the Map and the robots destination from the Brain process. All the calculations
were made in the field reference frame.
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The path planner used 3 types of curves to build the paths. Family of curves:

– Straight Line
– 200 mm radius left turn
– 200 mm radius right turn

The basic path was built in the following way. First the path planner com-
puted the beginning of the path and the end of the path by placing 2 circles
at the start point and 2 others at the destination point. As shown in figure 2.
These circles were tangential to the start and end directions. The next step was
to draw the 16 tangents to the four circles. Only 4 of these tangents result in a
continuous path. the resulting shortest path was chosen.

Fig. 2. Simple Path

The more complex case of path planning was also the basis of our object
avoidance scheme. Instead of having the Brain worry about the collision avoid-
ance, the path planner took objects on the field into account automatically. If
an object intersected a basic path the path planner recomputed the path after
inserting that obstacle in its calculation. This was done by including an inter-
mediate path which was an 200 mm arc centered about the obstacle. Figure 3
shows the two resulting paths. Here the top path would have been chosen since
it is the shortest one.

8 The AI Layer

The AI Layer was implemented as two different objects, called AttackerBe-
haviour and GoalieBehaviour. Although they are intended to be mutually exclu-
sive, and only one was used on any one dog in the competition, there is no reason
why both could be run on the same dog, with the two processes suspending and
resuming each other in response to changing conditions in the game. In this way
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Fig. 3. Compliacted Path

dynamic role switching behaviour could be quickly implemented if the necessary
trigger conditions could be defined and detected. Unfortunately time constraints
prevented us from implementing a sufficiently complicated AI system. We were
forced to settle for a very simple approach in order to be able to implement and
test it in time for the competition. However, as mentioned above, we spent some
effort in making clean, easy to use APIs for our lower layers of functionality,
so that the AI component would be able to deal with the dog in a high level
way. Issuing commands like go to point or asking questions like where is ball
and being able to work with a map and well defined coordinate systems make
programming higher level tasks much simpler. The Attacker really covers both
attacking and defending, and is implemented as a simple state machine. The dog
is initially in Defending state. In this state he attempts to get between his goal
and the ball, facing the ball, and if close enough, will attempt to kick the ball
away from his goal. If the ball is observed to be far enough away from the dog
and towards the opponent goal, the dog will enter attacking mode. In attacking
mode the dog attempts to position itself behind the ball on the line joining the
ball and the opponent goal. It then moves close enough to the ball to kick it, and
attempts to kick it towards the opponent goal. If the ball is observed to be more
towards the dogs own goal, in other words if the dog is beyond the ball with
respect to his own goal by a certain amount, he enters defending mode again.
As mentioned we were not able to give this component of our system nearly
the amount of attention it needed. However, we were able to write and modify
what behaviour we did implement very quickly and easily thanks to the clean
separation between the functional units and the high level APIs they provided.
Unfortunately lack of testing and tuning, as well as general insufficiency was
very obvious in the performance of this module of the system, and this part will
clearly be receiving the most attention in the next iteration of our software. In
particular a more complicated model is needed for the soccer game, and a more
sophisticated way to make decisions about the percepts and game situation, as
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well as taking a richer set of percepts into account in the first place. Our goals
for next year include: detection and dealing with tricky situations (the corners)
and more reaction to teammates and enemies (avoiding ganging up on the ball),
as well as dynamic switching of roles.

9 Conclusion

It has been a great opportunity for us to work with the Sony dogs on the
RoboCup problem, and we have certainly learnt a lot from our first year’s ef-
forts. We are most happy with the core architecture of our system and the vision
component. The other areas still need some work, and in particularly AI and
path planning will be our primary focus for the next year. It is very much our
hope that next year all the teams will exhibit behaviour that looks much more
like soccer playing.

10 Team Development

Team Leader: Richard Unger
Team Members:
Faculty

– Pr. Gregory Dudek (MRL)
– Pr. Martin Buehler (ARL)
– Pr. Jeremy Cooperstock (SRL)

Undergraduate Students

– Andrew Ladd (MRL)
– Giulliaume Marceau (MRL)
– Didier Papadopoulos (ARL)
– Haig Hugo Vrej Djambazian (SRL)

Graduate Students

– Scott Burlington (MRL)
– Francois Belair (MRL)
– Sami Obaid (ARL)
– Shawn Arseneau (SRL)
– Richard Unger (MRL)

MRL: Mobile Robotics Laboratory
ARL: Ambulatory Robotics Laboratory
SRL: Shared Reality Laboratory

Web page: http://www.cim.mcgill.ca/˜mumeteam
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Team Sweden

M. Boman2, K. LeBlanc1, C. Guttmann2, and A. Sa�otti1

1 AASS, Center for Applied Autonomous Sensor Systems

Dept. of Technology and Science, �Orebro University

Fakultetsgatan 1, S-701 82 �Orebro, Sweden
2 DSV, Department of Computer and Systems Sciences

Stockholm University and The Royal Institute of Technology

Electrum 203, S-164 40 Kista, Sweden

1 Introduction

\Team Sweden" is the Swedish national team that entered the Sony legged robot
league at the RoboCup99 competition. We had two main requirements in mind
when preparing our entry to the competition:

1. The entry should e�ectively address the speci�c challenges present in this
domain; in particular, it should be able to tolerate errors and imprecision in
perception and execution; and

2. it should illustrate our research in autonomous robotics, by incorporating
general techniques that can be reused in di�erent robots and environments.

While the �rst requirement could have been met by writing some ad hoc compe-
tition software, the second one led us to develop principled solutions that drew
upon our current research, and that pushed it further ahead.

2 Team Development

The work has been distributed over several universities in Sweden, which has
made the project organization especially demanding. The three main cities of
activity were Stockholm, �Orebro, and Ronneby, which are separated by a geo-
graphical distance of up to 600Km.

Team Leader: Magnus Boman (Stockholm)
Team Members: in addition to the authors of this paper, the team included:

{ from Stockholm: M. Ericmats (MSc student), J. Kummeneje (PhD stu-
dent), and A. Tollet (MSc student);

{ from �Orebro: M. Karlstr�om (undergrad), D. Petersson (undergrad), and
Z. Wasik (PhD student);

{ from University of Karlskrona/Ronneby: P. Davidsson (ass. professor),
M. Fredriksson (PhD student), and S. Johansson (PhD student).

Many other people contributed to the team in several ways. Their names are
listed in the team web page.

Web page: http://www.dsv.su.se/~robocup/teamsweden/. Information on
the current progress of the team: http://aass.oru.se/Living/RoboCup/.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 784−787, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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3 Robot Architecture

Each robot was endowed with a layered architecture for autonomy inspired by the
Thinking Cap,1 sketched in Fig. 1. The lower layer provides an abstract interface
to the physical functionalities of the robot. The middle layer is responsible for
maintaining a local representation of the space around the robot (PAM), and
for implementing a set of robust tactical behaviors (HBM). The higher layer
maintains a global map of the �eld (GM) and makes real-time strategic decisions
(RP). More detailed information can be found at the Team web sites.
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Fig. 1. The variant of the Thinking Cap architecture used at RoboCup '99.

4 Perception

The main locus of perception is the PAM, which acts as a short term memory
of the location of the objects around the robot. The position of each object
is updated by three mechanisms: by perceptual anchoring, whenever the object
is detected by the camera; by global information |for the �xed objects only|
whenever the robot registers its own location in the global map; and by odometric

clamping, whenever the robot moves.
Each object is associated with two fuzzy predicates, that take truth values

in the [0; 1] interval: the anchored predicate measures how much the object's
position is supported by recent perception; the needed predicate measures how
much that object is needed by the currently running behaviors. These are used
to measure how much it is important to re-acquire a given object o by

important(o) = needed(o) � (1� anchored(o)): (1)

We use importance to decide the perceptual focus by selecting the object f

with the highest importance. (We need focus control because we have only one

1 The agent architecture based on fuzzy logic in use at �Orebro University. This is a
successor of the architecture originally developed for the robot Flakey [1].
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camera, and many potential objects of interest.) The camera is pointed to the
expected position of f , and a head scan is done if the object is not found. The
use of (1) results in selecting all of the needed objects in a round-robin fashion.

Object recognition relies on the color detection hardware in the Sony robot,
to which we provide the intended color signatures (produced o�-line from color
samples). We combine color blobs into features by a model-based approach: for
instance, a green blob and a pink blob in a given geometric relation are fused
into a landmark feature. These features are checked against the three criteria
illustrated in Fig. 2. First, we reject features which are \astray": e.g., the pink
band of a landmark cannot be a ball feature since it does not lay on the ground.
Second, we select features which are in the \anchoring zone," a small fovea in
the image where we can reliably measure the object's position. The remaining
features are consider to be in \tracking zone," meaning that they should be
brought into the anchoring zone by moving the camera.

Fig. 2. A ball feature in the astray (left), tracking (center), and anchoring zone (right).

5 Control

The HBM implements a set of motion behaviors realized using fuzzy logic tech-
niques and organized in a hierarchical way. The use of fuzzy logic brings two main
advantages: �rstly, fuzzy behaviors can tolerate some amount of uncertainty in
the position estimates; secondly, it is easy to write complex control strategies
using a simple rule based language [2]. As an illustration, the following set of
fuzzy rules implement the \GoToPosition" behavior.

IF (AND(NOT(PositionHere), PositionLeft)) TURN (LEFT);

IF (AND(NOT(PositionHere), PositionRight)) TURN (RIGHT);

IF (OR(PositionHere, PositionAhead)) TURN (AHEAD);

IF (AND(NOT(PositionHere), PositionAhead)) GO (FAST);

IF (OR(PositionHere, NOT(PositionAhead))) GO (STAY);

The fuzzy predicates in the antecedents rely on the information in the PAM;
`GO' and `TURN' are fuzzy set-points for linear and rotational velocity, respec-
tively. These are passed to the Commander module, which translates them to
an appropriate walking style. The translation simpli�es the writing of motion
behaviors, and makes them more portable between di�erent platforms. It also
allows us to easily modify the walking style used to implement each velocity pair.

Simple behaviors can be composed into increasingly more complex behaviors
by using fuzzy rules that activate concurrent sub-behaviors. For instance, the
following rules implement the \GoAndScore" behavior.
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IF (NOT(NearBall)) USE (GoToPosition,Ball);

IF (AND(NearBall, NOT(Aligned))) USE (Align,Net1);

IF (AND(NearBall, Aligned)) USE (Kick,Net1);

IF TRUE NEED (Ball);

IF (NearBall) NEED (Net1);

These rules also show how behaviors communicate the current perceptual
needs to the PMA via the `NEED' keyword. For instance, when the ball is at
400mm from the robot the truth value of \NearBall" is 0.7, and the above rules
assert a value of needed of 1.0 for the object Ball and of 0.7 for Net1. These
values are used by the gaze control mechanism to track the relevant features.

6 Localization

Spatial information is represented at two levels: locally, in the PAM; and globally,
in the GM. The GM incorporates prior knowledge of the relative position of the
�xed objects in the �eld. The information in the PAM and in the GM is registered
by estimating the robot's posture in the �eld using the observed position of the
landmarks. Unfortunately, we could not test this mechanism to a su�cient extent
by time of the competition, so we only used local information.

7 Strategy

We used hierarchical behavior composition to write simple �xed strategies like
\GoAndKick." More complex strategies are dynamically generated by the RP,
which implements a decision making scheme inspired by cognitive psychology [3].
The RP decides the top-level behavior to activate by a voting mechanism, where
votes correspond to motivations for using a given behavior in a given situation.
The RP was not fully developed by the time of the competition, so we only used
very basic strategies for the players and for the goal-keeper.

8 Conclusion

Our experience at RoboCup '99 has shown that the general principles and tech-
niques developed in our research could be successfully applied to a radically
di�erent domain. Fuzzy logic proved bene�cial in writing robust behaviors, and
in developing an e�ective gaze control strategy. We believe that fuzzy logic could
also bring substantial advantages in self localization and in exible reactive plan-
ning. We plan to explore these issues in preparing our entry to RoboCup '2000.
Acknowledgements We thank Aline Dahlke at Sony France and the Sony sta� in

Japan for being so understanding of the di�culties of our distributed work situation.

Founding was provided by the Universities of �Orebro, of Stockholm, and of Ronneby.
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UNSW United

Mike Lawther and John Dalgliesh

University of New South Wales

1 Introduction

The system we developed uses a hierarchial approach to software design, and
consists of three subsystems : vision, acting, and planning. We also developed an
offline classification system that uses concepts derived from Machine Learning.

2 Team Development

Our team is from the University of New South Wales in Sydney, Australia. All
members were present at RoboCup 99 in Stockholm.

Team Leader: Claude Sammut
Team Members:

Claude Sammut
– Supervisor
– Professor

Mike Lawther
– Core Developer
– Undergraduate

John Dalgliesh
– Core Developer
– Undergraduate

Philip Preston
– Technical Manager
– Engineer

Web page http://www.cse.unsw.edu.au/~robocup/

3 Complete Robot Architecture

Fig 1 shows how the three subsystems of our architecture are connected. The
system is driven by input from the camera. With each new frame, the Vision
subsystem recognises objects in the robot’s vision, and uses these to update a
world model. A localisation algorithm is executed as part of this process.

The Planning subsystem then suggests an action for the robot to perform.
It makes this decision based on the current state of the world as represented in
the world model, as well as its own internal state.

The Acting subsystem monitors the action that the robot is currently per-
forming. If Acting subsystem determines that the action has completed, the next
action from the Planning subsystem is accepted, and begins execution.

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 788−791, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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Fig. 1. System architecture

4 Vision

The goal of the Vision subsystem is the accurate detection of colours, allowing
it to classify each pixel as one of up to eight colours. In order to calibrate this
classification process, sample images are taken with the robot’s camera and these
are classified by hand.

The definition of a ‘colour’ for classification purposes is a single polygon in
UV space — irrespective of a pixel’s Y value. These polygons are learnt offline
by a program which tries to evolve a polygon that minimises classification error
within the sample images, for each colour, as shown in Fig 2.

Fig. 2. Polygons learnt from sample images of the main field on 30th July 1999

The onboard hardware colour detection is not used. Instead, each camera
frame is classified using the polygon scheme described above. This classification
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results in a bitmap for each colour. Four-connected blobs are formed from these
bitmaps, and these blobs are used by the object recognition algorithms. Our
system recognises the ball, the goals, and the six beacons. Although red and
blue colours can be detected, these are not used to recognise the robots.

After the objects have been detected, they are integrated into the world
model. Every object has a number of properties, including a heading, elevation
and distance to the object, relative to the base of the robot’s neck. Objects also
have a confidence factor associated with them. In the world model, the confidence
factor of an object indicates the certainty of its location.

These confidence factors are used in a weighted average calculation when up-
dating the world model with new information. Mathematically, a confidence fac-

tor is the factor c in the probability distribution of the object, p(d) = c ∗ e−( d
1.3−c)

2

.
The argument d is the distance of the object from its nominal position. The up-
dated confidence factor is calculated to minimise the error in the addition of the
distributions corresponding to the existing and input confidence factors.

5 Acting

The basic unit of robot control is an atomic action. This is an uninterruptible
sequence of steps, which may control leg motors directly or send commands to
the OPENR MoNet.

We have two styles of walks as actions, a fast walk and a precise walk. These
use the Trot and Fast OPENR walks respectively. A kick was also developed,
but was not used due to the time required to position the robot accurately.

In parallel with general leg-based actions, the Acting subsystem also controls
the movement of the head, which tracks objects as instructed by the Planning
subsystem. If the object is not in the world model, then the head searches for it
in a circle. There are two distinct search ‘circles’, one for the ball, and one for
all other objects. The ball circle takes care to look down so the robot does not
miss the ball if it is at its feet.

6 Localisation

We use a passive localisation scheme. For each frame, the system attempts to
derive its position on the field, based on the objects in the world model.

The algorithm is based on trilateration. Because goals are large, it is difficult
to accurately calculate distances and angles to them.

Therefore goals are excluded from consideration for this calculation. The x, y
and θ (orientation) coordinates of the robot relative to the field are determined
solely by sightings of beacons.

The algorithm maintains a confidence factor for the robot’s position, similar
to that in the world model described in Section 4. When high-level control wants
to locate a fixed object, such as a goal, if the robot is confident of its position on
the field, then the object’s position can be determined even if it cannot be seen.
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7 Planning

Our Planning subsystem consists of plans and roles. Roles are top-level be-
haviours such as Goalie and Forward. A plan performs some simple function
that may be common to several roles.

One important plan is ‘PositionForKick’. A robot following this plan attempts
to determine the angle at which it must kick the ball so as to move it towards a
goal. If necessary, the robot must turn itself around the ball.

When playing the game, our robots use a dribbling technique to move the
ball. This was implemented in the ‘DribbleBall’ plan. A robot following this
plan would dribble the ball until it loses sight of the ball. At this point, the
‘DribbleBall’ plan completes. The high-level controller must then decide what
to do next.

The Goalie uses simple heuristics to localise itself. It simply walks straight
into its own goal. Once in its goal area, it monitors the ball’s position. If the ball
becomes too close, it follows the ‘DribbleBall’ plan to clear the ball.

The other role used in our team is the Forward. The Forward tries to move the
ball into the opponent’s goal. If the robot cannot see the ball, the role instructs
the Acting subsystem to look for the ball. Once the ball is acquired, the Forward
will follow the ‘PositionForKick’ plan, until the robot is aligned correctly with
the ball and the goal. ‘DribbleBall’ is used to move the ball until the robot loses
sight of it.

None of the roles recognises any other robot on the field.
For the RoboCup Challenge, the Forward role was used without modification.

8 Special Team Features

Our team employs machine learning for the colour classification. This is per-
formed offline. When the robot is on the field, no learning takes place.

One of the advantages of the modular design of our software is that it is
possible to add and change plans and roles quickly. This proved valuable during
the competition.

9 Conclusion

UNSW plans to enter another team in RoboCup2000.
The main focus of our development will be to investigate further use of ma-

chine learning in vision and control.
For next year’s competition, we would like to see a slightly smaller, and softer

ball This will allow the robots a higher degree of control when kicking or drib-
bling. We would also like to have the floor of the goal carpeted to avoid slippage.
Another improvement would be lessening the slope of the walls surrounding the
field, allowing the robots to walk on them. This would reduce the ‘huddles’ and
‘ball-stuck’ situations that occured frequently in RoboCup 99.
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UPennalizers: The University of Pennsylvania

RoboCup Legged Soccer Team

James P. Ostrowski

University of Pennsylvania

1 Introduction

The main areas of focus for our team were the development of solid algorithms
for merging vision data with other inputs and basic strategies for moving the
ball towards the goal and for defending the goal. Our team came in �fth place
overall in the competition. We defeated Team Sweden 2-0, though both goals
were \own-goals" (scored by Team Sweden). We lost 2-0 to Osaka Univ., in a
game where the �rst half we spent 90% of the time in the corner of the �eld near
their goal, unable to score, while in the second half they scored one quick goal,
just making it past our (slow) goalkeeper, and then a second goal later on in the
game. We also had two scrimmage games{ a 2-0 victory over Team Sweden, and
a 0-0 tie against the team from Humboldt.

2 Team Development

Team Leader: Jim Ostrowski
{ Department of Mechanical Engineering and Applied Mechanics, Univer-
sity of Pennsylvania

{ United States
{ Assistant Professor
{ Attended the competition

Team Members:

Aveek Das and Kenneth A. McIsaac
{ Department of Mechanical Engineering and Applied Mechanics, Univer-
sity of Pennsylvania

{ United States
{ Graduate Students
{ Attended the competition

Thomas J. J. Ferguson, V and Mike Portnoy
{ Department of Computer Science and Engineering, University of Penn-
sylvania

{ United States
{ Sophomores
{ Attended the competition

Austin J. Parker
{ Haverford College
{ United States
{ Sophomore
{ Attended the competition

M. Veloso, E. Pagello, and H. Kitano (Eds.): RoboCup-99, LNAI 1856, pp. 792−797, 2000.
Ó Springer-Verlag Berlin Heidelberg 2000
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Tim Ledlie

{ Harvard University
{ United States
{ Sophomore
{ Did not attend the competition

Max Mintz

{ Department of Computer and Information Science, University of Penn-
sylvania

{ United States
{ Professor
{ Did not attend the competition

The team was also advised by in the area of vision processing by Prof. C.J.
Taylor and in the area of simulation and strategies by Prof. Vijay Kumar.

Web page ftp://ftp.cis.upenn.edu/pub/extra/RoboCup99/public html/index.html

3 Complete Robot Architecture

The robot architecture we developed is a mode-based architecture in which
higher level modes, such as going to the ball or kicking, are chosen determinis-
tically based on the current and predicted state. This architecture is described
in more detail in [1]. We have divided the system into four basic components, as
shown in Figure 1, and described individually below:

Sound

Vector
State

Walk Kicking Head

Commands

Predictor

Legend: Task (Aperios object)

Built-in Aperios object
Aperios IPC link

Real-time clock (periodic process)

Function calls/shared memory

AI

OutputInput

Library (Shared memory)

Input 1 Input 2 Input 3

Input 4

Fig. 1. Software architecture for our team

Input task: The input task is made up of several objects with responsibilities for
reading the various sensors. Each of these objects sends messages to the Predictor
object when they have received (and processed) their data. For example, the
object handling image input processes the image to locate the position of items
of interest in the image (ball, goals, markers ...) and sends only the condensed
information (ball position, etc.) to the Predictor.
Predictor task: The Predictor task collects and fuses the information coming
from the sensors. Con�dence values are also maintained for each piece of infor-
mation, so as to allow for decisions to be made based on how \fresh" the data is.
The Predictor also performs any necessary �ltering, especially Kalman �ltering
for prediction of object positions at future times (hence the name). All objects
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in the system have access to a pointer to the shared memory Predictor that gives
them (read-only) access to the state of the system.

AI task: The decision-making task (or AI task for short) performs all high-level
decision-making for the robot. Using the state information in the Predictor, and
based on past history implemented as a �nite state machine, the AI is able to
determine what its current obligations and goals (approaching ball, attacking
goal, etc.) should be. Based on its decisions, the AI sends high-level Commands

to the Output task for processing. The AI is also responsible for determining if
the robot is \lost"{ a state that means no useful information about ball or self
position is known. At this time, the AI moves into a search and localize mode.

Output task: The Output task carries out operations contained in the high-
level Commands sent by the AI. These Commands are at the level of \move to
the ball", or \orbit the ball until facing goal". They require an \inner control
loop" to be carried out. The Output task, therefore, receives timer messages and
carries out the appropriate actions at each time step for the current Command

being processed.

4 Vision

There are three primary concepts that were involved in our use of the vision
sensor for RoboCup99: making color tables, blob and marker detection, and
distance and orientation computations.

Making color tables: The development of the color tables for pre-processing
of color images was quite involved. Our basic algorithms relied on making masks
(by hand) of multiple images which included di�erent lighting conditions and
views of the colored markers and goals. From these masks, a weighted index was
formed which was then used to generate by hand the actual color boundaries for
each color.

Blob and marker detection: In order to perform a variety of tasks, including
�nding the ball or the goal and performing self-localization, the ability to locate,
isolate, and even track colored blobs was essential. To this end, we developed a
set of blob tracker routines. The blob detection routines (called the \Multi-blob
Tracker") use the images extracted using the CDT hardware, and so work with
color segmented images.

The algorithm that we used sought a compromise between computational
e�ciency and a robust and thorough search. To detect the blobs, we �rst scan
the picture horizontally and sum each of the columns in the image to determine
whether there are objects in the horizontal projection of the image. In other
words, we project the blobs in the image onto a single horizontal row, and then
detect blobs of point on this 1-D set (see Figure 2 below). Then the same thing is
done with the vertical pixels, so that we get a set of clumps of pixels (representing
objects projected horizontally from the image) in a single column. We then do
some simple matching to determine where the actual objects lie, and to compute
centroid location and horizontal and vertical sizes of the object. In the scenarios
we encountered, it was generally the case that there were not multiple objects
of the same color aligned vertically, so this algorithm worked quite well.
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Color segmented image

Vertical projection

H
orizontal Projection #1

#2
+ #2

#3

#1 #2 #3

#3

#1

Fig. 2. Projections for multiblob detection

On top of the simple blob detection, we also do feature matching to determine
which blobs correspond to markers, and which are other objects, such as the goal.
This is done by stepping through the di�erent blob location data structures and
performing matching based on known marker geometry and colors. Thus, the
Multi-blob Tracker routines return both the locations and sizes of all the blobs
that are seen, as well as the locations of each of the markers.
Distance and orientation computations: For determining distance to the
ball and the marker, we used a simple calibration lookup table, which we found
to be reasonably reliable. We independently calibrated for both the width and
height of the object, to provide additional robustness. For orientation, the angu-
lar heading to the target was computed using the pixel location of the centroid
of the object in the image plane and the current con�guration of the head/neck
motors. Based on some simple geometry, this gave a good calculation of the
actual bearing of the object to the robot.

5 Control

For low-level control, we utilized the walking and posture control algorithms
given to us by Sony, with some minor modi�cations in how steps were executed.
One of our innovations was in generalized walking, where we implemented a rou-
tine that would allows us to walk around the ball. This was done by side-stepping
until the ball was at a large enough angle relative to the head of the robot, and
then rotating until the ball again was closer to straight ahead. Combining these
two behaviors generated a net e�ect of rotating around the ball, which worked
quite well in most circumstances.

6 Localization

In the attacking strategy, localization was limited to determining the heading to
the goal we were attacking. We also developed localization routines that weren't
used in the tournament, which were based on a well-known surveyor's algorithm
for determining location from the bearing to three known markers. We use this
algorithm because it relies on the minimal needed information (scanning for
markers can be time-consuming, and so we try to get away with as few as pos-
sible), and it relies only on angular heading and not distance. We have tried to
use angular information whenever possible, since it is well-known that estimat-
ing distance using vision can be very error prone and particularly sensitive to
occlusions.
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Goalie positioning

marker

ball

goal distance to
   goal line

distance and angle to 
side line

Fig. 3. Geometry for goalie stance

The goalie localization, on the other hand, was based on detecting the goal
line and observing the distance to the corner marker (see Figure 3). For the
goal line, the goalie would periodically look down towards its front feet. If it
was the correct distance from the goal line, then the color detection algorithm
should pick up the goal line a certain distance from the center of the image.
Furthermore, a least-squares �t was used to calculate the slope (and o�set) of
the line that matched the goal-line. This �t would tell us at what angle (and
distance) the robot was standing with respect to the goal line. Corrections could
then be made if the orientation or o�set error was signi�cant enough. For keeping
its position along the goal mouth, the robot generally used dead reckoning (step
counting) to determine whether it was to the left, middle, or right of the goal.
Periodically, the goalie would look up to �nd the corner marker. Using the pixel
size of the marker in the image, along with a calibration lookup table, the robot
would determine the distance to the corner, and hence its own position in the
goal mouth.

7 Strategies: Attacker and Goalkeeper

Our overall strategy focused on two areas: attacking with the ball towards the
goal and defending the goal.

Algorithm: Attacker (code-name Predictor-Writer) The strategy of the
attacker was kept quite simple{ �nd the ball, approach it, walk around it until
the ball was between the robot and the goal (preferably an opening to one side
of the goal keeper), and then charge towards the goal. For this, we used a simple
scan routine to locate the ball, and Sony's walking routines to move us towards
the ball. Once in close enough range, we utilized our own walking modi�cation to
allow us to move around the ball. As we walked around the ball, we continuously
looked for the goal that we were to be attacking. Once this was found, the robot
would try to dribble forward towards the goal, primarily relying on bumping the
ball forward with its body.

One important lesson learned during the games was that in most situations
it was not possible to get fully around the ball, so that the ball would be between
the robot and the goal. This was due to the fact that there was very often some
object blocking the robot from completing this maneuver, whether it was the
side wall (particularly in the corners), or another robot from either team. For this
reason, we implemented a \time-out" condition that would have the robot drive
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the ball forward if it had been trying to move around the ball for an extended
period of time.

Algorithm: Goalie (code-name Stonewall) Our goalie got its nickname
(Stonewall) because it was very good at getting in the way of the ball and
staying in the way. It also tended to move a little slower than some goalies. The
basic strategy was to keep the body of the robot faced parallel to the goal line,
so as to present the maximum cross-sectional area for defense. Also, the goalie
always stayed in a range having the middle of its body aligned with limits at
the right goal post and the left goal post. The main (and very simple) idea was
to keep the robot in front of the ball as long as the ball was in view. When the
ball went out of view for any signi�cant amount of time, the goalie would then
retreat to the back side (right side) of the goal, so as to guarantee that the ball
couldn't be slipped behind the goalkeeper.

8 Conclusion

We plan on entering a team for next year's competition (RoboCup2000) in Aus-
tralia. There are many components that we will focus on for next year, and we
are extremely excited to have enough time to work on developing many di�erent
areas. Some of the focal points will be: inter-robot communication using audio,
team strategies, dynamic tracking of markers used for estimating position, and
generalized walking gaits for moving in arbitrary directions.
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